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Abstract Several studies have been devoted to dynamic
and statistical downscaling for both climate variability and
climate change. This paper introduces an application of
temporal neural networks for downscaling global climate
model output and autocorrelation functions. This method is
proposed for downscaling daily precipitation time series for
a region in the Amazon Basin. The downscaling modeis
were developed and validated using IPCC AR4 model
output and observed daily precipitation. In this paper, five
AOGCMs for the twenticth century (20C3M,; 1970-1999)
and three SRES scenarios (A2, AlB, and Bl) were used.
The petformance in downscaling of the temporal neural
network was compared to that of an autocorrelation
statistical downscaling mode! with emphasis on its ability
to reproduce the observed climate variability and tendency
for the period 1970-1999. The model test results indicate
that the neural network model significantly outperforms the
statistical models for the downscaling of daily precipitation
variability.

1 Introduction

Numerical models (general circulation models or GCMs}
representing physical processcs in the atmosphere, ocean,
cryosphere, and land surface are the most advanced
numerical tools currently available for weather and climate
forecasts and for simulating the respomnse of the global
climate system to increasing greenhouse gas concentrations.
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A complete review of GCMs used in climate variability and
change can be found in Meehl et al. (2007).

GCM simulations of local climate at individual grid
points are often poor, especially in areas near mountains or
coastlines. The notion that the increase of anthropogenic
greenhouse gases will lead to significant global climate
change over the next century is the accepted consensus of
the scientific community. Human activitics have been
pointed out to have a significant contribution to the
abserved warming in the last 50 years and in the projections
of climate until the end of the twenty-first century (Meehl et
al, 2007). Human-related activities, as compared to natural
climate variability (Zhang et al. 2007}, are pointed out as
the main cause of the observed warming in the twentieth
century and the projected warming possible in the twenty-
first century. In this context, an assessment of possible
future changes of precipitation and temperature over the
continents is highly relevant, considering the possible
impacts of those changes and the issues of vulnerability
that lead to consideration of adaptation measures.

For applications to impact studies such as hydrological
impacts of climate change, impact models are usually
required to simulate sub-grid scale phenomenon and
therefore require input data (such as precipitation and
temperature) on a similar sub-grid scale. The methods used
to convert GCM outputs into regional high-resolution
meteorological fields required for reliable hydrological
modeling are usually referred to as “Jownscaling” techni-
ques {e.g., Hewitson and Crane 1992). In recent years, a
number of papers within the climatological community
have adopted artificial neural networks as a tool for
downscaling, principally in spatial resolution, from the
large-scale atrnospheric circulation to local or regional
climate variables (Cavazos 1999).
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There are various downscaling techniques available to
convert GCM outputs into daily meteorological variables
appropriate for studies of hydrological impact and climate
change variability (e.g., Dibike and Coulibaly 2006).
Widmann et al. (2003) developed a method to downscale
precipitation, referred to as “local rescaling™

There are several diffcrent methods that can be used to
derive the relationship between local and large-scale
climates. There is statistical downscaling used for spatial
downscaling; but, mostly multiple linear regression, principle
component analysis, and artificial neural networks are used.
However, the procedure selected mainly depends on the
objective of the study and its applications {Solman and Nufiez
1999). Dynamical downscaling generates regional-scale
information by developing and using regional climate
models (RCMs) with the coarse GCM data used as boundaty
conditions. The RCMs represent an effective method of
adding fine-scale detail to simulated patterns of climate
variability and change, as they resolve better the local land-
surface properties such as orography, coasts and vegetation,
and the internal regional climate variability through their
better resolution of atmospheric dynamics and processes
(Giorgi et al. 2004; Marengo et al, in revision).

Artificial neural networks (ANNs) denote a set of
connectionist models inspired by the behavior of the human
brain. In particular, the multilayer perceptron is the most
popular ANN architecture, where neurons are grouped in
layers and only forward connections exist. This provides a
powerful base learner, with advantages such as nonlinear
mapping and noise tolcrance, increasingly used in the data
mining and machine leaming ficlds due to its good
pehavior in terms of predictive knowledge (e.g., Rumelbart
et al. 1095). The simplest form of ANN (e.g, muitilayer
perceptron) is reported to give results similar to those from
multiple regression downscaling methods.

