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ABSTRACT 

One of the main objectives of this thesis is to study the magnitude of the 
disturbing forces received by a spacecraft for several orbits with the help of the 
method called Perturbation Integral. The Perturbation Integral can be the 
integral of the magnitude of the acceleration caused by the external disturbing 
forces that act on a spacecraft for one orbital period or the magnitude of the 
integral of the acceleration of the external disturbing forces for one orbital 
period. The study includes the behavior of different external disturbing forces for 
different orbits by varying the Keplerian elements. In this context, it is possible 
to find orbits that are less perturbed and create maps for various orbits that 
illustrate the magnitude of the perturbation behavior and the fuel consumption 
required to keep a spacecraft in a Keplerian orbit and the fuel consumptions 
required to perform orbital maneuvers after a period of time. Another main 
objective is to study low-thrust orbital maneuvers, known as station-keeping 
maneuvers, and to reduce the fuel consumption that may be used in the 
thrusters. The orbit of a spacecraft is deviated from the Keplerian orbit due to 
external perturbations. Propulsions systems can be used to correct the orbit 
with fuel expenditure. One of the proposals of this thesis is the use of 
electrodynamic tethers and solar sails to reduce the effects of the external 
perturbations to reduce the fuel consumption in station-keeping maneuvers. 
This study also includes the possibility to use the electrodynamic tethers as a 
drag force to optimize the time of the orbital decay of a spacecraft. The 
validation of the tether or solar sail usage is performed in two different 
environments. The first one is an orbital integrator that integrates the orbit of the 
spacecraft including the external disturbing forces. The second environment, 
used only for the solar sail validation, is an orbit simulator that can include a 
more realistic environment, like failures on the actuators, on the sensors, 
external disturbing forces non-predicted, etc. This last simulator is known as 
‘STRS’ or “Spacecraft Trajectory Simulator”. 

Keywords: External Disturbing Forces. Electrodynamic Tethers. Solar Sails. 
Station-Keeping Maneuvers. Optimization. Perturbation Integral. STRS 
Simulator. 
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ESTUDO DE MANOBRAS ORBITAIS COM BAIXO EMPUXO NA PRESENÇA 

DE FORÇAS PERTURBADORAS 

RESUMO 

Um dos principais objetivos desta tese é estudar a magnitude das forças 
perturbadoras por várias órbitas com a ajuda de um método chamado Integral 
da Perturbação. A Integral da Perturbação pode ser a integral da magnitude da 
aceleração causada pelas forças perturbadoras externas que atuam sobre um 
veículo espacial por um período orbital ou a magnitude da integral da 
aceleração das forças perturbadoras externas por um período orbital. O estudo 
inclui o comportamento de diferentes perturbações externas para diferentes 
órbitas variando os elementos Keplerianos. Neste contexto, é possível 
encontrar órbitas que são menos perturbadas e criar mapas para diversas 
órbitas que ilustram o comportamento da magnitude da perturbação, o 
consumo de combustível necessário para manter um veículo espacial em uma 
órbita Kepleriana e o consumo de combustível para realizar manobras orbitais 
após um período de tempo. Outro objetivo principal é estudar manobras orbitais 
de baixo impulso, conhecidas como manobras de manutenção orbital, e 
diminuir o consumo de combustível utilizado nos propulsores. A órbita de um 
veículo espacial é desviada da órbita Kepleriana devido às perturbações 
externas. Sistemas de propulsão podem ser usados a fim de corrigir os desvios 
consumindo combustível. A proposta da tese abrange o uso de cabos 
eletrodinâmicos e de velas solares a fim de reduzir os efeitos das perturbações 
externas e diminuir o consumo de combustível em manobras de manutenção. 
Este estudo também inclui a possibilidade de utilizar os cabos eletrodinâmicos 
como uma força de arrasto de modo a otimizar o tempo de decaimento orbital 
de um veículo espacial. A validação do cabo eletrodinâmico ou da vela solar é 
realizado em dois ambientes distintos. O primeiro é um integrador orbital que 
integra a órbita do veículo espacial, incluindo as perturbações externas. O 
segundo ambiente, usado somente para a validação de vela solar, é um 
simulador de órbita que apresenta um ambiente mais realista capaz de 
considerar falhas nos atuadores, nos sensores, forças perturbadoras externas 
não previstas, etc. Este último simulador é conhecido como 'STRS 'ou 
"Simulador de Trajetória de um Satélite". 

Palavras-chave: Forças Perturbadoras Externas. Cabos Eletrodinâmicos. Velas 
Solares. Manobra de Manutenção Orbital. Otimização. Integral de Perturbação. 
STRS Simulador. 
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1 INTRODUCTION 

This introduction chapter includes the main topics of the thesis, like 

electrodynamic tethers, solar sails, the Perturbation Integral method and the 

Spacecraft Trajectory Simulator (STRS) software. The objectives of the thesis 

are also included in this chapter.  

The overview containing all the important points about the introduction is given 

as follows:  

a) objectives;  

b) preliminaries remarks related to the thesis topics;  

c) previous, current and future missions related to solar sails and 

electrodynamic tethers; 

d) the potential space applications of the solar sails, the electrodynamic 

tethers, the Perturbations Integral method and the STRS software; 

e) literature review. 

1.1. Objectives 

This thesis involves several different topics that vary from electrodynamic 

tethers to solar sails. It also contains different tools that are used to achieve and 

analyze the results of low-thrust maneuvers in the presence of external 

disturbing forces.  

The principal tools used in this work are the Perturbation Integral and the STRS. 

The Perturbation Integral is focused on the analysis of the variation of velocity 

that the disturbing forces can deliver to the system and the efficiency of the low-

thrusters to reduce or overcome the effects of these disturbing forces. 

