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Abstract: Analytical expressions for the invariant densities
for a class of discrete two dimensional chaotic systems are
given. The method of separation of variables for the asso-
ciated Frobenius-Perron equation is introduced. Hence, a
two dimensional chaotic system can be decoupled in two
chaotic one dimensional systems. These systems are re-
lated to nonlinear difference equations which are of the type
xn+2 = T (xn). The function T is a chaotic map of an in-
terval whose chaotic behaviour is inherited to the two dimen-
sional one. The efficacy of the method appears to be indepen-
dent of the hyperbolicity of the map T , i.e. if the map display
full chaos or intermittency. We work out in detail some ex-
amples, including some three and higher dimensional cases,
in order to expose the method.
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1. INTRODUCTION

Explicit computations of invariant densities for higher di-
mensional maps are seldom found. In contrast, in one di-
mensional dynamics there are lots of exactly solvable chaotic
maps, which can be generated e.g., using the conjugation
property or by means of the Schröder method. The invariant
density of a chaotic map is an eigenfunction of the Frobe-
nius Perron operator induced by it. The associated eigen-
value problem is given by a functional equation but there are
no known general methods to solve it. The methods used
in the field of functional equations have not yet provided a
general way to solve them, instead one can find a lot of op-
erational methods adapted to each class of equations. There-
fore, to find reliable methods to obtain these densities be-
comes a very important task. In this work a methodology is
developed to solve the Frobenius-Perron functional equation,
which roughly consists in introducing the method of separa-
tion of variables for it. The method presented in this work
is called separation of variables, because of its resemblance
with the traditional one used in differential equations. We
use several examples to show how it works. Our paper con-
tain examples of maps defined by Jacobi elliptic functions,
rational functions, an example from duopoly Cournot game
and from the Newton method. Also, we give a generalization

of the map in example 1 (see below). Higher dimensional
maps are associated to a class of delayed difference equa-
tions. Moreover, the method also works for an intermittent
map, e.g. T = 1 − 2

√
|x|. The paper will contain about 31

references and here we only list some of them.

2. THE FROBENIUS-PERRON EQUATION

Let us consider a higher dimensional nonlinear trans-
formations F : U ⊆ Rd → Rd, and denote F (X) =
(f1(X), f2(X), . . . , fd(X)) for X = (x1, x2, . . . , xd) ∈
U ⊆ Rd. We are interested in the study of the discrete dy-
namical system Xn+1 = F (Xn). We assume that F is, at
least, a C1 function. Also, that there exists a set of func-
tions φj : U ⊆ Rd → Rd, such that F (φj(X)) = X , for
j = 1, 2, . . . , d. In other words, φj(X) is the j − th branch
of the inverse function of F . The Frobenius Perron operator
associated to F is defined by:

LF [ρ(X)] =
∑

F (Y )=X

ρ(Y )

|detDY F |
= ρ(X), (1)

where the Jacobian matrix DY F = [∂Fi/∂xj ] is evaluated
at Y . The scalar function supported on a given U ⊆ Rd,
denoted by ρ, which solves the functional equation is called
the invariant density for F .

2.1. Two dimensional maps

For any (x, y) ∈ R2, the first order nonlinear system of
difference equations: xn+1 = f(xn, yn), yn+1 = g(xn, yn),
defines a discrete dynamical system. We assume that there
exists an invariant set Ω ⊂ R2, and the dynamics in Ω being
chaotic.