The objective of this study is to identify ternporal empirical
functions, using ANNs and autocorrelation functions (ACs)
that can capture the complex relationship between selected
large-scale predictors and locally observed meteorological
variables for a given temporal scale (predictands).

The ANN method uses feed-forward, which has tempo-
ral processing capability without resorting to complex and
costly training methods. The emphasis of the feed-forward
method is to evaluate and compare the optimal method with
the most commonly used regression-based dowmnscaling
method and some of the IPCC AR4 modcls to which the
downscaling technique is applied. The AOGCMs used in
this paper derive from the IPCC project (CGCM3, CSIRO-
MK3.5, ECHAMS-MPI, GFDL-CM2.1, and MIROC3.2-
MEDRES) simulation for the twentieth century (present
day—20C3M) and SRES scenarios (A2, Bl, and A1B). All
five models represent the state-of-the-art AOGCMs (e.g.,
Boulanger et al. 2006, 2007).
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2 An overview of downscaling methods

Spatial downscaling is a technique by which finet-
resolution climate information is derived from coarser-
resolution GCM output. The basic assumption of spatial
downscaling is that it is possible to derive significant
relationships between local and large-scale climates. Since
the spatial resolution of current GCMs varies between 250
and 600 km while the forcing that affects regional climate
occurs generally at a much finer spatial scale, downscaling
may lead to a significantly different regional climate.

Spatial downscaling techniques can be divided mainly
into empirical/statistical methods and statistical/dynamical
methods (Salathe 2003; Weichert and Burger 1998). The
dynamic downscaling approach is a method of extracting
local-scale information by developing RCMs (with the
coarse GCM data used as boundary conditions). Statistical
downscaling methods, on the other hand, involve devel-
oping quantitative relationships between farge-scale atmo-
spheric variables—the predictors—and local surface
variables the predictands (e.g., Giorgi 1990; Kidsen and
Thompson 1998),

These technigues refer to a method in which sub-grid
scale changes in climate are calculated as a function of
large-scale climate. Statistical relationships are calculated
between large area and site-specific surface climate or
between large-scale upper air data and local surface
climate. Stochastic weather generators may also be
conditioned on the large-scale state in order to derive
site-specific weather.

Dynamic downscaling is being used in Europe and
North Ametica to quantify regional climate change and
provide regional climate scenarios for assessing climate
change impacts and vulnerability. Projects include the UK
Climate Impacts Programme (Hulme ct al. 2002), the
PRUDENCE (Buropean Projects; Christensen et al. 2007,
Gao et al. 2006; Giorgi et al. 2004), and the North
American Project NARCCAP (Meams 2004). These have
all followed a standard experimental design that of using
one or mote GCMs to drive various existing regional
models from meteorological services and research institu-
tions in the regions in order to provide dynamically
downscaled regional climate projections. A similar initia-
tive has been rccently implemented in South America,
CREAS (Regional Climate Change Scenarios Jor South
America—Marengo and Ambrizzi 2006; Marengo et al., in
Tevision).

Thus, ANN represents a statistical procedure employed
to estimate possible changes in local climate parameters as
a function of the large-scale climatic changes simulated by
a given GCM (spatial downscaling). Large amounts of
observed data may be required to establish statistical
relationships for the current climate.
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Fig. 1 Study area, with stations
used

3 Datasets, method, and predictor choice 20C3M run and SRES scenarios for futures A2, Bl,

and AIB described in Nakicenovic et al. (2000). Tt is

3.1 Observed and model datasets important to note, however, that the 20C3M simulation

is intended to represent the same historical total-forcing

a. The data used in these studies were from rain gauges scenarios, including both natural variability and the

located within the Brazilian Amazon Basin {Fig. 1), effect of human emissions on climate (e.g., Marengo et
which are part of the Brazilian pational hydrometeoro- al., in revision.

logical network. They were provided by the National
Water and Electric Energy Agency of Brazil (ANEEL},
whose sources include the ANEEL network. Precipita-
tion (P) is computed from rainfall observations in the
Amazon Basin and is derived for the entire basin, using
the records of 33 rainfall stations.

b. The AOGCM outputs are interpolated over the 2.5%%
2.5° grid defined for the observation, The period used
far present conditions (20C3M run scenario) is 1970—
1999, and the future is 2070-2099 as derived from five
IPCC AR4 models. The five models (Table 1) represent
state-of-the-art AOGCMs. In this paper, we use the 1. An ANN can perform tasks that a linear program cannot.

