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Recent results reveal that disparate real-world networked
systems share universal structural features such as the scale-
free property [1–3]. A scale-free network is characterized
by a high heterogeneity in the node’s degree – the degree
of a node is the number of connections it receives. A few
high-degree nodes, termed hubs, are present in the network
while most nodes have only a few connections. The hubs are
thought to serve specific purposes on their networks, such as
information flow and resilience under attacks. They severely
affect the dynamical processes taking place over scale-free
networks [2, 3], particularly the emergence of a collective
synchronized motion [4, 5].

Scale-free networks are more difficult to synchronize than
random homogeneous networks [5]. The main reason is that
scale-free networks are strong heterogeneous in the degree
distribution. This suggests that, although structurally ad-
vantageous, the scale-free property would be dynamically
detrimental. This poses a paradox, since many real-world
networks whose functioning requires precise timing have
evolved to scale-free-like topologies [1, 2].

In this letter, we show the existence of a partially synchro-
nized state in large scale-free networks – hubs may undergo
a transition to synchronization while most nodes behave in
an unsynchronized matter. Global synchronization in large
scale-free networks may not be a possible stable state and, in
this scenario, only partially synchronized states is possible.

We consider a network compose of n nodes, and we label
the nodes according to their degrees k1 ≤ k2 ≤ · · · ≤ kn,
where k1 and kn denote the minimal and maximal node de-
gree, respectively. Hence, the ith node has degree ki. A
scale-free network is characterized by the degree distribution
P (k), the probability that a randomly chosen node within the
network has degree k, that follows a power-law

P (k) = ck−γ ,

for k1 ≤ ki ≤ kn, where c is the normalization factor. The
degree distribution is normalizable for γ > 1, and for large
kn we have c ≈ (γ − 1)kγ−1

1 . The mean degree 〈k〉 attains
a finite limit for large kn provided γ > 2. We consider only
networks with well defined mean degree, that is, γ > 2.

The dynamics of a general network of n identically cou-
pled elements is described by

ẋi = F (xi) + σ

n∑
j=1

Aij [E(xj)− E(xi)], (1)

here xi ∈ Rm is the m-dimensional vector describing the
state of the ith node (node with degree ki), F : Rm → Rm
governs the dynamics of the individual oscillator, E : Rm →
Rm is the coupling function (without loss of generality as-
sumed to be a constant matrix), σ is the overall coupling
strength, and A is the adjacency matrix. A encodes the topo-
logical information of the network, defined as Aij = 1 if
nodes i and j are connected andAij = 0 otherwise, note that
by definition ki =

∑
j Aij . We consider A to be symmetric.

The synchronized state defined as x1 = x2 = . . . = xn =
s is an invariant state of the system for all σ, its linear stabil-
ity can be studied by analyzing the perturbations ξi = xi−s.
In the regime ξi � 1 the variational equations governing the
perturbations read

ξ̇i = Ki(s)ξi + ηi, (2)

where the matrix Ki(t;α) = [DF (xn(t))− αµiE] depends
continuously on t, DF stands for the Jacobian matrix of F ,
µi = ki/kn is the normalized degree, and ηi = 1

kn

∑
j(Aij−

Anj)E(ξj) is the coupling term.
Neglecting the coupling term ηi the equations governing

the evolution of the perturbations ξi and are decoupled. The
linear stability of the homogeneous variational equation is
given by its maximum Lyapunov exponent Λ(αµi), which
can be regarded as the master stability function of the system
[4]. The perturbation ξi is damped out if Λ(αµi) < 0.

For many widely studied oscillatory systems the master
stability function Λ(αµi) is negative in an interval α1 <
αµi < α2 for general coupling function E [4, 7]. The per-
turbation ξi is damped out if α1 < αµi < α2. Moreover,
normalization imposes µn = 1 and µ1 ∝ k−1

n , hence, as
kn increases, µ1 converges to zero. Not only µ1, but most
of the normalized degrees µi will converge to zero. As a
consequence, it will be impossible, for large kn, to have
α1 < αµi < α2 for all i = 1, 2, · · · , n. Hence, in the ther-
modynamic limit no stable global synchronization is possible
in scale-free networks.



