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ADAPTIVE MULTIRESOLUTION OR ADAPTIVE MESH REFINEMENT?
A CASE STUDY FOR 2D EULER EQUATIONS

Ralf Deiterding1, Margarete O. Domingues2, 3, Sônia M. Gomes4, Olivier
Roussel3,4 and Kai Schneider3, 5

Abstract. We present adaptive multiresolution (MR) computations of the two-dimensional compress-
ible Euler equations for a classical Riemann problem. The results are then compared with respect to
accuracy and computational efficiency, in terms of CPU time and memory requirements, with the
corresponding finite volume scheme on a regular grid. For the same test case, we also perform compu-
tations using adaptive mesh refinement (AMR) imposing similar accuracy requirements. The results
thus obtained are compared in terms of computational overhead and compression of the computational
grid, using in addition either local or global time stepping strategies. We preliminarily conclude that
the multiresolution techniques yield improved memory compression and gain in CPU time with respect
to the adaptive mesh refinement method.

Résumé. Nous présentons des simulations adaptatives multirésolution (MR) des équations d’Euler
compressibles bi-dimensionnelles pour un problème de Riemann classique. Les résultats sont comparés
en précision et en efficacité – temps CPU et place mémoire – avec ceux obtenus par la méthode volumes
finis sur la grille la plus fine. Pour le même cas-test, nous présentons les calculs obtenus à l’aide de la
méthode AMR ( Adaptive Mesh Refinement) en imposant les mêmes critères de précision. Les résultats
ainsi obtenus sont comparés en termes d’effort de calcul et de compression mémoire, en utilisant des
pas de temps globaux puis locaux. De ces résultats préliminaires, nous concluons que les techniques
multirésolution présentent des gains en termes de temps CPU et de place mémoire supérieurs à ceux
de la méthode AMR.

Introduction

Adaptive discretization methods for solving nonlinear PDEs have a long tradition and can be tracked back
to the late seventies [11]. Adaptivity is motivated by the huge computational complexity of real world problems
which involve typically a multitude of dynamically active spatial and temporal scales. Introducing adaptivity
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can be understood in the sense that the computational effort is concentrated at locations and time instants
where it is necessary to insure a given numerical accuracy, while efforts may be significantly reduced elsewhere.

Adaptive methods are in many cases more competitive than schemes on regular fine grids, in particular for
solutions of nonlinear PDEs exhibiting a non-uniformly distributed regularity. Essential ingredients of fully
adaptive schemes are first reliable error estimators for the solution, e.g., Richardson ideas of extrapolation,
adjoint problems, gradient based approaches. For evolutionary problems, a major task is the time evolution of
the grid and a reliable prediction of the grid for the next time step.

Adaptivity has however its price. A significant effort has to be made on programming data structures, which
are usually based on graded trees, hash-tables or multi-domains. Moreover, the computational cost per cell is
significantly increased. Hence, an adaptive method is only efficient when the data compression is large enough to
compensate the additional computational cost per cell. Fortunately, for problems exhibiting local discontinuities
or steep gradients, adaptive computations are always faster than fine grid computations.

Adaptive finite element methods have a long history, in particular for elliptic problems. Moving grid tech-
niques have been applied successfully to combustion problems [34]. A-posteriori error estimators have also been
studied for a long time to improve the grid, since the early work of Babuška and Rheinboldt [2]. However,
adjoint problems have to be solved which are more expensive than the original PDEs [3].

The main challenge is to estimate theoretically and control the error of adaptive schemes with respect to
the exact solution, or at least with respect to the same numerical scheme on an underlying uniform grid. Self
adaptive methods are preferred as they automatically adjust to the solution.