3.2 Method

3.2.1 Ariificial newral network

An ANN is a system based on the operat?al‘ of a biological
neural network; in other words, it is an emulation of

biological neural system.
Advantages of the artificial neural network:

Table 1 Climate models with daily data for precipitation available from PCMDI

Acronym Model Resolutions Source

CGCM3 ccema_cgem3_|_t63 T63L3 Canadian Centre for Climate Modeling and Analysis

CSIRO csiro_mk3_0 T63L18 Australian Commonwealth Scientific industrial and Research Organization
ECHAM mpi_echam3 T42L19 Max-Planck-Institut fiir Meteorologie

GFDL2.1 gfdl_cm2 | M4s5L24 Geophysical Fluid Dynamics Laboratory

MIROC-m miroc3_2_medres T421L.20 Centre for Climate System Research, University of Tokyo; National Institute

for Environmental Studies; Frontier Research Centre for Global Change

Column 1 is the acronym used in the text, column 2 is the name of the mode} used in the PCMDI archive, columns 3 is the model resolution, and
column 4 is the source of the model
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2. When an element of the ANN fails, it can continue
without any problem due to its parallcl nature.

3. An ANN learns and does not have to be reprogrammed.

4. It can be implemented in any application.

Disadvantage of an ANN:

1. Large amounts of observational data may be required
to establish statistical relationships for the current
climate.

2. Specialized knowledge is required to apply the techni-
ques correctly.

3. Relationships are only valid within the range of the data
used for calibration; projection for some variables may
lie outside this range.

4. Tt might not be possible to derive significant relation-
ships for some variables.

ANN is among the newest signal-processing technolo-
gies in the engineer’s toolbox. The field is highly
interdisciplinary, but our approach will be restricted to
the engineering perspective. Definitions and style of
computation in an ANN are of an adaptive nature and
often nonlinear systems learn to perform a function from
data (input/output).

An input is presented to the ANN along with a
corresponding desired, or target, response sct for the output
(when this is the case, the training is called supervised). An
error field is constructed from the difference between the
desired response and the system output. The error informa-
tion is used as feedback to the system and adjusts the
system parameters in a systematic fashion. The process is
repeated until the performance is acceptable. It is clear from
this deseription that the performance hinges heavily on the
data.

The network diagram shown (Fig. 2) is a full-connected
two-layer, feed-forward, perccptron ANN, Full-connected
means that the output from each input and hidden neuron
is distributed to all of the neurons in the following layer.
Feed-forward means that the values only move from the
input layer to hidden layers and, then to the output layer,
with no values fed back to earlier layers.

The goal of the training process is 0 find the set of
weight values that will cause the output from the ANN to
match the actual target values as closely as possible. There
are several issues involved in designing and training a
multilayer perceptron network:

1. Selecting how many hidden layer to use in the network

2. Deciding how many neurons to usc on each hidden layer

3. Finding a globally optimal solution that avoids local
minima

4. Converging to on optimal solution in a reasonable
period of time

5. Validating the neural network to test for overfiiting

@_ Springer
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Precipitation

Fig. 2 Structure of the artificial neural network

3.2.2 The statistical modeling (autocorrelation)

Autocorrelation is the expected value of the product of a
random variable or signal realization with a time-shifted
version of itsclf obtained from a simple calculation and
analysis of the autocorrelation function. We can discover a
few important characteristics about our random process.
These include:

1. How guickly our random signal or processes changes
with respect to the time function

2. Whether our process has a periodic component and
what the expected frequency might be

Since the autocorrclation functions are simply the
expected value of a product, let us assume that we have a
pair of random variables from the same process,

Xy =x(t) and  X» =x(f2),

then the antocorrelation is often written as

Rue{h, 12) = ElX1, X3 (H
= f / lesz(xl,xﬂdxzdxl

The above equation is valid for stationary and non-
stationary random processes. For stationary process, we can
generalize this expression a little further. Given a wide-
sense stationary process, it can be proven that the expected
values from our random process will be independent of the
origin of our time function. Therefore, we can say that our
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autocorrelation function will depend on the time difference
and not some absolute time. For this discussion, we will
r=1t—1t, and thus, we generalize our autocotrelation
expression as