Now take α so that αµn−1 falls into the stability region.
Then, the state xn = xn−1 is linearly stable. This is true
as long as we can neglect the coupling term ηi. Under the
effect of ηi local mean field arguments show that xn ≈ xn−1

is stable. The argument goes as follows. If Λ(αµn−1) <
0, we guarantee the linear stability of ξn−1. Moreover, if
the remaining oscillators are not synchronized, the coupling
term ηn−1 can be viewed as a small noise, as long as the
signals xi are uncorrelated, with α fixed and and kn large [6].
Basic results from ordinary differential equations state that
the linear stability is maintained under small perturbations.

These arguments cannot be applied to low-degree nodes.
The reason is that to set the low-degree nodes into the sta-
bility region we must have αµ1 ≈ α1, implying α ≈ α1kn.
This requires large values for α. Hence, the coupling term
cannot be made small for low degree nodes.

To illustrate this phenomenon we have generated a
Barabási-Albert (BA) scale-free network with 3× 103 nodes
and m = 3 [3]. The network has largest degrees kn =
kn−1 = 165. Each node xi is modeled as a Rössler oscillator,
for xi = (x1i, x2i, x3i)T we have F (xi) = (x2i− x3i, x1i +
0.2x2i, 0.2 + x3i(x1i − 7))T . We consider E to be a pro-
jector in the first component, i.e., E(x, y, z)T = (x, 0, 0)T .
The master stability function Λ(α) has a stability region for
α ∈ (α1, α2) with α1 ≈ 0.13 and α2 ≈ 4.55.

For α = 0.30 we have observed the hub synchronization
xn ≈ xn−1. In Fig. 1(a) the time series xn is depicted in full
line while xn−1 is depicted in light gray line. As one can see
in the times series xn−1 ≈ xn. In Fig. 1(b), we depict xn in
bold line while x2000 in light gray line.

In summary, we have analyzed the stability of a partially
synchronized state – hubs exhibit a stable collective mo-
tion while the remaining nodes behave in an unsynchronized
fashion. In our case, the stability of the hub synchronization
is tailored into the analysis of the master stability function of
the oscillator, and fact that in large scale-free networks cou-
pling term acts as a small noise-like term on the hubs. We be-
lieve that these findings may serve as a paradigm to address
issues regarding collective dynamics of realistic networked
systems.

The author is in debt with Rafael Vilela, Alexei Veneziani,
and Murilo S. Baptista for illuminating discussions, a de-
tailed and critical reading of the manuscript.

References

[1] E. Bullmore and O. Sporns, Nature Neurosc. 10, 186
(2009); Achard S, et al., Jour. Neurosc. 26, 63 (2006);
Eguíluz V.M., et al., Phys. Rev. Lett. 94, 018102
(2005).

[2] A. Barrat, M. Barthelemi, A. Vespegnani, Dynamical
Processes on Complex NetworksÊ, Cambridge Uni-
versity Press 2008; M. Newman, A.-L. Barabási, and
D. J. Watts, The structure and dynamics of networks,
Princeton University Press, 2006.

[3] Albert R., Jeong H. and Barabási A.-L. , Nature 406

300 350 400
-20

-10

0

10

20

 time

  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,

300 350 400
-20

-10

0

10

20

 time
  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,

300 350 400
-20

-10

0

10

20

 time

  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,

-20

-10

0

10

20

 time
  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,-20

-10

0

10

20

 time
  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,

-20

-10

0

10

20

 time

  
x
 

 n
 1

  
x
 

  
x
  2

0
0
0

 n
-

 n
  
x
 

,
,

a)

b)

Figure 1 – [Color online] Hub synchronization for a BA scale-
free network of 3000 coupled Rössler oscillators. (a) Time series
of xn (full line) xn−1 (light gray line). (b) ime series of xn (full
line) x2000. The corresponding node degrees are kn = kn−1 =
165 and k2000 = 3.
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