The STRS simulator main focus in this thesis is to study some maneuvers in a 

more realistic approach. The low-thrusters used in this simulator are the solar 
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sail and electric thruster. The low-thrusters are combined together to reduce the 

effects of the disturbing forces at every step of the time and to optimize the fuel 

consumption. The greatest advantage of using this software is the possibility of 

computing errors, failures, delays and so forth in the actuators, sensors, etc. 

The results can be more realistic and reliable with the STRS ambience. 

The maneuvers proposed are strictly related to orbital maintenance of the 

spacecraft in its nominal orbit. The disturbing forces included in this work shift 

away the spacecraft from its nominal position.  

The low-thrusters proposed in this work to maneuver the spacecraft are based 

on two non-fuel consumer thrusters: the electrodynamic tether (EDT) and the 

solar sail. Others thrusters are also considered in this work to maneuver the 

spacecraft, if no free-fuel thruster is used or if the solar sail or the EDT cannot 

fully reduce or compensate the effects of the disturbing forces. 

1.2. Perturbation Integral 

The Perturbation Integral is the magnitude of the velocity deviation caused by 

the disturbing forces that act on a spacecraft for one orbital period of a 

Keplerian orbit. The Perturbation Integral method is subdivided in two integrals. 

The first one, abbreviated by PI, is the integral for one orbital period of the 

magnitude of the disturbing accelerations. The second one, abbreviated by 

PIMAG, is the magnitude of the integral for one orbital period of the disturbing 

accelerations. 

The concept of the Perturbation Integral, the PI to be more specifically, was first 

introduced by Prado (2013).  

The PI can also be used to evaluate the efficiency of the EDT or the solar sails 

as they can cause a velocity variation of the spacecraft’s Keplerian orbit. If the 

EDT or the solar sail is used to reduce or compensate the effects of the 

disturbing forces by applying a force in the opposite direction of the disturbing 
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forces, then the PI of the low-thrust propulsion system is the magnitude of the 

velocity reduction that needs to be delivered to the spacecraft. Otherwise, if 

they are used as a drag in the direction of the orbital velocity, then the PI 

provides the magnitude of the velocity increase that these non-fuel-consumption 

thrusters can deliver to the system. The PI of the disturbing forces itself 

represents the total variation of velocity that the thrust must apply in one orbital 

period to keep the spacecraft in a Keplerian orbit. 

At a first glance, the PI is an approximation of the reality. Indeed, the cost to 

keep a spacecraft in a Keplerian orbit all the time can be highly fuel-demanding. 

It means that missions with this goal are not very popular, but situations like that 

may occur in specific cases. 

The same occurs to the PIMAG. The PIMAG assumes that the deviations caused 

by the disturbing force can be negligible for one orbital period. The PIMAG, 

differently from the PI, includes the compensations due to the variations  in the 

direction of the forces for one orbital period.  

Even if the Perturbation Integral is an approximated method, this tool is proven 

in this thesis to be a powerful tool that can:  

a) measure the magnitude of the velocity deviation coming from the 

disturbing forces added together or individually;  

b) create maps of the magnitude of the velocity deviation of the system 

caused by the disturbing forces for different orbits, as a function of the 

Keplerian elements of the orbit; 

c) measure the magnitude reduction of the velocity deviation that the 

disturbing forces could deliver to the Keplerian orbit if EDT or solar sail is 

used to compensate the effects of the disturbing forces. The magnitude 

increase can also be analyzed if those fuel-free low-thrusters are used to 

increase the effects of the disturbing forces; 
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d) be used to estimate the cost of station-keeping maneuvers based on the 

characteristics of the orbit and on the set of perturbations considered, 

with no dependence on the type of engine used as a thruster; 

e) evaluate the pattern of the disturbing forces as a function of the 

Keplerian elements and find orbits with minimal values of  Perturbation 

Integrals. Minimal values for the Perturbation Integrals mean the best 

potential orbits for the low-cost orbital maintenance. 

All of these features of the Perturbation Integral are proven and explained in the 

results chapter of this thesis. The mathematical model chapter provides the 

mathematical formulation of the Perturbation Integral method. 

Besides Prado (2013), there are many references that used the PI as an 

important mechanism to achieve several purposes, as described below.  

Oliveira and Prado (2013) provide an estimative of the station-keeping 

maneuver cost to maintain a spacecraft in its nominal position. The orbits 

studied are close to the geostationary orbits (GEO). The method used is the PI. 

The result of this integral is the velocity variation that the spacecraft needs to 

perform all the time to compensate the deviations caused by the perturbing 

forces. The perturbing forces considered are the lunisolar perturbation and the 

J2 effect of the gravitational field of the Earth. This paper covers the study of the 

variation of the nominal semi-major axis, the eccentricity and the inclination. 

Oliveira et al. (2013) propose a procedure to map orbits with respect to the 

perturbation forces with the goal of finding orbits that may use the solar 

radiation pressure for station-keeping maneuvers. The calculations are made 

based on the PI. The paper shows different types of integrals of the perturbing 

forces over the time. Solar radiation pressure, J2 to J4 zonal harmonics terms of 

the geopotential, and lunisolar perturbations are considered. The results provide 

the magnitude of each perturbing forces, so it is possible to see if the radiation 

pressure can be used to control the effect of other forces, or at least to help in 
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reducing the cost of the control. This paper is the first one written by the authors 

that introduces the idea of using the solar radiation pressure to reduce the 

effects of the disturbing forces and to analyze its efficiency with the PI values. 

Oliveira and Prado (2014a) search for orbits that have great potentials to 

require low-fuel consumption for station-keeping maneuvers for constellations of 

spacecrafts. The method used to study the problem is based on the PI as well. 

For this search, it is analyzed the integral of orbits with different values of the 

Keplerian elements in order to find the best ones with respect to the PI values. 

The perturbations considered are the ones caused by the third body, which 

includes the Sun and the Moon, and the J2 term of the geopotential. The Global 

Positioning System (GPS) and the Molniya constellations are used as examples 

for those calculations. 