Rxx(t, ¢+ 7) = Rxx(1) {2)
= [X (@), X(t +7)]

for the continuous-titne case.
Below, we will look at several properties of the autocor-
relation fanction that hold for a stationary random process.
Autocorrelation is an even function for 7

Rx (1) = R (=7)

The mean-square value can be found by evaluating the
autocorrelation where 7= 0, which gives us

Rx(0) =%

The autocorrelation function will have its largest value
when =0. This value can appear again~—for example, in a
periodic function at the values of the equivalent periodic
points —but will never be exceeded:

Rex(0) 2 |Rox (7)]

If we take the autocorrelation of a periodic function, then
Rypd7) will also be periodic with the same frequency.

4 Procedure for training the network

Training of the ANN is accomplished by providing inputs
to the model, computing the ontput, and adjusting the
interconnection weight until the desircd output is reached.
The error back-propagation algorithm is used to train the
network, using the mean-square eitor over the training
samples as the objective function. One part is used for
training, the second is used for cross-validation, and the
third part is used for testing,

The architecture of the ANN in the present study
consisted of an input layer, a hidden layer, and an output
layer. The number of intermediate units was obtained
through a trial-and-error procedure. The error between the
value predicted by the ANN and the value actually
observed was then measured and propagated backward
along the feed-forward connection. The final error, after a
given number of training cycles, was noted. The number of
intermediate units that gave the minimum system ermmor was
accepted. During training, the performance of the ANN was
also evaluated on the validation set.

The ANN and statistical procedures presented above
were applied to modeling the daily precipitation data from
five models (Table 1) derived from TPCC AR4, represent-
ing the current climate (i.e., 1970-1999), as well as daily

observed precipitation measured during the concurrent
period. The- different paramcters of each model are
adjusted during calibration to get the best statistical
agreement betwecn observed and sinmlated meteorologi-
cal variables.

The downscaling experiment was conducted with the
one statistical method (autocorrelation) and the ANN
methods (back-propagation) presented in Section 3. The
ANN training needs six predictors (five output tnodels
plus observation data) as input to the network, and the
best-performing network is selected. A hyperbolic tan-
gent activation function is used at both the hidden and
output layers of the ANN, and the networks are trained
using a variation of feed-forward back-propagation
algorithms,

A sensitivity analysis is done to determine the most
relevant predictors, which need to be selected for further
retraining. Sensitivity analysis provides a measure of the
relative importance among the predictors (input of the
ANN) by calculating bow the model output vares in
response to variation of an input.

§ Downscaling
5.1 Validation results

The ANN was developed using various hidden nodes and
layers. The final error after a given number of training
cycles was observed. The number of intermediate nodes
varied from: three to eight, and the number of iterations
varied from 500 to 1 for converging to a desired mean-
square error and cross-evaluation on the validation set
Fig. ).

The synthesis of precipitation was carried out using
statistical procedures for the purpose of comparison to the
ANN results. The autocorrelation function for precipitation
for the Amazon Basin is shown in Fig. 5.

The time series plots in Fig. 4 shows observed
precipitation by day of season (JFM and JJA) and results
of simulations using ANN from the AOGCMs. The use of
ANN compared with autocorrclation resulis in 2 satisfactory
performance, principally in daily variation (Fig. 5).

The autocorrelation and partial autocorrelation analysis
sugpest the modeling of precipitation using multivariate
autoregressive model (AR). An AR model was applied to
generate the series and an inverse path of model fitting used
to obtain the original variables. The residual series were
tested for independence and normality. The test for
normality indicated that the residual series followed a
normal distribution,

Comparison of results obtained using the ANN com-
pared with those obtained using an alternative statistical
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Fig. 3 The absolute error as a

Tep Sratworks

function of the number of iter-
ations for various numbers of
intermediate nodes {colors)

|3

|8 [11;189-1]

v
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model indicates that the network is a potential competitive
alternative tool for the analysis of multivariate time series.

