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1. INTRODUCTION 
Control theory has been largely used in many 

different applications in engineering. This paper presents 

a comparison between a linear and a nonlinear control 

technique: LQR (Linear Quadratic Regulator) and 

nonlinear feedback or Computed Torque Control (CTC) 
[1] 

[2] 
respectively. The nonlinear system to be controlled is a 

robotic manipulator with two rigid links
 [3]

. According to 

the numerical simulations, the application of linear 

control in a nonlinear plant like the one investigated here 

really limits the operation of the plant. The nonlinear law 

proposed applies better. The analysis of the control laws is 

done using a minimum energy criterion
 [4]

.  

 

2. MODELING 
The double pendulum system can be geometrically 

modeled as in Figure 1.  

 
 

Figure 1 – Double Pendulum Model 

 

In this figure, m1 and m2 are the masses of the bars, 

I1 and I2 are the moments of inertia of the bars, l1 and l2 

are the positions of the center of mass of each bar and L1 

and L2 are the total length of the bars. The angles θ1 and 

θ2 are represented in Figure 1.  and  are the torques in 

the joints 

Using the Lagrangian
 [5]

 approach one determinates 

the governing equations of motion of this system 
[6]

. 

These equations are given by:  
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The linearized governing equations are given by:  
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where, 
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Equations 2 can be written in the form: 

 

                (3) 

 

Using this linearization, the LQR control technique 

can be designed. The gains obtained in this way are used 

in the complete nonlinear system. 

 

2.1 THE LINEAR CONTROL: LQR 

According to the LQR approach
[2]

, the torque vector 

in Equations 3 is replaced by the control law:  

 

                   (4)                                         



 

where [R] is a 2x2 identity matrix and the gain matrix is 

obtained by the solution of the Riccati equation: 

 

QKBKBRKAKA TT  1                       (5) 

 

[Q] is the identity 4x4 matrix in the general case.  

 

2.2 THE NONLINEAR CONTROL: CTC 

In this technique, the nonlinearities in the system are 

compensated via the torque. Using the general governing 

equations, Equations (1), the control torques are written 

as:  

 

E + A U1 +  B U2                            (6) 

F + C U1 +  D U2  

  

In Equations (6), U1 and U2 are linear control laws 

used to complete the CTC control 
[2]

. This linear law can 

be a PD control [5] or the LQR briefly discussed in 2.1. 

Both control laws are used here.    

 

3. RESULTS AND CONCLUSIONS 

The first analysis consists in verify if a linear control 

law is able to control the proposed nonlinear system. The 

numerical results indicate that it is possible to control this 

system for small angles and velocities, but for large 

angles and velocities it is necessary to use huge values for 

the gains in matrix Q. Figure 2 represents the torque 

necessary to control the joints considering large angles 

and velocities. Using only the linear LQR control in a 

nonlinear system.  

 
Figure 2 – Control torque for the nonlinear system investigated 

considering the LQR. 

 

In the Figure is possible to see that is the control law 

is capable to control the system, but is necessary to 

implement a impulse response in the joint. In the real 

system is impossible to generate this type of torque, so 

this control law is not appropriate to control this system. 

 

Considering the nonlinear feedback and two 

different control laws (PD and LQR) the necessary torque 

for the same task is shown Figure 3. Since the torque is 

proportional to the energy applied to the system, it is 

possible to observe that even if it is possible to control 

using a linear control law the energy necessary to do so is 

much larger than the one that needs to be applied using a 

nonlinear control law. 

 
Figure 3 – Control torque for the nonlinear system investigated 

considering the CTC (PD and LQR included). 

 

Through the graph in Figure 10 is possible to 

observe that the energy used the LQR control is smaller 

than that used by the DP to the torque applied to the first 

joint. This causes the energy used by the actuator is less to 

take them to the final state required. Regarded as the 

second joint torque in the energy used by control LQR is 

greater, but the LQR is softer which means that fewer 

variation in engine generating less wear. These results 

shows that in the real system the best control law, among 

which were analyzed, is the CTC with the LQR 

complement. Observing the data obtained by the 

simulations is possible to infer that the nonlinear control 

laws are most appropriate to control nonlinear systems. 

Moreover the CTC control Law is very effective in the 

nonlinear system however is necessary to chose the right 

law to complement that. 
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