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1. ABSTRACT

The study of urban traffic from a physical viewpoint [1–
6] has shown to be interesting not only due to its obvious
social and economical [7] impact, but also due to its com-
plexity [8–10] which is experienced daily by drivers. This
complex behavior has been studied from many perspectives,
ranging from statistical and cellular automaton models, to
hydrodynamical and mean field approaches [11–14].

We first explore in detail the traffic model proposed in
Toledo et. al. (Phys. Rev. E 70 016107, 2004) in which a
single car travels through a sequence of traffic lights. A car
in this sequence of traffic lights can have (a) an acceleration
a+ until its velocity reaches the cruising speed vmax, (b) a
constant speed vmax with zero acceleration, or (c) a negative
acceleration −a− until it stops. Therefore, we can summa-
rize the equations of motion for the vehicle, as

dv

dt
=

{
a+ θ(vmax − v), accelerate
−a− θ(v), brake ,

(1)
where θ(x) is the Heaviside step function. A normalized
description includes the definitions A+ = a+L/v

2
max and

A− = a−L/v
2
max.

As the car approaches the nth traffic light with velocity
vmax the driver must make a decision depending on the sign
of sin(ωnt+ φn) at the distance v2

max/2a− (the last stopping
point to arrive with null velocity at the traffic light). The
frequency ωn and the phase φn at the nth traffic light are used
to control the traffic.

If sin(ωnt + φn) > 0 (green light) the driver continues
through the traffic light at speed vmax. If sin(ωnt + φn) ≤ 0
(red light) the driver starts braking with −a− until it reaches
the traffic light with speed v = 0 and waits for the next green
light, or until the light turns green again with v 6= 0, at
which point it starts accelerating with a+. The normalized
frequency in this case is Ω/2π = L/Pvmax, where P is the
traffic light period.

The complex behavior that occurs when traffic lights are
synchronized is studied. Two strategies are considered: all

lights in phase, and a "green wave" with a propagating green
signal at speed vw. The normalized parameter in this case is
α = vmax/vw.

Figure 1 – Bifurcation diagrams for u = v/vmax as a function
of Ω/2π for A+ = 2 · 200/142 and A− = 8 · 200/142, which
correspond to realistic city traffic conditions.

The chaotic behavior shown for a given bound in the ac-
celeration/braking ratio, as displayed in the bifurcation dia-
gram of Fig. 1, is examined more carefully, and the region
in parameter space for which we observe chaotic behavior
is found. For example see Fig. 2. For Ω/2π < 1 we have a
period doubling bifurcation, and for Ω/2π > 1 we have a pe-
riod adding dynamics that can be described by supertracks. It
it interesting that we can define aproximate scaling laws that
allow us to describe the nontrivial dynamics of this model in
a two dimensional parameter space.

It is also found that traffic variables such as traveling time,
velocity, and fuel consumption, near resonance, follow crit-
ical scaling laws. For example, in the case of a greenwave,
the analytical prediction for the average speed close to the
resonance α = 1, is

〈v〉
vmax

= 1− |1− α| . (2)

This critical behavior is universal, in the sence that time and
velocity scaling laws hold even for random separation be-
tween traffic lights.



Figure 2 – Chaotic regions for Ω/2π vs. A+. A− = 3 · 200/142.

We then analize the resiliece of this critical behavior as
we include more cars into the systems and their interactions.
We first notice that his critical behavior close to α ≈ 1 does
not depend on the accelerations.Hence, it is natural to mod-
eled this critical behavior with a cellular automata, and we
will see that an analogous resonant behavior is found for the
two strategies mentioned above. In this model, we divide the
distance Ln between successive traffic lights by a number
N c

n = Ln/` of cells that can be occupied by a vehicle or be
empty, with ` the size of the cell, and n labeling the nth traf-
fic light. The car will move to the next cell in one time step
τ if that cell is empty. Conversely, the vehicle will stay in
its cell during the next time step if the next cell has a vehicle.
Hence, the cars cannot pass each other, and the velocity takes
two states 0 or 1. If the cell is at a traffic light, the car must
stay in its cell while the traffic light is red. The resilience
of the critical behavior is analyzed as we introduce velocity
perturbations, which are defined by the parameter r. Cars in
our model will have, at every time step, a probability r of not
moving during one time step. Initially the street is empty.
First, we inject cars at the left end at a rate 1/f = 1, that is,
we inject a car at every time step when the first cell is empty.
The system is evolved during a time 103P to eliminate tran-
sient behaviors, and then the dynamics is followed during a
time 103P . The results is shown in Fig. 3 for f = 5.
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Figure 3 – Results for f = 5. r varies from 0 to 0.1, in incre-
ments of 0.01. Solid lines correspond to the analytical results,
and dashed lines to Eq. 1. Line width represents the standard
deviation of the car velocity over the simulation run.

The resonance is clearly visible in Fig. 3, and as we in-

crease r it moves to the right as expected. This figure also
brings the suggestion that as r becomes large enough, there
is a coherent structure (a cluster of cars) propagating in the
system, and on average the cars take about the same amount
of time to reach the end of the simulation box, independently
of vwave, hence, of α. This emergent state, occurs before we
reach a complete traffic jam, for a much higher value of r.
This state must be analized in detail.

These results suggest the concept of transient resonances,
which can be induced by adaptively changing the phase of
traffic lights. This may be important to consider when de-
signing strategies for traffic control in cities, where short tra-
jectories, and thus transient solutions, are likely to be rele-
vant.
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