Recently, multiresolution (MR) techniques have become popular for hyperbolic conservation laws going back
to the seminal work of Harten [31] in the context of finite volume schemes and cell-average MR analysis.
Starting point is a finite volume scheme for hyperbolic conservation laws on a regular grid. Subsequently a
discrete multiresolution analysis is used to avoid expensive flux computations in smooth regions, first without
reducing memory requirements, e.g for 1D hyperbolic conservation laws (Harten [31]), 1D conservation laws
with viscosity (Bihari [9]), 2D hyperbolic conservations laws (Bihari and Harten [10]), 2D compressible Euler
equations (Chiavassa and Donat [13]), 2D hyperbolic conservation laws with curvilinear patches (Dahmen et
al [18]) and unstructured meshes (Abgrall and Harten [1], Cohen et al [15]). A fully adaptive version, still in the
context of 1D and 2D hyperbolic conservation laws, has been developed to reduce also memory requirements
(Gottschlich-Müller and Müller [30], Kaibara and Gomes [35], Cohen et al [16]). This algorithm has been
extended to the 3D case and to parabolic PDEs (Roussel et al [48], Roussel and Schneider [46]), and more
recently to self–adaptive global and local time–steppings (Müller and Stiriba [41], Domingues et al [26–28]).
Therewith the solution is represented and computed on a dynamically evolving automatically adapted grid.
Different strategies have been proposed to evaluate the flux without requiring a full knowledge of fine grid
cell-average values.

The MR approach has also been used in other contexts. For instance, the Sparse Point Representation
(SPR) method was the first fully adaptive MR scheme, introduced by Hölmstrom [32,33] in the context of finite
differences and point-value MR analysis, leading to both CPU time and memory reduction. In the SPR method,
the wavelet coefficients are used as regularity indicators to create locally refined grids, on which the numerical
solution is represented and the finite difference discretization of the operators is performed. Applications of
the SPR method have been published in [25,44]. Concerning Discontinuous Galerkin methods, they have been
applied to hyperbolic conservation laws in [12] using Haar wavelet indicators to decide where to refine or coarsen
the meshes.

These publications reveal that the multiresolution concept has been applied by several groups with success
to different stiff problems. For comprehensive literature about the subject, we refer to the books of Cohen and
Müller [14,40].

The blockstructured adaptive mesh refinement technique (AMR or SAMR) for hyperbolic partial differential
equations has been pioneered by Berger and Oliger [5, 8]. While the first approach utilized rotated refinement
grids that required complicated conservative interpolation operations, AMR denotes today especially the sim-
plified variant of Berger and Collela [6] that allows only refinement patches aligned to the coarse grid mesh.
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The striking efficiency of this algorithm, in particular for instationary supersonic gas dynamical problems, has
been demonstrated by Bell et al [4]. Several implementations of the AMR method for single processor comput-
ers [7,17,29] and parallel systems [4,19,36,45] have been presented; variants utilizing simplified data structures
have also been proposed [39,43]. Our interest in here is in comparing MR with the fundamental AMR method
proposed in [6]. Such benchmarks are still missing and the current paper can be seen as a first contribution
step towards a direct comparison.

The outline of the paper is the following: first, we present the governing Euler equations together with their
finite volume discretization. Then, we briefly summarize the adaptive mesh refinement and multiresolution
strategies. Numerical results for a classical Riemann test problem are presented in Section 2, followed by
preliminary conclusions.

1. Numerical Methods

1.1. Finite Volume discretization of the Euler equations

The compressible Euler equations can be written in the following form,

∂Q

∂t
+∇ · f(Q) = 0, (1)

with Q = (ρ, ρ~v, ρe)T , where ρ = ρ(~x, t) is the density, ~v = ~v(~x, t) is the vector velocity with components
(v1, v2), and e = e(~x, t) is the energy per unit of mass, which are functions of time t and position ~x = (x1, x2).
The flux function f = (f1, f2)T is given by

f1 =


ρv1

ρv2
1 + p
ρv1v2

(ρe+ p)v1

 , f2 =


ρv2

ρv1v2

ρv2
2 + p

(ρe+ p)v2

 ,

where p = p(~x, t) denotes the pressure. The system is completed by an equation of state for a calorically ideal
gas

p = ρRT = (γ − 1) ρ
(
e− |~v|

2

2

)
, (2)

where T = T (~x, t) is the temperature, γ the specific heat ratio and R the universal gas constant. In dimensionless
form, we obtain the same system of equations, but the equation of state becomes p = ρT

γM2 , where M denotes the
Mach number. For the present applications, the physical parameters are M = 1 and γ = 1.4. The considered
domain is the unit square [0, 1]× [0, 1], with free-slip boundary conditions.

