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The bouncing ball problem consists of a particle 
under action of a uniform gravitational field which suffers 
repeated inelastic impacts on a sinusoidally vibrating 
plate at the floor as shown in figure 1. This problem was 
first studied by Holmes [1] and investigated by many 
other authors, theoretically (e.g. [2]) and experimentally 
(e.g. [3]). The particle motion between consecutive 
impacts is integrable, however the instant of the impacts 
can not be obtained analytically. The resulting map 
presents a transcendental equation that must be solved at 
each iteration in order to find the instant of impacts [4].  

 
Figure 1 – Schematic view of the bouncing ball system 

 
A simplified map could be obtained assuming the 

approximation proposed by Lieberman and Lichtenberg 
[5] and consists in considering that the wall is fixed but 
that, after the collision, the particle suffers an exchange of 
energy and momentum as if the wall were moving.  The 
travel time between the k-th and the (k+1)-th impacts is 
tk=vk/g for the simplified model, where vk is the particle 
velocity just after the k-th impact and g is the gravitational 
acceleration. We define the phase of the moving floor at 
the k-th impact as φk=ωtk where ω is the angular 
frequency of floor oscillation. The map for the simplified 
bouncing ball model is written as 

 
  

 
 
where A is the floor oscillation amplitude and r is the 
restitution coefficient. The parameter r gives the fraction 

of relative velocity between the particle and the moving 
floor just before the impact that will be restituted to the 
movement just after the impact. For conservative impacts 
r=1. 
 For A=0 (unperturbed case) and r=1 
(conservative case) all the initial conditions lead to 
periodic movements. The dependence between the natural 
frequencies of movement and its velocity after each 
impact is monotonic and given by ω0=2π/(2tk)=πg/vk.  
 We modify the simplified bouncing ball system 
considering the effect of a ceiling at the height L from the 
floor. A investigation of the modified bouncing ball model 
was made by Leonel in [6]. For the unperturbed case the 
movements still periodic, but the dependence between the 
frequencies and impact velocity have a discontinuity. This 
discontinuity occurs for the impact velocity in which the 
kinetic energy on the floor is equal to the gravitational 
potential energy at height L. We refer to this value as 
“discontinuity velocity” and is given by vd=       . It 
separates the dynamics of the system in two regimes: the 
movements with impacts only at the inferior limit and 
with impacts at both limits.  

The natural frequencies of the movement for the 
modified model is given by  

 
 

 
 
where   is the Heaviside function. This dependence is 
depicted in figure 2 for L=1.54m and g=9.8 m/s2. For this 
parameters we have vd=5.5m/s2. 

 
Figure 2 – Dependence of the between natural frequency of 
the unperturbed movement and the impact velocity. The red 
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lines indicate the natural frequencies ω0=6 rads/s and 12 
rad/s. 

 
 We can be observe in figure 2 that the natural 
frequencies of the integrable system are degenerated. It 
means that exist pairs integrable torus with the same 
rotational number. This aspect violates the twist condition 
and do not satisfy the assumption of the KAM theorem. 
Nontwist maps and their transport properties were 
extensively studied for the continuous dependence on the 
frequencies [7], [8].  
 Adding the perturbing effect of the oscillating 
floor, the map equations for the nontwist bouncing ball 
map is written as 
 

 
 
 

We use the resonance frequency value ω=6 rads/s. The 
Poincaré maps for the conservative case are depicted in 
figures 3 (a)-(c) where we vary the perturbation 
parameter A=0.04m; 0.08m and 0.12m. 

 

 

 
Figure 3 – Poincaré maps for the conservative nontwist 

bouncing ball map for the parameters ω=6 rads/s and (a) 
A=0.04m; (b) A=0.08m and (c) A=0.12m. 

The red line in figures 3 (a)-(c) is for reference and 
indicate the value of vd separating the two dynamical 
regimes. 

We also consider a second restitution parameter 
r2 related to the energy dissipation only on the ceiling 
impact. The map now becomes 

 
 
 
 
 
 
 

 
 
 
 
With this consideration the dissipation occurs only in the 
second dynamical regime. There are coexistence of 
conservative chaos, chaotic attractor and conservative 
islands in the same phase space as can be observed in 
figure 4. 

 
Figure 4 - Poincaré map for the nontwist bouncing ball map 

for the parameters r2=0.98; ω=6 rads/s and A=0.12m. 
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