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1. Introduction

The current density distribution in the plasma determines important characteristics of a tokamak
discharge, like the ohmic heating distribution and the safety factor profile. It was shown by
Christiansen and Taylor that the current distribution can be determined from purely geometric
information about the shape of the magnetic surfaces (! . Hence, assuming that in a tokamak the flux
and constant temperature surfaces coincide, the current distribution can be determined experimentally
using soft X-ray imaging methods ! .

In a recent paper concerning the calculation of the external inductance in tokamaks ! it was argued
that the current distribution can be determined, in principle, from the Cauchy boundary conditions at
the plasma edge, that is, from the geometric information about the shape of the last flux surface and
the distribution, on the edge, of the magnetic field due to external sources. The link between the
internal current distribution and the boundary conditions is given by an integral consistency condition
that must be satisfied by the current density for any solution of the homogeneous Grad-Schliiter-
Shafranov equation.

In this paper a general method is derived to determine the current distribution by using a
truncated set of integral consistency conditions defined for a finite number of homogeneous solutions
of the Grad-Schliter-Shafranov equation. The current density is given in terms of parametrized
representations of the flux surfaces and of the total toroidal current through the cross-section of
each flux surface. The free parameters in these representations are calculated in order to satisfy
the consistency conditions, one condition for each parameter. In this way, the current distribution is
reconstructed, according to a given parametrized representation, in terms of the boundary conditions
at the plasma edge only. As pointed out by Christiansen and Taylor [l | these methods of
reconstruction based on geometrical information are more suitable for small aspect ratio tokamak
equilibria with strongly non-circular cross-sections.

2.  Integral consistency condition

The flux function @ in a system with axial symmetry gives the magnetic flux between a given flux
surface and the symmetry axis. It is related to the toroidal current density jr inside a volume V' by
Ampeére’s law
A?® = R*V - (R72V®) = — 27y Ryr, ¢))
where R is the distance to the symmetry axis. When Jr is given in terms of ® by
magnetohydrodynamics considerations, equation [1] leads to the Grad-Schliiter-Shafranov equation
for @. At the plasma boundary for an ideal tokamak equilibrium the flux function satisfies the
Dirichlet condition
® = Py —~ Pp(a), 2)
where @, is the flux enclosed by the magnetic axis and @ p{a) is the poloidal flux between the
magnetic axis and the plasma boundary, which is denoted by the constant topological radius a. The
gradient of ®, normal to the plasma boundary, is related to the toroidal component of the equivalent
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surface current density K7 by the Neumann condition
n.V® = —2m1u,RKr. 3)
Now, consider a general solution 9 of the homogeneous equation A%y = 0 in V. Multiplying

equation [1] by //R?, the homogeneous equation for 1 by ®/R?, subtracting and integrating over
the total volume V (a) of the plasma, one obtains the integral consistency condition

/// (JT)«W ——//KKT> (%—i%@)ﬁ-v¢]ad2r(a), )

where d?r(a) is the differential area element on the boundary surface Sp(a). This consistency
condition, which must be satisfied for any solution 7, can be used to determine the internal current
distribution in the plasma for the over specified Cauchy boundary conditions.

3. Integral boundary conditions

For y=constant, equation [4] leads to the consistency condition of the Neumann problem, which

is simply the integral equivalence of the volume and surface current densities in terms of the total
toroidal current Ir(a),

J[rtr0=§ Kt = rta), )
ZP (a)
with d?r(() denoting the differential area element in the coordinate surface ¢ = constant and d£(6) the
differential arc length along the coordinate curve ¢ in a flux coordinate system (p, 8, ¢). The area of
the cross-section of the plasma for ¢ = constant is denoted by Sr(a) and the poloidal perimeter of the
plasma by /p(a).
Now, introducing the Green’s function G for a toroidal ring current,

A2G(7T,r") = —27nR&E(T - T), (6)
the vector analogue of Green’s theorem ¥ allows to write the flux function ®;,,, due to sources
enclosed by a given flux surface of radius p, in terms of the equivalent surface current density

i T) = o yf Ko(7)G(T, T")de(6). ™

Inside the plasma the equivalent surface current K7 at the plasma boundary, taken with the opposite
sign, produces a magnetic field that coincides with the field produced by the external sources. This is
a consequence of the vector analogue of Green’s theorem and is equivalent to the principle of virtual
casing ¥ . Therefore, the flux produced by the external sources inside the plasma can be written as

Pect(T7) = Do ~ 2p(a) — pig o (T @)G(7, 7 (@))de (6). ®)
£ rla
The constant of integration was chosen so that, at the plasma boundary, the sum of equations [7] and
[8] satisfies the Dirichlet condition [2].
Finally, the integral form of Ampére’s law relates the toroidal plasma current contained by the flux
surface p to the radial derivative of the poloidal flux function

I :—_j[B -dr’(0) = —+——, 9
)= P BT O == ©
where K (p) stands for the geometrical factor
1 [1Vgl

K(p) = 5= § ~o2at(o). (10)

Hence, the poloidal flux and the surface current at the plasma edge are given respectively by

* Ir(p) IVol\ Izr(a)
P ——=d Ky(a,d

( ) /‘1’0'0 K( ) p T(a’ ) 27TR K(a) (11)
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4.  Reconstruction of the current density