As reference discretization, we consider the numerical solution represented by the vector Q̄ of the approxi-
mated cell-averages Qi,j

Q̄i,j =
1
|Ωi,j |

∫
Ωi,j

Q(x1, x2) dx1 dx2

on cells Ωi,j of a uniform grid Ω. For the space discretization, a finite volume (FV) method is chosen, which
results in the following system of ODEs

dQ̄

dt
= −F (Q̄), (3)

where F (Q̄) denotes the vector of the numerical flux function.
For the time integration, approximate solutions Q̄n at a sequence of time instants tn are obtained using

explicit ODE solvers. The time step to go from tn to tn+1 = tn + ∆tn is set by the CFL condition.
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1.2. Adaptive Mesh Refinement Method

The AMR method [4, 6, 8] follows a patch-oriented refinement approach. Instead of replacing single cells
by finer ones, non-overlapping rectangular subgrids Gl,m define the domain of an entire level l = 0, . . . , L by
Gl :=

⋃Ml

m=1Gl,m. As the construction of refinement proceeds recursively, a hierarchy of subgrids successively
contained within the next coarser level domain is created (Figure 1). Note that the recursive nature of the
algorithm allows only the addition of one new level in each refinement operation. In contrast to cell-based mesh
adaptation techniques, the patch-based approach does not require special coarsening operations; subgrids are
simply removed from the hierarchy. The coarsest possible resolution is thereby restricted to the level 0 grid.
Usually, it is assumed that all mesh widths on level l are rl-times finer than on the level l−1, i.e. ∆tl = ∆tl−1/rl
and ∆xn,l = ∆xn,l−1/rl, with rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1, which ensures that a time-explicit finite
volume scheme (in principle) remains stable under a CFL-type condition on all levels of the hierarchy.

The numerical update is applied on the level l by calling a single-grid routine implementing the finite volume
scheme in a loop over all the subgrids Gl,m. The regularity of the input data allows a straightforward imple-
mentation of the scheme and further permits optimizations to take advantage of high-level caches, pipelining,
etc. New refinement grids are initialized by interpolating the vector of conservative quantities Q from the next
coarser level. However, data in cells already refined is copied directly from the previous refinement patches.
Ghost or halo cells around each patch are used to decouple the subgrids computationally. Ghost cells outside
of the root domain G0 are used to implement physical boundary conditions. Ghost cells in Gl have a unique
interior cell analogue and are set by copying the data value from the patch where the interior cell is contained
(synchronization). For l > 0, internal boundaries can also be used. If recursive time step refinement is employed,
ghost cells at the internal refinement boundaries on the level l are set by time-space interpolation from the two
previously calculated time steps of level l− 1. Otherwise, spatial interpolation from the level l− 1 is sufficient.

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql(t)
If time to regrid

Regrid(l)
UpdateLevel(l)
If level l + 1 exists

Set ghost cells of Ql(t+ ∆tl)
AdvanceLevel(l + 1)

Average Ql+1(t+ ∆tl) onto

Ql(t+ ∆tl)

Flux correction of Ql(t+ ∆tl)
t := t+ ∆tl

Figure 1. Recursive AMR algorithm and typical hierarchy of rectangular subgrids.

The characteristic of the AMR algorithm is that refinement patches overlay coarser grid data structures,
instead of being embedded, again avoiding data fragmentation. Values of cells covered by finer subgrids are
subsequently overwritten by averaged fine grid values, which, in general, would lead to a loss of conservation
on the coarser mesh. A remedy to this problem is to replace the coarse grid numerical fluxes at refinement
boundaries with the sum of fine grid fluxes along the corresponding coarse cell boundary. Details about this
flux correction can be found in [6, 20, 21]. The basic recursive AMR algorithm is formulated in Figure 1. New
refinement grids on all the higher levels are created by calling Regrid() at a given level l. The level l by itself
is not modified. To consider the nesting of the level domains already in the grid generation, Regrid() starts
at the highest level to be refined and proceeds down to l + 1. After evaluating the refinement indicators and
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flagging cells for refinement, a special clustering algorithm [4] is used to create new refinement patches until the
ratio between flagged and all cells in every new subgrid is above a prescribed threshold 0 < ηtol ≤ 1.

