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The dynamical systems approach to turbulence explains
numerous complex phenomena such as the transition from
laminar to turbulent flows, amplitude-phase synchronization,
broadband power spectrum and intermittency [1–3]. Com-
plex motions arise in a dynamical system due to chaotic at-
tractors and chaotic saddles. The tendency for turbulence in
pipe flows not to persist but decay to a laminar state if the
observation time is long enough is explained by the assump-
tion that the turbulent state corresponds to a chaotic saddle;
the boundary between the chaotic saddle (turbulence) and the
laminar state is determined by the edge of chaos [4].

Our aim is to investigate the phenomenon of edge-
of-chaos in a three-dimensional Gledzer-Ohkitani-Yamada
(GOY)-shell model of fully-developed fluid turbulence [5].
In this model, the wave number is one-dimensional and dis-
cretized by octaves as kn = 2n−4(n = 1, 2, · · · , N). The
dynamical equation for the complex shell velocity un is
given by(

d

dt
+ νk2

n

)
un = i[anun+1un+2 + bnun−1un+1

+ cnun−1un−2]∗ + fδn,1, (1)

where ∗ denotes the complex conjugate, and the coupling
constants are takes as an = kn, bn = −δkn−1, cn =
(1 − δ)kn−2, b1 = c1 = c2 = aN−1 = aN = bN = 0 to
conserve the energyE =

∑
n |un|2 when the viscosity ν and

the external forcing f vanish. We consider the case δ = 1/2,
where the helicity H =

∑
n(−1)nkn|un|2 is also conserved

as in Navier-Stokes turbulence. The external forcing is im-
posed on the first shell to avoid energy transfer to lower wave
numbers. Many numerical evidence have been found for the
K41 scaling of the energy spectrum in the inertial range of
the shell model. For the higher order structure functions, a
deviation from the K41 scaling, i.e., intermittency, has been
found similar to the Navier-Stokes turbulence. In addition,
the probability density function of the velocity un has been
found to depart further from Gaussian distribution function

at higher wave numbers.
We construct a bifurcation diagram for Eq. (1) by varying

the control parameter ν, and focus our attention in the re-
gion of a p-7 periodic window. We study the role played by
chaotic saddle in transient chaos inside the periodic window
and permanent chaos outside the periodic window. Inside the
periodic window, a surrounding chaotic saddle coexists with
a banded attractor (periodic or chaotic), and is responsible
for chaotic transients that mimic the dynamics of the chaotic
attractor outside the periodic window. Figure 1 shows the
Poincaré map Im{u1} = 0.4 of the surrounding chaotic sad-
dle at ν = 0.001799 (green dot), in the middle of the periodic
window, jointly with p-7 periodic attractor (black cross). The
surrounding chaotic saddle is robust and persists beyond the
saddle-node bifurcation and crisis. At the onset of saddle-
node bifurcation, a type-1 Pomeau-Manneville intermittency
appears. At the onset of crisis, the banded chaotic attractor
loses its stability and is converted to a banded chaotic saddle.
The resulting crisis-induced intermittency displays random
switching between laminar and bursty regimes, due to the
coupling between banded and surrounding chaotic saddles.

We apply the method of bisection to study edge-of-chaos
in the GOY-shell model of fully-developed fluid turbulence.
When a periodic attractor and a chaotic saddle coexist, as in
a periodic window, there exist two possible trajectories for
a given initial condition in the phase space: i) the trajectory
can converge directly to the attractor, or ii) the trajectory can
visit the vicinity of chaotic saddle before it converges to the
attractor. Under this circumstance, we can define two re-
gions or pseudo-basins in the phase space: the laminar basin,
related to i), and the chaotic basin related to ii). The bound-
ary between these pseudo-basins is called edge of chaos [4].
We show that in a periodic window, the edge state is the p-7
unstable periodic orbit (UPO) that emerges from a saddle-
node bifurcation at the start of the periodic window. At the
end of the periodic window this UPO and its stable manifold
collide with the banded chaotic attractor, leading to an inte-
rior crisis. An efficient method to find the edge state is the
bisection method. First, we select two initial conditions, uL

and uC , in the laminar and chaotic regions respectively. Any
path that connects them must intersect the edge. Then we



Figure 1 – Poincaré map of p-7 periodic attractor (black cross),
chaotic saddle (green dot) and the edge of caos given by a p-7
UPO (red cross), at ν = 0.001799.

integrate the initial condition uM =(uL + uC)/2 and decide
which side it belongs to. By sucessive bisections we reduce
the distance d = ||uL − uC ||, and bringuL and uC close to
the stable manifold of the edge UPO. Integrating Eq. (1) us-
ing uL and uC as initial conditions we generate trajectories
that follow the stable manifold of the edge, spending some-
time near the UPO, and then diverging either to the attractor
or to the chaotic saddle, respectively. Red cross in Fig. 1
represents the Poincaré point of the edge UPO obtained for
ν = 0.001799. Figure 2 shows the time series of trajecto-
ries at the laminar side (orange circle) and the chaotic side
(green dot), for three different values of ν within the peri-
odic window. The initial separation of uL and uC is 10−12.
In the three cases both trajectories have the same periodic
behaviour in the beginning, and then they separate. The lam-
inar trajectories converge quickly and smoothly to the attrac-
tor (black cross), and the chaotic ones spend sometime near
the chaotic saddle before converging to the attractor. The
time that laminar and chaotic trajectories remain close to the
edge state decreases as ν increases. This is because the un-
stable eigenvalue λU of the edge state increases as the control
parameter increases. The variation with the control parame-
ter ν of the unstable eigenvalue (λU ) of the edge of chaos
(p-7 UPO), the average lifetime of the chaotic saddle (τ ), the
maximum Lyapunov exponent (λmax), the fractal dimension
of the stable (DS) and unstble manifold (DU ) of the chaotic
saddle are shown in Table 1. We note that τ and DS de-
crease, and DU increases with ν. This is in agreement with
Fig. 2, where trajectories at the chaotic side (green dot) take
less time to converge to the attractor, as ν increases.

Figure 2 – Poincaré time series of trajectories on the laminar
(orange circle) and chaotic side (green dot) of the edge of caos
before converging to the p-7 periodic attractor (black cross).

Table 1 – The dynamical variation with ν of the edge of chaos
and chaotic saddle.

ν λU τ λmax DS DU

0.001799 4.128 746 0.0059 22.77 2.637
0.001800 5.596 525 0.0062 22.69 2.661
0.001802 8.708 263 0.0061 22.36 2.979
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