Table 2 shows the comparison of monthly means and
standard deviation of the series generated using both the ANN
and statistical model from the Amazon Basin. Table 3 gives
the comparison of the monthly skewness of the generated
series using the ANN and AR for the Amazon Basin.

10

s 85
it SSEL

precipitation {mm/day)

Days

t 9 18 27 36 45 54 63 72 81 50

The ANN preserved the mean skewness (skewness isa
measure of the asymmetry of the probability distribution of
a real-valued random variable) of the generated series about
as well as the statistical models did. Table 3 gives the
comparison of the monthly values of skewness of the series
generated by the use of the ANN and AR for the Amazon
Basin. To conclude, each of these measures of performance

Precipitation {mm/day)

i [rres
p—
0 e FE
{ 9 18 27 36 45 54 €31 72 81 90
Days

Fig. 4 Observed historical precipitation (black) by day of seasen (JFM ond JJ4) and results of sirwations (red) using artificial neural network

from AQGCMs, for Amazen Basin
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Fig. 5 Autocorrelation of historic precipitation in the Amazon Basin from observed data and ANN downscaling for 1970-1999

in the Amazon Basin showed the overall high skill of the
models (Section 3} in representing precipitation patterns
and variability.

5.2 Downscaling scenarios

These data cover one period (2070-2099) and three
scenarios (A2, AlB, and Bl). The ANN downscaling
results in Fig. § indicate a decrease of one third both in the
mean daily precipitation, with low difference between
scenarios, principally between May and September and an
increase between January and March (Fig. 3; Table 4).

Table 4 summarizes the downscaling results by presenting
the simulated increase or decrease in monthly values of
the difference 1970-1999 (present from 20C3M and
observation data) and the future 2070-2099 from the five
models, in mm day”* and percentage (%o), for each of the
downscaling methods.

In the A2 scenario, ANN and autocorrelation method
results predicted a small increase (+1.60 and 2.90% for
ANN and AC, respectively). In the AlB scenario, ANN
showed no increase/decrease, and AC gave 2 decrease of
-2.50%. For the Bl scenario, ANN gave a decrease
(-0.90%) and AC an increase (+0.68%).

In summary, the result suggesis a slight increase in the
mean annual precipitation values in the study arca about
1.78% for the future years. Generally, there is good regional
agreement between the signs of the precipitation changes in
the AOGCM and the downscaled result in seasons (Table 4).
The downscaling results from climate change scenarios
(A2, AlB, and B1) presenting the increase of decrease in
seasonal values of precipitation between the current (1970-
1999) and future (2070-2099) time period for each of the
downscaling methods are as follows:

1. JFM (I anuary—February—March) increase
2. JJA (June-July—August) decrease

Table 2 Comparison of mean

and standard deviation of ob- Mean Standard DEVIATION

served and generated precipitation

series for Amazon Basin for1970- Observed ANN AR Qbserved ANN AR

1999 (present conditions)
January 6.13 6.00 6.25 0.85 0.93 0.94
Febrary 6,40 6.55 649 0.93 0.94 0.95
March 6.15 6.29 6.35 1.25 1.05 1.13
April 5.65 5.60 5.90 1.30 125 1.23
May 4.21 4.25 420 0.98 0.96 0.93
June 2.99 305 2.99 0.85 0.7 0.99
July 222 2.55 2.51 0.83 0.93 0.93
August 216 2.19 223 0.93 0.83 095
September 2.90 3.00 2.95 0.90 0.9% 1.01
QOctober 3.86 3.99 4.00 0.99 1.03 0.93
November 478 5.05 33 1.05 1.02 1.03
December 544 5.30 5.25 1.03 1.00 1.05
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Table 3 Comparison of skewness of ohserved and generated
precipitation series for Amazon Basin from 1970 to 1999 (present
day)

MEAN
Qbserved ANN AR
January 0.05 0.03 0.03
February 0.01 0.01 0.02
March 0.03 0.05 - 0.06
Agpril 0.01 0.04 0.03
May 0.05 0.02 0.05
June 0.06 0.03 0.04
July 0.03 0.05 0.03
Aupusk 0.01 0.03 0.07
September 0.02 0.02 0.08
October 0.04 0.09 0.05
November 0.01 0.04 0.03
December 0.04 0.03 0.04

6 Conclusions

This paper investigates the applicability of a temporal
neural network as a downscaling method using an artificial
neural network and an autocorrelation model for the
generation of daily precipitation over the Amazon Basin
{for the current years—20C3M-—and future scenarios). The
ANN as well as the antocorrelation model both provided a
very good fit to the data. This indicates that an ANN offers
a viable alternative for multivariate modeling of precipita-
tion time series.