In the present paper, all the AMR computations have been carried out using the AMROC (Adaptive Mesh
Refinement in Object-oriented C++) system that implements the Berger-Collela AMR algorithm [6] generically
in C++ and is free of charge for scientific use [19,23]. At the present time, the AMR core of AMROC consists of
approximately 46, 000 lines of code in C++ and approximately 6, 000 lines for visualization and data conversion.
Although AMROC permits large-scale MPI-parallel AMR computations in all three space dimensions [22, 42],
the present investigation is restricted to 2D and uses only the serial algorithm of the software. The employed
patch-based finite volume discretization is a standard unsplit shock-capturing MUSCL scheme with a Minmod
limiter and an AUSMDV flux-vector splitting numerical flux function [52]. The time integration is based on the
MUSCL-Hancock approach [20,50]. For sufficiently smooth solutions, the method is of second-order accuracy in
space and time. Similarly to the AMR inter-level transfer operations (interpolation, averaging), the employed
finite volume update routine was coded in Fortran-77 and all the codes were compiled with standard compiler
optimizations (-O3 with loop unrolling, inlining, etc.) using the GNU compiler suite on the benchmark system.

As refinement indicators, scaled gradient criteria of the form

|w(Qj+1,k)− w(Qjk)| > εw , |w(Qj,k+1)− w(Qjk)| > εw , |w(Qj+1,k+1)− w(Qjk)| > εw (4)

were applied to density and pressure, where ερ = εp = 0.05. As it is common practice [6], a layer of one
additional cell width was also tagged for the refinement around each refinement flag to ensure that the flagged
feature does not leave the refinement region during the next time step. Furthermore, AMROC allows for the
additional application of a heuristic local error indicator based on a Richardson estimation [6,8] that compares
an auxiliary twice coarser solution Q̄ with a coarsened solution Q of Q at t+ ∆t. The difference

|w(Q̄jk(t+ ∆t))− w(Qjk(t+ ∆t))|
2o+1 − 2

> ηw

is an approximation to the leading-order term of the local error on quantity w. Multiple refinement indicators
are combined by successive boolean OR operations. For the shock dominated example of Section 2, however,
scaled gradient and Richardson error estimation criteria were found to give virtually identical grid refinement
and the benchmarked computations only utilized the former.

1.3. Adaptive Multiresolution Method

The adaptive MR scheme belongs to a class of adaptive hybrid methods which are formed by two basic
parts: the operational part and the representation part. The operational part consists of an accurate and
stable discretization of the partial differential operators. In the representation part, wavelet tools are employed
for the multiresolution analysis of the discrete information. The principle of the MR setting is to represent a
set of function data as values on a coarser grid plus a series of differences at different levels of nested grids.
The information at consecutive scale levels are related by inter-level transformations: projection and prediction
operators. The wavelet coefficients are defined as prediction errors, and they retain the detail information when
going from a coarse to a finer grid [48].

In MR schemes for the adaptive numerical solution of PDEs, the main idea is to use the decay of the
wavelet coefficients to obtain information on local regularity of the solution. Adaptive MR representations are
obtained by stopping the refinement in a cell at a certain scale level where the wavelet coefficients are non-
significant. In particular, these coefficients are small in regions where the solution is smooth and significant
close to irregularities. In the finite volume context, the natural representation framework is the multiresolution
analysis based on cell-averages. Instead of using the cell-average representation on the uniform fine grid, the
MR scheme computes the numerical solution represented by its cell-averages on an adaptive sparse grid, which
is formed by the cells whose wavelet coefficients are significant.
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Figure 2. Left: set of nested dyadic grids Gl for 0 ≤ l ≤ 3. Center: Sketch of a 2D tree
structure. Right: corresponding sketch with its leaves (plain) and virtual leaves (dashed).

An efficient way to store the reduced MR data is to use a tree data structure, where grid adaptivity is related
with an incomplete tree, and where the refinement may be interrupted at intermediate scale levels. This means
that, using the tree terminology, a MR grid is formed by leaves, which are nodes without children (Figure 2).

For the time evolution of the solution, three basic steps are considered: refinement, evolution and coarsening.
The refinement operator is a precautionary measure to account for possible translation or creation of finer
scales in the solution between two subsequent time steps. Since the regions of smoothness or irregularities of
the solution may change with time, the MR grid at tn may not be convenient anymore at the next time step
tn+1. Therefore, before doing the time evolution, the representation of the solution should be interpolated onto
an extended grid that is expected to be a refinement of the adaptive grid at tn, and to contain the adaptive
grid at tn+1.

Then, the time evolution operator is applied on the leaves of the extended grid. To compute fluxes between
leaves of different levels, we also add virtual leaves (Figure 2, right side). Conservativity is ensured by the
fact that the fluxes are always computed on the higher level, the value being reported on the leaves of a lower
level [48].