Moreover, Prado (2014) maps orbits with the PI around the Asteroid 2001SN263. 

This asteroid is a triple system, which center of mass is in an elliptic orbit 

around the Sun. The perturbations considered in the present model are the 

ones due to the oblateness of the central body, the gravity field of the two 

satellite bodies (Beta and Gamma), the Sun, the Moon, the asteroids Vesta, 

Pallas and Ceres and all the planets of the Solar System. This mapping is 

important because it shows the relative importance of each force for a given 

orbit of the spacecraft, helping the mission planning team to make a decision 

about which forces need to be included in the model for a given accuracy and 

nominal orbit.  

Sanchez et al. (2014a) provide a useful new method to determine minimum and 

maximum range of values for the degree and order of the geopotential 

coefficients required for simulations of spacecraft’s orbits around the Earth. The 

method is based on the PI. There are some constraints in the degree and order 

of the terms which are present in the geopotential formula, saving 

computational efforts compared to the integration of the full model. In this paper, 

it is studied quasi-circular orbits and it is presented several simulations showing 



6 
 

the bounds for the maximum degree and order that should be used in the 

geopotential for different situations. 

Carvalho et al. (2014) propose less perturbed circular orbits around Europa. 

This search is made based on the PI. The perturbing forces considered are the 

third-body perturbation that comes from Jupiter and the J2, J3, and C22 Jupiter’s 

non-sphericity and terms of the gravitational potential of Europa. Several 

numerical studies are performed and the results show the locations of the less 

perturbed orbits. The results show that it is possible to find near-circular frozen 

orbits with smaller amplitudes of variations of the orbital elements. 

Sanchez et al. (2014b) study gravitational captures of a spacecraft by the Pluto-

Charon system, searching configurations where the loss of energy of the 

spacecraft to Pluto is maximized in a time interval that keeps the viability of the 

mission. The method use the three-dimensional restricted three-body problem 

and takes into account the perturbation of the Pluto and Charon gravitational 

potentials (J2 and C22), the perturbation of the Sun and the gravity of the minor 

satellites of Pluto (Styx, Nix, Kerberos, and Hydra). The initial conditions which 

lead to captures of probes that remain in orbit around Pluto for 10 years or more 

is considered as stable regions. The PI is used to calculate the total velocity 

variation received by the spacecraft, in the stable regions, due to the Sun, 

Charon, the small satellites of Pluto and the J2 and C22 terms of the potential of 

Pluto and Charon.  

Oliveira et al. (2014) aim to map orbits based on the PI. Particularly, the effects 

of the inclination and the eccentricity of the orbit in those mappings are studied. 

The perturbation forces considered here are the solar radiation pressure, the 

lunisolar perturbation, the zonal harmonics J2 to J4 and the atmospheric drag. 

The possibility of using a solar sail to reduce the effects of the other 

perturbations acting on the satellite is considered under this approach. The 

problem is stated to find the necessary and sufficient conditions to use the solar 
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sail as a low-thrust propulsion to reduce the effects of the disturbing forces. This 

study is a continuation of Oliveira et al. (2013a).  

Oliveira and Prado (2014b) find the necessary and the sufficient conditions to 

use solar sails in order to compensate or to reduce the perturbation effects due 

to external forces received by a satellite. This study considers a satellite with 

the following disturbing forces: the solar radiation pressure, the zonal harmonic 

perturbation J2 to J4 and the third body perturbation due to the Sun and the 

Moon. The necessary and the sufficient conditions are, for a given orbit, the 

area and the attitude that the solar sail must have in order to compensate or to 

reduce the effects of the other perturbation forces. In this way, the cost of the 

station keeping maneuver can be reduced in terms of the fuel consumption, 

since there is less perturbation acting on the satellite. This last study includes 

also the attitude restrictions the solar sail can have.   

Oliveira and Prado (2014c) study potential orbits for missions to the asteroid 

2001SN263, a triple system. Currently, there are several institutions in Brazil 

studying a mission to this asteroid. This mission is called ASTER and it is 

planned for a one year duration in the asteroid system. The goal of this paper is 

to study the forces acting in that system, and then verify the possibility of using 

the solar radiation pressure to make station-keeping maneuvers. The dynamical 

model considers the gravitational forces of the three bodies of the system, the 

J2 perturbation of the main body and the solar radiation pressure. For a given 

orbit, the optimal direction of the solar sail attitude along the orbit is found, as 

well as the size that the solar sail must have in order to compensate the 

disturbing forces. Optimal solutions are found by allowing variations of the size 

of the solar sail. Also, a sub-optimal analysis is considered by fixing the area of 

the solar sail, but maintaining the optimal solar sail attitude. The necessity of a 

propulsion system to complement the maneuvers is considered.  

Venditti and Prado (2015) study orbital dynamics around irregular shaped cube 

body. The cube shape is a promising study, since the shape of an asteroid is 
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currently modeled by the sum of several known geometric shapes, and the cube 

is one of the most basic ones. The PI is used to map orbits and find less 

perturbed ones, which are good candidates for station-keeping maneuvers. 

Points in the orbit that minimizes the perturbations are found and they can be 

used for constellations of nanosatellites. 

Lara (2016) studies the PIMAG for the gravitational perturbation due to the zonal 

harmonic J2 using an analytical approach. The study also includes numerical 

simulations and first order approximations of the algebraic results. 

1.3. Solar Sails 

Johannes Kepler once wrote to his friend Galileo Galilei a letter which contained 

the following quote: “[…] Let us create vessels and sails adjusted to the 

heavenly ether, and there will be plenty of people unafraid of the empty wastes 

[…]" (KOESTLER, 1986). 

The idea proposed by Kepler can be seen as a reality of today. The vessels can 

be understood as the spacecrafts. The sails can be understood as the chemical 

thrusters, the electrical thrusters, or even the tether propulsion or solar sails. 