In the flux coordinate system the current density distribution for a scalar plasma pressure equilibrium
is given in terms of the toroidal current Ir(p) and pressure p(p) profiles by

. todlr/dp  K(p) #odV/dp '\ dp
f) = — i S i e ¢

Ir(p,6) 27RdL]dp ~ pigly(p) \ 2™ 2rRdLjdp ) dp’ (12)
where the volume V(p) enclosed by a magnetic surface p and the inductance L(p) of the toroidal

solenoid corresponding to this surface are geometry-dependent quantities defined by

Vi) =2n [[ ran(0), ) =2 (274 (13)

ST(p) St(p)

The evaluation of V' (p), L{p) and K(p) involves poloidal angle averages over 6 that can be
calculated analytically using a spectral representation [R(p,9),Z(p, 8)] for the flux surfaces in
cylindrical coordinates 1 . In this way the dependence of Jr(p, 6) on the poloidal angle @ is given
explicitly through the distance R(p,6) only. The quantities V(p) and L(p) depend on p through
the Fourier coefficients in the spectral representation, whereas K (p) depends on the values of these
Fourier coefficients as well as their radial derivatives due to the dependence on |Vp|. The strong
variations of R and |Vp| make the method particularly suited for small aspect ratio tokamaks.

satisfied by the representation [12] for the current density.

Now, the flux produced by the actual external sources is given, in general, by the superposition
of the fluxes due to an ideal magnetizing transformer, a uniform vertical equilibrium field and an
arbitrary number of circular current loops

Pent(T') = @pg + TR2Byere + 1 Y LG(T ). (14)
k

Comparing the expression of the flux inside the plasma due to the ideal [8] and actual [14] extemal
sources, one obtains the general condition of the Dirichlet problem

Do — Dp(a) - %?((Z_;f{e “ (J—Zﬂ> G[7(a), 7"(a)] d€'(6) =
q)M + WR(a)szert + Ho Zk LG [?(a’)’ ;‘Z]

Introducing the major radius Ry (a) of the plasma torus and taking the poloidal angle average (. ..) o
of [15] the flux balance equation follows

(15)

Do ~ s = Pp(a) + L. Ir(a) + M7RE(a) Byers + D My, (16)
k
where the external inductance I, of the plasma is defined by
<q)"""t {?(a)] >9 Ho IVpl ' — - v
TR R e (1), O @ T @, a

and the mutual inductance coefficients M between the plasma and the vertical field, and M, between
the plasma and the current loops are defined respectively by

_ (R*(a)), _ = —
M——-*Rg-(aj——, Mk—-uo<G[r (a),rk]>e. (18)

As pointed out in the Introduction, one assumes that the shape of the plasma boundary and the
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Figure 1: Reconstructed flux surface countours and current density in the equatorial plane.

coefficients in the spectral representation of the flux surfaces. Furthermore, the flux at the plasma
boundary &, — ®p(a) is assumed to be a free parameter that must be adjusted for a given value of the
plasma current Ir(a). In the calculations involving the Dirichlet condition the minor radius a of the
plasma and the plasma current [ r(a), as well as po, can be taken as normalization variables. Possibly,
the simplest method to adjust the parameters is by matching moments in a multipolar expansion of the
condition [15], with the introduction of as many moment matching equations as the number of free
parameters " . Then, the values of the external and mutual inductance coefficients in equations [17]
and [18], which depend only on the geometrical parameters at the plasma edge, can be calculated.
The value of &, — ®p(a), obtained by matching moments, should be consistent with the required
value of I7(a) substituted in the flux balance equation [16].

The next step in the reconstruction procedure is to substitute the geometrical parameters at the
plasma boundary in the integral consistency condition [4], in order to determine the free internal
parameters in the current density distribution. At least two Fourier coefficients remain to be
determined at this point, which are the position of the magnetic axis and the elongation on the axis.
Additional free parameters are used to adjust the flux surface averaged toroidal current profile I7(p).
Again, as many consistency equations as dictated by the number of free parameters can be set up
using homogeneous solutions ¥/, of increasing order m of the Grad-Schliiter-Shafranov equation. In
the present paper homogeneous solutions in toroidal coordinates were used to implement the method.

Finally, the poloidal flux at the plasma edge ®p(a) can be calculated using the first of equations
[11], allowing the evaluation of the poloidal flux ®o enclosed by the magnetic axis. The difference
between &g and &1 corresponds to the flux necessary to increase the plasma current from zero to its
final equilibrium value (not including resistive losses). At this point the reconstruction of the current
distribution is completed and all the equilibrium quantities, like the internal inductance, current beta,
current diamagnetism parameter, plasma beta and safety factor profile are determined.

Figure 1 shows an example of the current distribution determined for an ETE (Experimento
Tokamak Esférico) plasma. The given equilibrium parameters are: major radius=0.30m, minor
radius=0.20m, elongation=1.7, triangularity=0.3, plasma current=200kA, pressure on the magnetic
axis=6kPa and vertical equilibrium field=0.113T. The safety factor is 1.00 at the magnetic axis and
11.3 at the plasma edge for a toroidal magnetic field of 0.6T.
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