Finally, a wavelet thresholding operation (coarsening) is applied in order to unrefine the cells in the extended
grid that are unnecessary for an accurate representation of the solution at tn+1.

In order to save CPU time, instead of evolving the solution with a single time step on all grid cells, the
solution may be integrated with a different time step for each level. For the MR/LT scheme, the time step ∆tn

at the finest scale level L is determined by the CFL condition. The principle is then to evolve the cells at lower
levels 0 ≤ ` < L with larger time steps ∆tn` = 2L−`∆tn. Required missing values in ghost cells are interpolated
at intermediate time levels.

For the MR method used in the present paper, the reference FV scheme of the operational part uses a
2nd order MUSCL with an AUSM+ flux vector splitting scheme [38] and the van Albada limiter [51]. For the
time evolution, an explicit second-order Runge-Kutta (RK2) scheme is used, and the cell-average multiresolution
analysis corresponds to a prediction operator based on a third order polynomial interpolation on the cell-aerages.
For further details on the adaptive MR scheme, we refer to [48], and to [26] for its MR/LT version.

2. Numerical Results

In this section, the main parameters used in both methods are described. Then, the results of the simulations
are presented and discussed.
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2.1. Initial condition and parameters

The case study chosen here is a typical Riemann problem for 2D gas dynamics treated e.g. in [37], and
initially discussed in [49,53]. The initial data are constant in each quadrant (Figure 3), and the values are given
in Table 1. This test case corresponds to the configuration #5 in [37]. This classical test case only involves
contact discontinuities and generates motion in opposite directions.

x1

x2

III IV

III

Figure 3. Sketch of the initial condition

Table 1. Initial Values for the Lax-Liu configuration #5 [37]

Variables Domain position
I II III IV

Density(ρ) 1.00 2.00 1.00 3.00
Presure (p) 1.00 1.00 1.00 1.00
Velocity component (v1) -0.75 -0.75 0.75 0.75
Velocity component (v2) -0.50 0.50 0.50 -0.50

As detailed previously, both mesh refinement methods use enhanced AUSM-type numerical flux functions
with comparable second-order accurate reconstruction and limiting. For both methods, the expected CFL
number is 0.45, and a series of computations with maximal level L = 8, 9 and 10 are performed, respectively
corresponding to 256× 256, 512× 512, and 1024× 1024 cells on the finest uniform grid. Adaptive computations
are performed first without, then with a local time stepping for both AMR and MR schemes.

For the MR method, the refinement factors are always dyadic, i.e., rl = 2, and leaves are allowed in every
level 0 ≤ l ≤ L. A threshold analysis has been performed, and the optimal values of the tolerance ε are 0.01 for
L = 8, 0.008 for L = 9, and 0.005 for L = 10. For details on the way to determine the optimal value of ε, we
refer to [48].

The basic coarse grid for the AMR method is a 128× 128 grid, i.e. 7 ≤ l ≤ L, and the threshold coefficients
for refinement ερ = εp = 0.05 were used. Only computations with refinement factors rl = 2 are compared
to the MR method. Additionally, an option was added to AMROC to always restrict the repeat-loop in the
recursive AMR algorithm of Figure 1 to one iteration, deactivating the utilization of hierarchical (or local) time
step refinement, thereby enabling comparisons with the MR method without local time stepping. Since these
measures influence the computational efficiency of the AMR method, we quantify the resulting performance
penalties for the L = 10 case (1931 time steps in unigrid mode) in Table 2.

Table 2 provides a breakdown of AMROC’s overall CPU time into the most important operations of the
AMR algorithm with and without local time steps (LT), and when a refinement factor of 4 is used instead of 2
on the highest level. Integration denotes the block-based routine of the finite volume scheme; the other profiled
operations are sub-tasks of the refinement algorithm (cf. Section 1.2). Further on, counters were added to the
code to compute the number of cells updated,

∑
C, and the number of updated leaf cells,

∑
L, which are not

covered by further refinement.
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Table 2. Breakdown of the computational costs into the most important operations and in-
tegration performance with and without local time stepping to solve the benchmark problem
with AMROC.