The humankind is also unafraid of the empty wastes as there are humans 

orbing the Earth, visiting the Moon and planning Mars colonization. 

Kepler was right in proposing sails through the space, since solar sails missions 

has already been proved to work using propulsion systems with no fuel 

consumption. Nevertheless, he was wrong about the ether, but this is another 

great story that runs out of the scope of this work. 

Solar sails are used as a propulsion system by the interaction of the solar 

photons with the surface of the solar sail. This interaction is known as solar 

radiation pressure, a kind of long-term external disturbing force that acts on the 

surface of any spacecraft.  
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Solar sails use the solar radiation pressure as a free-fuel propulsion system.  

The solar radiation force occurs when a light beam falls upon a surface and 

causes a loss of energy resulting in a force acting on the surface of the 

spacecraft. This transference of energy may result on a torque, if the center of 

the mass of the spacecraft is not the center of pressure. The solar radiation 

pressure can be used in solar sails for attitude control, orbital maintenance or in 

interplanetary missions. 

Optimized solar sails must have a large area that is illuminated by the Sun. 

Since the solar radiation pressure is its working principle, a large area means 

that the surface can intercept a larger numbers of photons and create more 

pressure (MCINNES, 2004). Furthermore, to optimize the magnitude of the 

solar radiation acceleration, the mass of the solar sail must be as light as 

possible. This means that solar sails are projected with a small mass per unit 

area, just like a paper sheet, thin and large (MCINNES, 2004). The material of 

the solar sail also influences its performance. Solar sails must have surface as 

near as possible to perfect reflectors. In this way, it is optimized the momentum 

transferred to it. If the solar sail has a perfect reflection, then the momentum 

transferred to the sail is two times the momentum transported by the incident 

photons. The solar sail orientation is also fundamental to maneuver correctly 

the system and achieve the trajectory goals. 

The solar sail concept has a long and rich history with scientists and science 

fiction authors as pioneers. Maxwell (1873) proved mathematically that the light 

can exert a pressure on a surface and it was demonstrated experimentally later 

by Lebedew (1901). Between the work of these two scientists, Le Faure and De 

Graffigny (1889) wrote a fiction novel about spacecrafts propelled by mirrors. 

K. Tsiolkovsky and his co-worker F. Tsander, from the former soviet union are 

believed to be the first scientists to write about the solar sailing (MCINNES, 

2004). Tsiolkovsky (1921,1936) discussed practical solar sails as a non-rocket 

form of space travel. Tsander (1924) proposed interplanetary space missions 
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using tremendous mirrors of very thin sheets, capable of achieving favorable 

results. By the time of Tsiollovksy and Tsander, the solar sails were not so 

popular and yet a really primitive idea.  

Later on, Wiley (1951) wrote, under the pseudonym of Russel Sanders, an 

article that discussed the design of a feasible solar sail and some strategies for 

orbit rising. He wrote it under a pseudonym to protect his professional 

credibility. He stated that solar sails must be more practical than rocket 

propulsion, with no fuel consumption and long life-time. He was optimistic about 

its benefits.  

An important paper written by Garwin (1958) studied also the feasibility of solar 

sails with elegant features, advantages of solar sail propulsion and the 

possibility to achieve high velocity increments for a long period of time. Garwin 

(1958) was the first to use the term “solar sailing” and, after that, the name 

became popular and it is used until now. 

The solar sailing discussion after the 1960s became a vast study to contribute 

to the solar sail understanding and technology. The mirror concept, back to the 

early literature, has been improved over the years to thin, large and light 

reflective solar sails. 

A brief idea of the most enrichment studies about solar sails are given as 

follows.  

Tsu (1959) studies the benefits of the solar sail, like no fuel or propellant 

requirements, no power plant needed aboard ship and no waste-heat disposal 

problem. This paper presents the characteristics of a solar sail in details and the 

equations of motion. The orientation of the solar sail is optimized and the time 

travel computed and compared with chemical thrusters. 
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London (1960) uses the exact differential equations of motion instead of the 

approximated one applied by Tsu (1959). The logarithmic spiral trajectory is one 

of the maneuvers studied.  

Sands (1961) presents escape maneuvers with solar sail usage for initially 

circular orbits. The flat sail is rotated about its axis at half of the revolution rate 

about the planet. The orbits are in the plane of the ecliptic of a planetary 

gravitational field. 

Fimple (1962) presents the same idea of Sands (1961), but he includes the 

three-dimensional trajectories for the planetary escape. 

Wright and Warmke (1972) present solar sail missions. The paper proposes 

missions that use solar sail vehicles to deliver large payloads throughout the 

solar system, like Jupiter, Saturn or Mars. It is also stated that a reusable sail 

could be returned to Earth. 

Svitek et al. (1982) were not the first ones to propose spinning solar sails, but 

his work presents a complete guide with detailed characteristics of them and 

other types of solar sail. This paper studies rigid solar sail with stiffening 

performed by composite beams curing in space and by a network of tubes filled 

with gas. The soft solar sail is also studied with a spinning sail, a parachute-like 

sail and a solar sail reinforced by gravity gradient. All of the solar sails proposed 

are compared and its performance is discussed based on the application of the 

mission. 

The study of solar sails and disturbing forces is also considered in the scientific 

research. One of the notorious and pretentious studies about solar sails and 

disturbing forces is given by Forward (1991). The idea of this paper is to have a 

spacecraft static (with no orbit). The idea is to use a solar sail propulsion to 

maintain itself in a desired “non-orbiting” static equilibrium position adjacent to 

the Earth by balancing light pressure and gravitational force. The idea of a 

spacecraft not orbiting a gravitational field may be playful, but yet the idea 
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behind the paper contributed to the idea of using solar sails to reduce undesired 

forces. 