For the sake of clarity we begin our exposition with the
simplest case. Now, for any (x, y) ⊂ R2 we consider the
system: xn+1 = yn, yn+1 = T (xn), where T : I → I with
I ⊆ R, is a map satisfying conditions stated in the preceding
section. Also, we assume that the set Ω = I × I is invariant.
Now, the Frobenius-Perron equation associated to it is given
by

L[ρ(x, y)] =

r∑
j=1

ρ(T−1j (y), x)∣∣T ′j ◦ T−1j (y)
∣∣ = ρ(x, y). (2)



We can see that this functional equation can be solved by
the ansatz ρ(x, y) = A(x)B(y), whereby L[ρ(x, y)] =
LT [A(y)]B(x) = A(x)B(y). The method of separation of
variables for the equation (2) works as follows:

LT [A(y)]

B(y)
=
A(x)

B(x)
= c, (3)

where we denote by c the constant of separation, such that
LT [A(y)] = cB(y), A(x) = cB(x). Note now that this is
a system of two coupled functional equations. To proceed
to decoupling them we make the substitution of the second
equation in the first one. Hence, we obtain LT [A(y)] =
A(y). In other words, if the map T has an invariant density
A, we must finally have ρ(x, y) = 1

cA(x)A(y).
Now we consider two different transformations, S : J →

J and T : I → I , both of them satisfying conditions stated
above, but each one having r and s monotone pieces re-
spectively. Therefore, T−1 and S−1 have r and s mono-
tone branches on their respective intervals. Then, defining
a discrete dynamical system on (x, y) ∈ Ω = I × J by
xn+1 = S(yn), yn+1 = T (xn), the associated Frobenius
Perron operator is given by

L[ρ(x, y)] =

r∑
j=1

s∑
l=1

ρ(T−1j (y), S−1l (x))∣∣T ′ ◦ T−1j (y)
∣∣ ∣∣S′ ◦ S−1l (x)

∣∣ . (4)

By analogy with to the previous section we introduce the
anzats ρ(x, y) = A(x)B(y), which allows us to have
LT [A(y)] = cB(y), LS [B(x)] = 1

cA(x). Now, this sys-
tem can be decoupled giving us LS◦T [A(x)] = A(x) and
LT◦S [B(y)] = B(y). In other words, the system is decou-
pled in two functional equations of a single variable. More
important, this time the functions A(x) and B(x) are (if they
exists) the invariant densities of S ◦T and T ◦S respectively.
We finally obtain ρ(x, y) = AS◦T (x)BS◦T (y).

2.2. Example 1

An example of this last case is provided by a system stud-
ied in Gardini et al (1996):

xn+1 = (y2n − xn − 1)2 − (y2n + xn − 1)2,

yn+1 =
√

(y2n − xn − 1)2 + (y2n + xn − 1)2. (5)

In that reference the authors shows that this system is ex-
actly solvable one. We compute its invariant density. After
making the change of variables (this one is different from
that employed by them) xn = (ηn − ξn)/2 and y2n =
1 + (ηn + ξn)/2 we obtain the system ξn+1 = 2η2n − 1,
ηn+1 = 2ξ2n − 1, which is clearly of the form of the equa-
tion given above. Hence, the (unnormalized) density is
ρ(ξ, η) = 1/

√
(1− ξ2)(1− η2). Now, the |det(J)| = |4y|,

then the invariant density in the variables x, y is computed by
ρ(ξ, η)dξdη = ρ(x, y) |4y| dxdy, such that

ρ(x, y) ∝ 4y√
(1− (y2 − x− 1)2)(1− (y2 + x− 1)2)

.

(6)

The argument in its denominator can be rewritten as(
2− (y2 − x)

) (
y2 − x

) (
2− (y2 + x)

) (
y2 + x

)
. After

some algebra, we find that the domain of that density is
given by the set Ω = {(x, y) ∈ R2} such that the fol-
lowing inequalities (also given in the reference cited above)
y2 − x < 2, y2 − x > 0, y2 + x < 2, y2 + x > 0, are
valid. Hence, this is the invariant set for the system. Since
these inequalities are satisfied for y > 0, the absolute value
in equation (6) becomes irrelevant.

3. DELAYED NONLINEAR DIFFERENCE EQUA-
TIONS

In recent times the study of nonlinear difference equa-
tions has become an intensive area of study from the point of
view of dynamical systems. In our paper we give some ex-
amples of invariant densities associated to the delayed differ-
ence equation: xn+k = T (xn) where k ∈ N, for a selected
maps T .
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