uni no LT with LT
rl 1 2,4 2,2,2 2,4 2,2,2
Integration [%] 98.4 70.3 48.5 86.2 59.0
Interpolation [%] - 4.2 3.8 4.2 4.6
Flux correction [%] - 2.7 5.1 1.1 3.6
Flagging [%] - 4.1 7.0 1.1 4.4
Regridding [%] - 11.1 17.2 4.1 14.9
Clustering [%] - 6.0 16.9 1.9 12.3
Misc [%] 1.1 1.6 1.5 1.4 1.2
CPU time [s] 4531 1249 1721 865 1017∑
C [M] 2025 363 326 311 231∑
L [M] 2025 336 252 305 202

Int. perf. [k/s] 454 413 390 417 385

Compared to the standard application situation (rl = 2, 4 with LT) the CPU time has roughly doubled in
the worst case scenario (rl = 2, 2, 2, no LT). Since

∑
C is only slightly larger in the latter case, this increase

is obviously due to higher costs for orchestrating the mesh adaptation. It is worth pointing out that for
straightforward finite volume schemes, as the one used here, the core idea of the AMR method of employing
larger than necessary data patches to benefit from cache coherence and super-scalar processing units during the
finite volume update works particularly well. To quantify this effect, the integration performance, the ratio of∑
C and the total time spent in Integration alone has been calculated. Unsurprisingly, the adaptive computations

using less and larger refinement patches (rl = 2, 4) are considerably closer to the unigrid integration performance.
In summary, the investigation of Table 2 illustrates that the performance of the AMR method does not

solely depend on the number of updated total or leaf cells. Enforcing a minimal overall cell count by employing
very deep refinement hierarchies or using a grid generation efficiency close to 1 usually results in a loss of
computational performance. The specific choices of using a base mesh of 128 × 128 and a clustering efficiency
of ηtol = 80 % for the present study are quasi-optimal settings with respect to overall compute time, which was
verified in additional computations (not shown here).

2.2. Visualization of the final solution

In Figure 5, the isolines of density for the final solution are plotted together with the adaptive grid. We
observe that both solutions fit well with their respective reference solution given in Figure 4. The grids on the
right side show that both methods adapt well to the discontinuities and steep gradients of the density. However,
for the MR method, the lowest level reached is lower than 7, which is the level of the coarsest grid the AMR
method. This results in a better compression for the MR method, especially when the maximal level is L = 8.

2.3. Error, speed-up, memory compression and overhead

The goal of an adaptive computation is to obtain the solution with a significant gain in CPU time and
memory, while preserving the accuracy of the corresponding FV scheme on the regular finest grid. To assess
the quality of an adaptive simulation, the discrete L1-error is computed, using as reference the FV solution
with the same space-time schemes on a 2048× 2048 uniform grid, i.e. using L = 11 levels. Figure 4 shows the
isolines of density for such reference solutions. We observe that both results differ slightly, which is likely due
to the fact that the numerical fluxes used in MR and AMR method are not exactly identical.



TITLE WILL BE SET BY THE PUBLISHER 9

Figure 4. Isolines of density ρ = 1.0, · · · , 4.0 every 0.1 for the fine-grid reference solution at
t = 0.3, obtained with CFL = 0.45 and L = 11 levels, using the FV algorithms of the AMR
(left) and MR schemes (right).

For the adaptive AMR case, the error is evaluated as the sum of the L1-error norms on the domain Ωl without
higher refinement, i.e.,

Le1(Q) = Le1(∆xL,ΩL) +
L−1∑
l=0

Le1(∆xl,Ωl \ Ωl+1),

where

Le1(∆x,Ω) =
∑
i,j

|Q(i,j) −Qr
(i,j)|∆x

2,

denotes the L1-norm on the domain Ω, and where Qr
i,j denotes the projection of the reference solution from

the 2048× 2048 uniform mesh down to the desired mesh with step size ∆x.
For the MR method, the adaptive solution is recursively projected up to the desired finest uniform grid of

level L with a step size ∆xL. The goal is to obtain Q̃(i,j) using the third order cell-average interpolation. Then
the discrete error is evaluated on the domain Ω as

Le1(Q) =
∑
i,j

|Q̃(i,j) −Qr
(i,j)|∆x

2
L,

where Qr
(i,j) denotes the projection of the reference solution from the level L = 11 down to the desired level L.