McInnes et al. (1994) study stationary solutions for the restricted three-body 

problem for spacecraft with a solar sail in the Earth-Sun and Earth-Moon 

systems. It is found that the usual five Lagrange points are extended to a 

continuum of new artificial points that form level surfaces parameterized by the 

sail mass per unit area. Analytic expressions for the sail mass per unit area and 

the sail attitude required for these stationary solutions are obtained and the 

stability of the solutions examined.  

Maccone (1994) proposes space missions outside the solar system to exploit 

the gravitational lens of the Sun. It is proposed that the spacecraft can achieve 

its final orbit to study the gravitational lens phenomena of the Sun with solar sail 

propulsion through the solar system. 

Carroll (1998) proposes an economical planetary space travel with a small solar 

sail to provide thrust to the spacecraft. The idea behind the paper is to create 

lighter spacecrafts that can exploit the solar system with no fuel, just using the 

light solar sail as a propulsion system. 

Liu et al. (2014) study the attitude dynamics for the highly flexible solar sail with 

control vanes, sliding masses, and a gimbaled control boom. The vibration 

equations are derived considering the geometric nonlinearity of the sail 

structure, subjected to the forces generated by the control vanes, solar radiation 

pressure, and sliding masses. Then, the dynamic models for attitude and 

vibration controller design and dynamic simulation are obtained, respectively. 

Oliveira and Prado (2014b) propose an investigation about potential low-cost 

orbits with reduced external perturbations and the use of solar sails to reduce 

even more the external perturbations. Many different solar sails concept is 

proposed, like variable solar sails, fixed area solar sails and attitude restrictions 

for the control of them. 
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Oliveira and Prado (2014c) study a solar sail concept to reduce the 

perturbations around a triple asteroid, which is related to the ASTER Brazilian 

mission. The study finds potential low-station keeping orbits and proposes solar 

sails to reduce the external perturbations. 

Zeng et al. (2014) study the concept of fast solar sail rendezvous missions to 

near Earth asteroids by considering the hyperbolic launch excess velocity as a 

design parameter. After introducing an initial constraint on the hyperbolic 

excess velocity, a time optimal control framework is derived and solved by using 

an indirect method.  

Jin et al. (2014), based on the coupling effect of the orbit and the attitude, state 

a theory of time-optimal control that is used to design the transfer trajectory 

from an earth-centric orbit to a heliocentric polar orbit. This paper establishes 

the reduced dynamic model for a flexible solar sail with foreshortening 

deformation and coupling of its attitude and vibration. In the process of attitude 

control, it is considered that the sail craft generates orbital deviations from the 

designed orbit, as well as structural vibration. 

Visagie et al. (2015) propose the use of drag augmentation from a deployable 

drag-sail to de-orbit a satellite in LEO, to lead to a reduction in collision risk.  

Next, it follows a description of some solar sails missions. 

The IKAROS (interplanetary Kite-craft accelerated by Radiation of the Sun) 

mission was conceived by JAXA (Japan Aerospace Exploration Agency). This 

mission was launched in May 21, 2010. This mission was the first one to 

demonstrate the solar sail technology in interplanetary missions. The main 

propulsion is the solar sail and the other propulsion system is the photon-

propulsion. The mission performed a fly-by in Venus (JAPAN AEROSPACE 

EXPLORATION AGENCY, …). 
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The mission called NanoSail-D composed by a nanosatellite and a solar sail 

orbited the Earth for 240 days. This was the first nanosatellite with solar sail in 

Low-Earth Orbit (LEO). The mission was successfully launched to space in 

November, 2010, as a payload on NASA's FASTSAT (Fast, Affordable, Science 

and Technology SATellite). The NanoSail-D's sail was deployed on January 20. 

This mission was launched to determine how future satellites can use this new 

technology (NATIONAL AERONAUTICS AND SPACE AGENCY, 2012). 

The mission called LightSail was launched on May 20, 2015. Unfortunately, the 

final orbit of the spacecraft was not the nominal one. Nevertheless, the mission 

still could test the deployment sequence and capture pictures. The atmosphere 

did not allow the solar sailing tests (PLANETARY SOCIETY, …). 

A pretentious mission called Sunjammer was planned to launch the first solar 

sail mission to deep space and the largest sail ever flown so far. The mission 

Sunjammer would be equipped with technologies to provide Earth with its 

earliest warning to the potential hazardous of solar activities. Unfortunately, the 

mission was cancelled because of the lack of confidence on its contractor’s 

ability, in 2015 (SPACE NEWS, 2014; SUNJAMMER, 2015). 

The information about missions using solar sail in this chapter is brief, since 

there are many others current and future missions that have been postponed or 

canceled. 

The solar sail is a vast topic and the literature review given in this thesis does 

not represent even by far all the related topics and applications it can have. The 

idea behind the literature review is to introduce the reader to the solar sail world 

and its potential applications. Regarding the solar sails, the solar system is the 

limit. 

1.4. Tethered Systems 
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A tethered satellite system (TSS) consists of two or more rigid bodies with 

tether or tethers connecting these bodies (ASLANOV; LEDKOV, 2012).  

The TSS can have many different applications. The main applications of the 

TSS are explained next and later the EDT is explained in detail. 

The concept of TSS started in 1895 with the work of Tsiolkovsky (1959). He 

envisioned a giant tower stretching from the ground to geostationary orbit 

(GEO), from which the satellites could be put in orbit. The idea of Tsiolkovsky 

(1959) became the famous TSS, known as space elevators.  

Although space elevators are still a theory, mainly because of the lack of 

technology to build them and dangerous space debris impacts, the subject is 

still present in conferences and papers. Like in Edwards (2004) who presents 

an overview about the advances of the technology and the impact on the space 

elevator design of the advances of technology. He also presents the tasks that 

must be overcome to build space elevators. 

