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The dynamics of epidemics has been based on the 
susceptible, exposed, infective and recovered continuous-
time model (SEIR) [1], or on the simpler SIR model. Both 
models have endemic equilibria that are asymptotically 
stable or the disease dies out. Because oscillations are 
observed in the incidence of many infectious diseases 
(such as measles, mumps, rubella and influenza), it is of 
interest to determine how oscillating solutions can arise in 
epidemiological models. In the deterministic framework, 
to account for oscillations the transmission rate is allowed 
to vary seasonally or spatial heterogeneity is included [2, 
3]. Periodic behaviour can be also observed if small world 
and finite recovery time effects on the infection 
probability are considered [4, 5]. Recently, we proposed a 
discrete-time version of a SIRS model which exhibits 
oscillations [6]. In fact, the inclusion in a SIR model of a 
positive feedback, from the removed class to a susceptible 
one, in a very narrow range of the corresponding control 
parameter, has the effect of enhancing periodically the 
spread of disease. On the whole, many more studies are 
needed in order to understand clearly the origin of 
possible oscillations in discrete-time models of disease 
propagation. 
In this paper we add to the SIRS model of ref. [6] (i) a 
variable population size (assumed as logistic) and (ii) 
seasonal variability (introduced by means of a sequence 
of kicks, which change periodically the infection 
probability). 
We consider a population consisting of susceptible, 
infected and recovered (usually, permanently immune) 
individuals S, I, R. As a consequence, the total population 
is 
  N  = S + I + R.     (1) 
The basic discrete-time deterministic model  (SIRS) has 
the form  
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where, during each sampling interval n, q denote the 

probability that a susceptible avoids the infection, b is the 
proportion of individuals which remains infected (0 ≤ b ≤ 
1), c (0 ≤ c ≤ 1) a fraction of recovered individuals, which 
lose immunity. The probability q is an arbitrary function 0 
≤ q(S, I) ≤ 1 with the property q(S, 0) = 1. It depends on 
the particular form of propagation of the disease. 
The probability q is modelled as follows: 
(I) NpIq /1−= , 

(II)  NIpq /)1( −=  
(III)  )/exp( NIpq ⋅⋅−= α , 
where α is a constant or can be modelled suitably. 
The probability p can be perturbed by a sequence of kicks 
with amplitude k and period t 
 tnkpp ,0 δ+= ,    (3) 
 where (a) 1, =tnδ  if n/t is an integer and  0 if not, or (b)  

1, =tnδ  for  n/t, n/t +1, ..., , n/t +s (n/t and s are integer). 
In the following figures time series of susceptible, 
infected and recovered individuals are shown, with 
constant population and q modelled by (I). 
 

 
Fig 1 

 
The kick parameter is k = 0 for the plot of figure 1, 

)1/(0 −= SIpk for the plot of figure 2 and k = 0.2 for the 
plot of figure 3. 
 



 
Fig. 2 

 
 

 
 

Fig. 3 
 
Drawings show that in all these cases, the kicks force the 
system to oscillate around states of endemic equilibrium. 
 
 

 
Fig. 4 

 
 
In the figure 4 a variable population of susceptible is 
modelled as a logistic growth, with a factor of 2.8. By 
looking to the picture on sees easily that in this particular 
case susceptible population converges toward the fixed 

point of logistic equations. 
In conclusion, we have shown that our model accounts for 
the periodicity observed in the real epidemic diseases. It is 
of further interest to analyse the combined effect of 
epidemic, logistic and kick parameters. 
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