The results obtained using the ANN model compared
with those obtained using an alternative statistical modsl
indicate that the network is a potentially competitive
alternative tool for the analyses of multivariate time
series. Comparison of the monthly values of skewness
generated by the wse of ANN with those generated by
autocorrelation showed little difference between the two
methods.

Tn relation to the three scenarios (A2, A1B, and B1), the
ANN indicates a decrease by about a third both in the mean
daily precipitation and very low difference between
scenatios (May to September) and an increase between
January and April (Fig. 5). Performance of the ANN,
principally for present-day conditions (1970-19599) for most
seasons, was better than that of the autocorrelation method.

However, one should also remember that all the
downscaling in this study uses outputs from only one of
various genecral circulation models. Previous studies
showed that data taken from different GCMs could produce
significantly different downscaling outputs.

In considering the method and results, it is important to
note that our method is actually based on a hypothesis.
The hypothesis is that the weight given to each of the
various models when computing their differing estimates
of twenty-first century climate conditions should depend
on the skill of each in rcpresenting present-climate
conditions.

A major difficulty in using ANN for climate change lies
in determining the network’s capability to exirapolate. A
comparison between ANN and a linear projection based on
statistical downscaling allowed us to determine that the
ANN penalizes climate change projections. The ratio
between ANN and autocorrelation is sensitive to two

Table 4 Changes of monthly

precipitation for the Amazon Increase/decrease

Basin in terms of inctease or

deorease (mm day ') in com- AZ AlDB Bl

parisan to the period 2070-2099

for different scenarios ANN */+ AR *+ ANN */+ AR 4 ANN *+ AR *+
JAN 0.86/14.0 0.76/12.40 0.68/11.1 087194 0.26/42 -0.03/-0.5
FEB 1.69/26.4 1.72/26.90 0.99/15.5 0.72/11.3 1.21/18.9 1L12/17.5
MAR  2.46/40.0 2.40/39.00 2.30137.4 2.18/35.4 2.0/32.5 2.4/39.0
APR 078138 1.24/21.90 0.64/11.3 0.91/16.1 0.55/9.7 0.60/10.6
MAY  -13U-3L1 -136~323 ~11%-283  —L09/-259 -1.01/-240 065154
JUN  -170/-569 —143/-478 -1.70/-569  ~1.44——48.2 ~1.76/-58.9  —1L.78/-59.3
TUL —1.22/—550  -120/-541  -1.23/-354 097437 -137-61.7  -1.22/-55.0
AUG  -113-523 -L17/-542  -121-560 —1.05-48.6 ~1.26/-583  -1.17/-54.2

Difference between 2070-2099 SEP —115397 -1.11/383 -1.07-369 —L1.15/-39.7 -0,9~31.0  -1.01/-348

and 1971-1999 indicated by * ocT  -0.07/-1.80  0.03/0.80 ~0.04/~1.0 -0.04/-1.0 0.09/2.3 0.13/3.4

and percentage differcnce NOV 052109 0.67/14.0 0.81/16.9 —1.06/-22.2 0.77/16.1 122255

{increase or decrease) indicated DEC 1.09/20.0 1.0/18.40 1.05/19.3 0.88/16.2 0.95/17.5 0.81/14.%

by +
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factors: the bias and the divergence criteria. They represent,
respectively, the error between the linear combination and
present-day climate conditions and the variance between
the models.

In conclusion, when applied to precipitation, the ANN
approach makes it possible to compute the optimal set of
weights for autocorrelation of the models (used in this
papet), and a penalty function or probability that such a
change occurred, based on the present-climate model biases
and their projected dispersion.

The main advantages of this downscaling method
(ANN) are its temporal processing ability and its ability
to incorporate not only the concurrent, but also several
preceding predictor values as input without any additional
effort.
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