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of population dynamics, that gives account of the same
keywords: Formation and Dynamics of Patterns; effect that some of above continuous models [3,4]. To wit,
Population Dynamics and Epidemiology; Self- a one dimensional cellular automaton that takes into
organization. account cooperative and competitive interaction between
the individuals. But, in this case no-motion of the
Recently, the topic of pattern formation due to individuals will be considerate.
non-local interaction, in the context of population
dynamic, has been widely discussed along the literature Time ——p
[1-4]. Taking a non-local generalization of the Fisher e P —
equation [1] which can be deduced from a microscopic "’ Py ———————— e

model for the individual’s interaction [2], the appearance ,Mwm:mn ™

of cellular pattern was elucidated. By using bi-stable ﬁ b
. »)\M i \

models, the appearance of localized structures was (- " Jﬁ

studied [3]. This type of localized states could exhibits a m

wide range of complex behaviors, as self-replication [4].

Chaos Pattern

Moreover, nonlocal interaction seems to be relevant
in many other fields, as stripe formation in the visual

cortex [5] or magnetic systems [6].
Figure 2 — Pattern formation of our discrete model, which

Time I exhibits intermittence between a chaotic state and the
pattern.

As for the case of continuous models, this discrete
model exhibits pattern formation. Namely, a spatially
coherent structure, with a well defined wave number.
However, the mechanism involved in the formation is quite
different. While in the case of continuous models the
pattern emerges from a uniform state, and becomes in a
stationary structure, as it is shown in Figure 1. For the case
of the cellular automaton the pattern emerges form a
chaotic state, through intermittence. To wit, moving some
parameter related with the non-local interaction, the
chaotic state exhibits bursts of a coherent pattern, and
returns to the chaotic state. As the parameter (related with
the non-locality) is increased the bursts of pattern are
longer and more frequent, and the episodes of chaos are
reduced. Figure 2 shows an example of this kind of
dynamics. Finally, when the parameter related with the
non-locality is large enough, the system exhibit a
completely regular pattern (with some phase oscillation).

Figure 1 — Typical pattern formation of a continuous model,
from a uniform state to a static pattern. The specific model
appears in Ref. [4].

On the other hand, the use of discrete system as
cellular automata to model such processes is also a well
reputed approach. From the pioneers works on self-
reproducing machines [7,8], to the studied of cellular
automata as a special case of dynamical system [9,10].

The aim of this poster is to present a discrete model



The transition from chaos to the pattern is
characterized using an order parameter related with the
discrete Fourier transform. It is also commented the
relation with other well known characterization of cellular
automata, like the Langton’s parameter [11]. Moreover,
introducing our own parameter, the relation between this
transition and the edge of chaos is explored. It is
important to emphasize that the discussion is mostly
focused in the language of dynamical systems.
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