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of relative velocity between the particle and theving
keywords: Bouncing ball, nonwist map, piecewise map. floor just before the impact that will be restittitéo the
movement just after the impact. For conservativpaats
The bouncing ball problem consists of a particle=1.
under action of a uniform gravitational field whisbffers For A=0 (unperturbed case) andr=1
repeated inelastic impacts on a sinusoidally vibgat (conservative case) all the initial conditions le&a
plate at the floor as shown figure 1. This problem was periodic movements. The dependence between theahatu
first studied by Holmes [1] and investigated by manfrequencies of movement and its velocity after each
other authors, theoretically (e.g. [2]) and expermally impact is monotonic and given ly=27/(2t)=7g/\.
(e.g. [3]). The particle motion between consecutive We modify the simplified bouncing ball system
impacts is integrable, however the instant of thpdcts considering the effect of a ceiling at the heigtitom the
can not be obtained analytically. The resulting madifoor. A investigation of the modified bouncing baiodel
presents a transcendental equation that must bedsat was made by Leonel in [6]. For the unperturbed ¢hee
each iteration in order to find the instant of irofsa4]. movements still periodic, but the dependence betvtke
A x frequencies and impact velocity have a discontndihis
discontinuity occurs for the impact velocity in whithe
kinetic energy on the floor is equal to the graidtaal

- potential energy at height. We refer to this value as
o “discontinuity velocity” and is given byy= ./2gL . It
g separates the dynamics of the system in two regithes

movements with impacts only at the inferior limihda

x=0 with impacts at both limits.
The natural frequencies of the movement for the
= modified model is given by
é = (2

— x=-24
Figure 1 — Schematic view of the bouncing ball systn

9
Vv, —O(V, —«/2gL)\/\é -2¢gL

whereo is the Heaviside function. This dependeisce

A simplified map could be obtained assuming thgepicted irfigure 2 for L=1.54mandg=9.8 m/2. For this
approximation proposed by Lieberman and Lichtenbeframeters we hawg=5.5m/<.

[5] and consists in considering that the wall iee@l but 2 . . .
that, after the collision, the particle suffersesthange of 2‘; r
energy and momentum as if the wall were moving.e Th 0] a
travel time between thkth and the K+1)-th impacts is 2] -
t=vi/g for the simplified model, wherg, is the particle 207 n
velocity just after thé-th impact andy is the gravitational N 12 3
acceleration. We define the phase of the movingrfht " L
the k-th impact asgc=wt; where o is the angular ik n
frequency of floor oscillation. The map for the piified " / r
bouncing ball model is written as 6 .
4] o

P = Py + 200, /9 mod 2r (1 . 3

Vin =V = Arasen@k+l ) , ° i ¢ ° : ° N

where A is the floor oscillation amplitude andis the Figure 2 — Dependence of the between natural freqoey of
restitution coefficient. The parametegives the fraction the unperturbed movement and the impact velocity. Th red



lines indicate the natural frequenciesn,=6 rads/s and 12~ The red line infigures 3 (a)-(c)is for reference and
rad/s. indicate the value ofyy separating the two dynamical
. regimes.
We can be observe fiigure 2 that the natural We also consider a second restitution parameter

frequencies of the integrable system are degemeréte , rgated to the energy dissipation only on theimgil
means that exist pairs integrable torus with thmgaimpact. The map now becomes

rotational number. This aspect violates the twistdition
and do not satisfy the assumption of the KAM theareFor v, <./2gL
Nontwist maps and their transport properties we _
extensively studied for the continuous dependemcthe {a‘” =fcr2avfg  modir ]
frequencies [7], [8]. Vi = TV~ Arasenfp,,, )

Adding the perturbing effect of the oscillatingor v, >\/ﬁ (4
floor, the map equations for the nontwist bounchal

map is written as By = Dy +3)(vk + VB2 +2gL(1- r2) = (L+ 1)\ Ve - ZgL) mod[27 |
2w 9
=g +=(v, —O(v, —20L)/ -2 gL dzr
Pa=hry [v-otu-Vzeni-2a) - mo (3 [Yeu = ViR +20L(1L- 1)) - Areosend,., )

Vk+l = r-Vk - Arasen@kﬂ )

With this consideration the dissipation occurs omnlythe
We use the resonance frequency valw rads/s. The gecond dynamical regime. There are coexistence of
Poincaré maps for the conservative case are depiote onservative chaos, chaotic attractor and conseevat

figures 3 (a)-(c) where we vary the perturbationigiangds in the same phase space as can be observed
parameteA=0.04m 0.08mand0.12m. figure 4.
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Figure 4 - Poincaré map for the nontwist bouncing all map
for the parameters r,=0.98; ®=6 rads/s and A=0.12m.
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