Special counters were implemented to evaluate the performance of the two codes. The CPU time compression
rate is defined as the ratio between the CPU time required to compute the final solution using the adaptive
method and the one required to compute the same solution using the fine-grid method. In an adaptive simulation,
an average memory requirement is defined as

C̄ =
1
NI

NI∑
n=1

Cn
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Isolines of density Adaptive grid
∆x = 1/1024 ∆x = 1/1024

Figure 5. Isolines of density (left side) and corresponding adaptive mesh (right side) at t = 0.3
with L = 10, for the AMR scheme (top), and the MR scheme (bottom).

where NI is the number of performed time steps, and Cn denotes the sum of cells of the entire hierarchy at
t = tn. Then, the memory compression is defined as the ratio of the average memory requirement and the
number of cells NC of the finest uniform grid.

In a FV code, the main contribution to the CPU time is the expensive numerical flux evaluation. One crucial
question is to know whether the gain in CPU time due to the reduction of expensive flux computations in
adaptive simulations is larger than the additional computational overhead induced by the adaptive algorithm.
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To evaluate the overhead of the adaptive computations, we consider the number

ΓMR =
CPU Time∑NI

n=1 Ln

which denotes the average CPU time spent to evolve the solution in each cell of the computational domain, in
each time step. Here

∑NI

n=1 Ln denotes the sum of the leaves of the tree during the whole computation. Since
the time evolution of the AMR method is performed in every cell of the different adaptive grids, we define

ΓAMR =
CPU Time∑NI

n=1 Cn

where
∑NI

n=1 Cn denotes the sum of the cells of all the adaptive grids during the whole computation.
In adaptive computations, ΓMR and ΓAMR are expected to be larger than ΓFV on the regular finest grid.

Hence, the overhead per iteration and per cell of an adaptive computation is defined by

Γ̄MR =
ΓMR

ΓFV
− 1 and Γ̄AMR =

ΓAMR

ΓFV
− 1 .

The average overhead per iteration is the overhead per iteration and per cell multiplied by the average memory
compression for the AMR method, and by the average grid compression - i.e. the average number of leaves
divided by the number of cells of the finest grid - for the MR method.

A summary of the MR and AMR results, obtained without and with local time stepping, is assembled in
Tables 3 and 4, respectively. All the computations were run on the same double processor workstation.

With the chosen grid adaptation parameters, both adaptive methods give discrete L1-errors of the same
order. Both are comparable with the L1-error of the FV scheme on the corresponding regular fine grid, as
indicated in the second and third columns of Tables 3 and 4.

Table 3. Summary of the results for the MR and the AMR computations.

FV MR
Level Le1(ρ) Le1(ρ) Compression (%) Overhead per iteration

[10−2] [10−2] CPU Memory Grid (per leaf) (%)
L=8 3.65 3.68 33.01 39.64 24.99 0.32 8.0
L=9 2.23 2.26 20.17 23.40 14.57 0.38 5.6
L=10 1.04 1.08 11.93 13.95 8.68 0.38 3.2

FV AMR
Level Le1(ρ) Le1(ρ) Compression (%) Overhead per iteration

[10−2] [10−2] CPU Memory Grid (per node) (%)
L=8 3.91 3.92 82.54 50.79 44.34 0.63 31.75
L=9 2.34 2.37 55.62 28.61 23.02 0.94 27.00
L=10 1.22 1.30 37.98 16.09 12.46 1.36 21.90

NOTE: Computations are performed until t = 0.3, with CFL = 0.45. For the MR method, the wavelet threshold is

ε = 0.01, 0.008, 0.005 for L = 8, 9 and 10, respectively. For the AMR method, εp = ερ = 0.05 and the coarsest level is

128× 128.

As expected from the results of the previous subsection, we observe that the gain in both CPU time and
memory compression is larger using the MR method than using the AMR one. This is particularly true for
L = 8 levels. For L = 10 levels, the difference in terms of memory compression is slightly reduced while the
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Table 4. Summary of the results for MR/LT and AMR/LT computations

FV MR/LT
Level Le1(ρ) Le1(ρ) Compression (%) Overhead per iteration

[10−2] [10−2] CPU Memory Grid (per leaf) (%)
L=8 3.65 3.74 29.36 39.07 24.70 0.32 8.0
L=9 2.23 2.38 17.04 22.94 14.35 0.39 5.6
L=10 1.04 1.23 9.62 13.64 8.53 0.37 3.1