Pearson (2007) examines lunar space elevators, a concept originated by the 

lead author, for lunar development. Lunar space elevators are flexible structures 

connecting the lunar surface with counterweights located beyond the L1 or L2 

Lagrangian points in the Earth-Moon system. The application of lunar tether is 

to transfer lunar objects to high altitude orbits around the Earth.  

Pearson et al. (2010) study the probability of a space elevator to collide with 

space debris. The study covers many different altitudes from LEO to GEO.  

Another TSS application is the creation of an artificial gravity on board a space 

system. The idea is to use the centrifugal force of inertia for the creation of 

artificial gravity (COSMO; LORENZINI, 1997; FORWARD et al., 1997). The 

TSS can be two spacecrafts connected by a chain and the magnitude of this 

force is proportional to the length of the chain and the square of the angular 

velocity (ASLANOV; LEDKOV, 2012). 
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The first experiment to create artificial gravity was carried out by NASA in 1966 

during the Gemini-11 mission (HACKER; GRIMWOOK, 1977). The spacecraft, 

Gemini-11, was connected with a target satellite with a 30 m tether length. The 

TSS Gemini 11 spun around its centre of mass with an angular velocity of 

1.6·10−2∙s−1 (ASLANOV; LEDKOV, 2012). 

The spin resulted in an artificial gravity of 10−4 g onboard Gemini. Although the 

magnitude of the artificial gravity is really low, it has a great potential to create 

artificial gravity and help the humankind to explore the space. Artificial gravity 

can help humans in space exploration by avoiding the atrophy of the muscles, 

bone decalcification, etc. 

Another tether application is to use a spinning space tethering system for lifting 

a payload into a high-altitude orbit or/and decaying a payload. If the tether 

properly swing, the conservation of the angular momentum makes one end of 

the TSS body increase its orbit, while the other one decays if the tether between 

these bodies are disconnected (ASLANOV; LEDKOV, 2012). 

Another approach is the use of space escalators. The tether consists of two end 

bodies, one in a higher altitude than the other. A spacecraft is collected by one 

of these end bodies and then the tether itself will work as an escalator, lowering 

or raising the orbit of the spacecraft. Not only the spacecraft will have its orbit 

altered, but also the tether, due to the conservation of the energy. 

The STEPS (Station Tethered Express Payload System) calls for a novel with 

this approach for the ISS (International Space Station) (COSMOS; LORENZINI, 

1997). The payload that is wished to be lowered is one of the ends of the end 

bodies and the other one is the ISS. The tether, in a correct swing, can lower 

the payload attitude and increase the ISS’s altitude by cutting the tether 

(TIESENHAUSEN, 1985).  

There are two successful experiments of payload delivery by means of a tether: 

the SEDS 1 experiment in 1993 (SMITH, 1995) and the YES2 in 2007 
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(WILLIAMS, 2009). The first one used a static deployment and the second one 

a dynamic one. 

There are many other applications of tethers, like placing a spacecraft into an 

orbit; the creation of a traffic artery liking Earth and the Moon; gravity 

stabilization; generation of electrical energy by a conductive tether, the use of 

electrical energy for maneuvering; the use of electrodynamic tether for debris 

descending; etc (ASLANOV; LEDKOV, 2012). The main importance of the TSS 

is to perform orbital maneuvers or attitude control without any or minimum fuel 

expenditure.  

There are many TSS experiments that have been carried out, like: GEMINI 11, 

GEMINI 22, TPE 1, TPE 2, CHARGE 1, CHARGE 2, OEDIPUS A, TSS 1, 

SEDS 1, SEDS 2, PMG, TSS 1R, Tips, YES, YES2, T-REX, etc (ASLANOV; 

LEDKOV, 2012). The next sub-section introduces briefly some EDT missions 

and experiments. 

The TSS topic is a vast and promising topic with different applications, 

dynamics and working principles. The reader is encouraged to read the 

references to understand in more details the tether’s world. 

The EDT is the next topic on this sub-section. Since this thesis proposes the 

use of electrodynamic tethers to maneuver spacecrafts, it is given a special 

section for it. 

1.4.1. Eletrodynamic Tether 

The electrodynamic tether has a conductive tether that allows a current to flow 

through it.  The EDT has special end bodies, one of them that have a contact 

with the plasma of the atmosphere. This end body is known as an electron 

collector. The collectors can be electronic guns, hollow cathodes or the tether 

itself (PARKS; KATZ, 1987; WILBUR; LAUPA, 1988). The other end must be an 

electron emitter.  
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The EDT with a conductor tether moving in a magnetic field causes a voltage 

induction (COSMO; LORENZINI, 1997). As the electron collector provides the 

electrons and the emitter emits the electrons, there is a current flowing through 

the tether. The current flow through the tether induces a Lorentz force on the 

system (COSMO; LORENZINI, 1997). 

The EDT can also use a battery to overcome the voltage induction and create 

an opposite Lorentz force to the opposite current flow.  

There are many tether flights that has been launched to study the EDT. The 

TSS-1 mission was launched on July 31, 1992 (COSMO; LORENZINI, 1997). 

Although this mission does not involve EDT experiments, the mission 

accomplished a better understating of the TSS, like the basic concept of long 

gravity-gradient, safety concerns, the feasibility of deploying a satellite to long 

distances and the feasibility to the TSS-1R (COSMO; LORENZINI, 1997). 

The TSS-1R mission was launched on February 22, 1996. This mission had a 

satellite that was deployed 20.7 km above the Space Shuttle on a conducting 

tether. It remained there for more than 20 hours performing science 

experiments. After that it stayed more hours making experiments at a deployed 

distance of 2.5 km. The goals of the TSS-1R mission were to demonstrate the 

research of EDT and space plasma physics. Although this mission could not 

perform all the experiments planned, the TSS-1R was able to measure the 

motional EMF, the satellite potential, the current in the tether, the charged 

particle distributions, and the electric and magnetic fields. The TSS-1R 

contributed for a better understating of the EDT with the experimental results. 

