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The stability of the magnetic confinement of plasma in-
side tokamaks is an important problem that has been tack-
led using techniques from nonlinear dynamics. Formally, the
magnetic field lines inside a tokamak are orbits of Hamilto-
nian systems of one and a half degrees of freedom that can
be described by a two-dimensional return map [1]. A map
like that can be obtained by evaluating the coordinates of the
intersections between a Poincaré section perpendicular tothe
axis of the tokamak and the field lines.

The tokamap was proposed by Balescuet al.[2] to satisfy
some conditions, considered minimal for tokamak: having
an impenetrable axis and a realistic rotational transform of
equilibrium profile that, in the model, can be freely chosen.
The equations that define the map are,
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sin 2πx,

wherex is the poloidal angle,y is the radius,k is the param-
eter of disturbance andι is the rotational transform of equi-
librium. Here, we used the following profile of rotational
transform,

ι(y) =
ι0

4
(2 − y)(2 − 2y + y2), (2)

where ι(0) = ι0 is its value at the axis. It’s common to
use, for analysis via dynamic systems, the phase spaces of
the map for typical values of the parametersk andι0. The
characteristic phase space generated by the map can be seen
in Fig. 1.

Although the analysis of phase spaces are satisfactory in
some aspects, it is difficult to cover a large set of parameters,
as each phase space is associated with only one pair(k, ι0).
However, many of the dynamical characteristics of a phase
space can be determined by evaluation of the largest Lya-
punov exponent (λ) [3], so that it is possible to study the

Figure 1 – Phase space genereted with typical values of the pa-
rameters k = 4.0 and ι0 = 1.0, with 10

2 initial conditions for
10

4 iterations.

system for a wide range of parameters. The computational
tool that allows this approach is the parameter spaces, which
can be considered as a calculation of the relationship between
the largest Lyapunov exponent and the parameter pair(k, ι0).

In this work, we apply this tool for the study of tokamap,
covering a region of parameters of interest to the physics of
tokamaks. For the construction of parameter spaces, we used
an initial condition of the confined sea of chaos, that can be
seen in Fig. 1. We iterate this initial condition106 times
evaluating the largest Lyapunov exponent by the method of
Wolf et al. [4]. The result is a point(k, ι0, λ). Repeating
this process for a set of3.6× 105 parameter pairs(k, ι0), we
obtain a surface in three-dimensional space, which we repre-
sented in 2D associating a color diagram to the exponentλ.
The parameters space obtained for the system can be seen in
Fig. 2, where black regions represent a quasi-periodic behav-
ior, blue regions the confined sea of chaos, and yellow and
red regions the divergence. In Fig. 3, we show an amplifica-
tion of the green box present in Fig. 2. The dependence of
the exponentλ with ι0 for a givenk is shown in Fig. 4, where
we follow the red line that can be seen in Fig. 2.

The clear dividing line between the divergence and the
other regions in Fig. 2 also sets the limit of interest to the
physics of tokamaks, since there is no sense to study field
lines diverging away from the tokamak.



Figure 2 – Parameter space of Eqs. (1). The colors indicate the
largest Lyapunov exponent in right side scale.

Figure 3 – Quasi-periodic island immersed in the divergence
region, green box in Fig. 2.

The parameter space of Fig. 2 shows the existence of
quasi-periodic islands immersed in the divergence region
(one of this islands can be seen in Fig. 3), which, inter-
preting the divergence as a migration of the field lines out
of tokamak, suggests a paradox. However, phase spaces in
those regions indicate that the presence of islands is a char-
acteristic of the initial condition and do not represents the
general behavior of the system. Physically, we have a mag-
netic surface in the middle of the divergence.

In Fig. 4, we can identify the degeneration of the black
structures that repeat periodically in the parameters space
over the increment ofι0. This degeneration probably indi-
cates the intersection between the red line and the line of
divergence in Fig. 2. However, even before this intersection,
it is apparent that the behavior ofλ becomes progressively
more irregular asι0 increases, which indicates an instability
of the system in relation to the variations of the parameters
set in that region.

The results of this study are fully consistent with those
obtained by other authors through the analysis of the phase
spaces of the tokamap. Given the huge range of values of the
parameters that can be studied, the technique of parameter
spaces in tokamap proved be much more general, revealing
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Figure 4 – Largest Lyapunov exponent behavior for different
values of ι0, where we fixedk = 0.1 and follow the red line
shown in Fig. 2. We can observe the profile of the black struc-
tures immersed on the blue region.

some peculiarities of the system that could not be perceived
through another technique. However, the analysis of phase
space must be implemented together with the analysis of the
parameter spaces, since the phase space is much more accu-
rate to describe the system behavior for a given pair of pa-
rameters. The study also opens up questions about the evolu-
tion of Lyapunov exponent with the increase ofι0, since the
formation of periodic structures and their degeneration are
not fully understood.
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