FV AMR/LT
Level Le1(ρ) Le1(ρ) Compression (%) Overhead per iteration

[10−2] [10−2] CPU Memory Grid (per node) (%)
L=8 3.91 3.92 58.73 38.22 35.00 0.54 20.5
L=9 2.34 2.36 35.39 20.44 18.08 0.73 15.0
L=10 1.22 1.27 22.45 11.40 10.00 0.97 11.0

NOTE: Computations are performed until t = 0.3, with CFL = 0.45. For the MR/LT method, the wavelet threshold is

ε = 0.01, 0.008, 0.005 for L = 8, 9 and 10, respectively. For the AMR/LT method, εp = ερ = 0.05 and the coarsest level

is 128× 128.

difference in term of CPU time remains large. On the other hand, the speed-up due to local time stepping
is larger for the AMR method than for the MR method. Table 2 shows that especially for dyadic refinement
factors and no local time stepping the difference between the number of leaf cells and the total cell count used
by the AMR method is particularly large. Nevertheless, the gain in CPU time compression is still larger using
the MR/LT method than using the AMR/LT method.

Figure 6. Time evolution of the number of used cells (left) and of the total kinetic energy
(right) with rl = 2, 2, 2 for the AMR method using L = 10 levels, together with the reference
computation on the 20482 mesh.

Figures 6 and 7 show the time evolution of the number of used cells and the total kinetic energy for both
method. They show that the kinetic energy curves match well with the reference solution, which confirms the
accuracy of the method and the good grid convergence obtained on L = 10 scales. Naturally, the MR method
requires less cells than the AMR one during computation.



TITLE WILL BE SET BY THE PUBLISHER 13

Figure 7. Time evolution of the number of used cells (left) and of the total kinetic energy
(right) for the MR method using L = 10 levels, together with the reference computation on the
20482 mesh.

Conclusion

In the present paper, adaptive computations of the two-dimensional compressible Euler equations for a
classical Riemann problem are presented. The goal is to compare, for the same accuracy, the efficiency in terms
of CPU time and memory compression of two adaptive methods: the adaptive multiresolution (MR) method
and the adaptive mesh refinement (AMR) method, first with a global time step, then with a scale-dependent
local time step. Both methods are based on an explicit finite volume method on an adaptive grid, with second
order schemes in space and time. The main difference is in the way the adaptive grid is stored: a graded
tree data structure for the MR method and a series of regular data blocks on the different levels for the AMR
method. The other main difference is the error estimator. It is based on the details, or wavelet coefficients,
between two consecutive levels of the adaptive grid for the MR method, whereas it relies on scaled gradient
criteria based on pressure and density for the AMR method.

For both methods, the threshold coefficients were chosen to lead approximately to the same accuracy. In
the present paper, it is shown that, for this Riemann test-case, the MR method presents larger compression
rates and larger gains in CPU time than the AMR method, using either global or local time stepping strategies.
The improved compression rates observed for the MR method are a direct result of the patch-based refinement
technique, used in the AMR method, that accepts a larger number of total cells to avoid data fragmentation.
The objective of the AMR method is to sustain as much of the integration performance of an optimal Cartesian
unigrid finite volume code on a dynamically adaptive mesh, however, the better CPU time compression rates
of the MR show that there are limitations to this approach.

An advantage of the AMR method is that, nowadays, optimized libraries are available. Thus, the change of
the finite volume scheme becomes straightforward and reduces largely to modifying the patch-based numerical
update routine. In case of AMROC, most users just need to employ function interfaces that are literally
identical to the ones typically employed in Cartesian unigrid codes; the AMR library orchestrates refinement
and parallelization in a transparent way and calls the user-specified single grid routines as required (cf. [20,24]).

Multiresolution methods have a rigorous and potentially more accurate regularity analysis [14,40], while for
AMR methods rigorous error estimators are not available. Therefore, threshold values of AMR have to be tuned
for a given problem, whereas in MR, in principle, the threshold is independent of the problem. This was shown
in previous papers for different physical problems: flame balls [48], flame ball-vortex interaction [46] and weakly
compressible turbulent flows [47].

As perspectives, we plan to compare the efficiency and accuracy of both adaptive methods for three-
dimensional problems, amongst others for the compressible Navier-Stokes equations, in order to evaluate these
preliminary results for more complex configurations.
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