(COSMO; LORENZINI, 1997) 

The other two missions that helped scientists understand better the TSS and 

EDT tethers are the SEDS missions: SEDS-1 AND SEDS-2. The SEDS-1 

objectives were to demonstrate that SEDS hardware could be used to deploy a 

payload at the end of a 20 km tether long and study its reentry after the cut of 

the tether. SEDS-2 mission objectives were to demonstrate the feasibility of 
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deploying a payload with a closed-loop control law and to study the long term 

evolution of a TSS. Unfortunately, the SEDS-2 mission failed, as debris or a 

micrometeoroid collided with the system after 5 days of the mission. (COSMO; 

LORENZINI, 1997) 

The PMG (or Plasma Motor Generator) experiment tested the ability of a hollow 

cathode assembly to provide a low impedance bipolar electrical current 

between a spacecraft and the ionosphere. The EDT length was 500 m. The 

experiment aimed at demonstrating that this configuration could function either 

as orbit-boosting motor or as a generator converting orbital energy into 

electricity. This mission was launched on June 26, 1993 (COSMO; LORENZINI, 

1997). The data confirmed that the experiment was a success.  

There are many other missions that have been launched or proposed to be 

launched using TSS and EDT. The author encourages the reader to learn more 

about those missions in the references cited in this work. 

The EDT has a vast literature. Some of them are given below. 

Anderson et al. (1979) study the potential use of an EDT built with metal, either 

uncoated or coated with a dielectric. The electrodynamic interaction with the 

magnetoionic medium of the Earth and the ionosphere generates effects that 

can be used by the spacecraft. 

Arnold and Grossi (1983) study the natural damping the EDT has. The results 

obtained are of great importance to study the long-term of the dynamics of the 

EDT. In the same year, Grossi (1983) argues about the feasibility of electric 

power generation and electromagnetic wave injection by electrodynamic 

tethers. 

A great compact study about EDT is given by Lanoix (1999). This thesis 

includes a mathematical model for the long-term dynamics of a tethered 

spacecraft. There are two approaches studied in this work, the analytical 
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approximation and the numerical results. The insulated and the bare tethers are 

studied. This last reference is a complete guide for the dynamics of the motion 

and the attitude that the EDT can experience in space. 

1.5. Spacecraft Trajectory Simulator 

The STRS is a software that was first developed by Dr. Evandro M. Rocco and 

then it has been constantly improved by him and his doctoral students through 

many years. The software itself is a complex tool that propagates the orbit and 

the attitude of a spacecraft over the time. The software can also perform 

maneuvers. There are many external disturbing forces that can be considered 

in this simulator, like atmospheric drag, solar radiation pressure, Jn, Cnn and Snn 

due to the non-sphericity of the Earth and the albedo perturbation. The STRS 

has some other extensions for the propagation of a spacecraft orbiting the 

Moon, Jupiter and so on. 

The STRS can also consider many non-linearities due to failures, errors, noise, 

malfunctioning or external perturbations of the actuators, sensors and other 

subsystems that complete the spacecraft system. 

In this way, the STRS is capable of propagating orbits and simulate orbits in a 

more realistic environment if many aspects of the orbit were not modeled with a 

simple orbit propagator and found by optimal solutions. The model can include 

all the specifications of the subsystems, like errors and noise and it includes all 

the external disturbing forces. The STRS is also capable of including non-

predictable failures that may occur during the mission. The time-consuming cost 

to find an optimal maneuver including all the potential failures, all the external 

perturbations and the error propagation can make the project unfeasible and the 

use of the STRS to include them is a must. 

The STRS can perform impulsive and non-impulsive maneuvers. The STRS is a 

control loop feedback mechanics which is essential for low-thrust maneuvers 
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(MARCELINO, 2009). Therefore, the STRS is a PID controller (or proportional 

integral derivative controller).   

There are two orbits that the STRS integrates simultaneity. One is the desired 

orbit and the other one is the real orbit that the satellite has for the same 

integration step of time. For many reasons, like not expected external 

perturbations or failures in the sensors or actuators, there may have a 

difference between the measured position of the spacecraft and the desired 

position. The controller acts in order to minimize the error over the time by using 

the actuators of the systems. 

The basic working principle of the software STRS is explained next: 

a) The simulation occurs in a discrete-event simulation, or, in others words, 

the integration occurs in a discrete sequence of events in time. At each 

step of time, the state of the spacecraft (position and velocity) is 

computed. In this step, all the disturbing forces, non-linearities, errors 

and failures must be set; 

b) Because the STRS works in a control loop feedback, there are two states 

for the system. One of them is the desired state for the satellite and the 

other one is the real state that includes the sets stipulated in the previous 

step; 

c) An error signal is then computed in the PID controller with the difference 

between the desired state and the real state of the spacecraft; 

d) The controller attempts to minimize the error according to the PID 

settings, like the damper parameters, the power supplied, etc; 

e) The control signal acts on the actuator (propulsion system). At this step 

the non-linearities of the actuator can be considered; 



22 
 

f) Finally, the actuation signal is sent to the dynamics of the system. At this 

step, the actuation signal can be added to the velocity deviation due to 

the disturbing forces. The result provided by the dynamics is the current 

state or the real state of the system; 

g) Sensors are used to determine the new state of the system and to 

compare this state with the desired state to close the loop. 

There are many references that have been published with the use of the STRS. 

Rocco (2008a) begins to build up the first steps of the STRS. This paper details 

the software design for the Earth albedo with models and the architecture of the 

software. This system is available as a new and complex disturbing force that 

the satellite can suffer. This project is funded by Marie Curie Program of the 

European Commission in partnership with the Stanford and Cambridge 

Universities. Their main objectives were the development of methods for 

trajectories and attitude reconstruction, considering the spacecraft dynamics 

identification, and apply these methods to scientific missions like Gravity Probe 

B (NASA) and GAIA (ESA). The model of the Earth is albedo is based on the 

reflectivity data measured by NASA's Earth Probe satellite, which is part of the 

TOMS project (Total Ozone Mapping Spectrometer). 

Rocco (2008b) considers the disturbance on the spacecraft orbit due to the 

terrestrial albedo using the Earth’s albedo model and the orbital dynamics 

model developed as part of the previous work, Rocco (2008a). In this paper, it is 

studied the deviations the spacecraft can suffer due to the albedo disturbing 

force for some specific missions. 

Rocco (2009) presents a complete set and architecture for the STRS software. 

The PID controller is explained with details and more disturbing forces are 

added in the results. The controller wishes to reduce the deviations caused by 

the disturbing forces. Several orbits are studied. 
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Santos (2011) includes in the STRS software a new tool that uses the 

atmospheric drag to create a lift and perform maneuvers. The controller finds 

the optimal solution with the best angles of attack to perform maneuvers that 

reduces the energy of the orbit. 

Oliveira et al. (2013b) specify the boundaries of the Van-Allen belts to study the 

time of the passage through these dangerous regions, using a plasma engine 

developed by Ferreira et al. (2016). 

Gonçalves et al. (2013a) include the lunar trajectories for spacecrafts in the 

STRS simulator. In this paper, the gravitational disturbances are included in 

optimal maneuvers. 

Venditti et al. (2013) include non-spherical central bodies as the main 

gravitational field of a spacecraft’s orbit. The trajectory and the control around 

these bodies are modeled by parallelepipeds. 

Rocco (2013) proposes an on-board automatic control of the Keplerian 

elements of an orbit in a closed loop system.  

Santos and Rocco (2013) study the control of trajectories with continuous thrust 

applied to rendezvous maneuvers. The PID controller was once used in the 

STRS to perform the rendezvous with a low-thrust continuous system. The 

problem involves a multi-optimization problem as the fuel, the time and the 

precision have to be minimized. 

Gonçalves et al. (2013b) include in the STRS the model of the albedo of the 

Moon. The work involves the same working principles as used in Rocco 

(2008a). The magnitude of this perturbation is analyzed and compared for 

different Moon’s orbit and other disturbing forces. 

Santos et al. (2011) study the trajectory control of an aeroassisted maneuver 

between two coplanar circular orbits. The simulator developed for this paper 

considers a reference trajectory and a trajectory perturbed by external 
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disturbances combined with non-idealities of sensors and actuators. It is able to 

operate in closed loop, controlling the trajectory (drag-free control) at each 

instant of time using a Proportional-Integral-Derivative (PID) controller and 

propulsive jets.  

Once more, Rocco (2015) studies the automatic correction of the semi-major 

axis with an on-board control system for orbital maneuvers, but this time around 

Mars. The disturbing forces considered are due to the gravitational influence of 

the Sun, Phobos and Deimos. 

Gonçalves et al. (2015a) study the deviations the disturbing forces can cause 

on a Moon’s orbit and the necessary control that must be applied to correct the 

shifts caused by the disturbing forces. In Gonçalves el al. (2015b), it is included 

the evaluation of the uncertainty in the trajectory simulations of a lunar satellite 

due to the adopted model for the lunar gravitational field. This uncertainty may 

cause error predictions in the orbital trajectory and the STRS is  used to correct 

those uncertainties.  

 

1.6. Orbital Motion And Disturbing Forces 

A Keplerian orbit is known as a negligible point mass moving under the sole 

influence of the gravity of the attractor, which is also a point mass with a 

significant mass. The centre of the mass of the system is therefore the point 

with the significant mass. The trajectory of the negligible mass is a conic 

section, which can be a circle, an ellipse, a parabola or a hyperbola.  

On the other hand, there are other forces influencing the spacecraft trajectory 

and they can deviate the orbit of the spacecraft. Their effects on the motion are 

usually small, but still noticeable as the orbit does not keep a Keplerian orbit. 

There are many kinds of perturbation like air lift, atmospheric drag, Earth 

asphericity, solar radiation pressure, third body perturbation of the Moon and 

the Sun, electromagnetic forces, albedo effects and so on. 
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The magnitude of each perturbation depends on the system itself and the state 

of the spacecraft. 

The main effect of the air lift and drag is the decay of the semi-major axis 

(COSMO; LORENZINI, 1997; JACCHIA, 1977; SANTOS, 2011). The decay rate 

depends on the state of the spacecraft, the ballistic coefficient, the solar activity 

effect on the atmosphere, etc. The estimation of the decay of the satellites can 

be computed with interpolation and analytical formulation (COSMO; 

LORENZINI, 1997;JACCHIA, 1977; SANTOS, 2011), but the exact calculation 

with a good precision requires very detailed models that includes the altitude 

propagation and the solar activity acting on the atmosphere (HUGHES, 1986; 

WARNOCK; COCHRAN, 1993). The electrodynamic tether can also work as a 

drag, if the current flows in the induced EMF (electromotive force) direction. 

Warnock and Cochran (WARNOCK; COCHRAN, 1993) investigated the effect 

of several parameters, like semi-major axis, inclination, argument of latitude and 

tether length a tethered mission. 

The Earth asphericity perturbation forces are due to a non-homogeneous mass 

distribution and aspherical shape of the Earth. The main result of this disturbing 

force is a drift in the ascending node and in the argument of perigee (COSMO; 

LORENZINI, 1997; KAPLAN, 1976). 

The solar radiation pressure is due to the impact of the solar radiation in the 

surface of the spacecraft. It has been proved that the magnitude of the solar 

radiation pressure becomes larger than the atmospheric lift for altitudes beyond 

800 km (BAKER, 1967). The solar radiation pressure causes periodic changes 

on all of the orbital elements (CHOBOTOV, 1991). 

The lunisolar attraction is the interaction of the gravity force of the Sun, and the 

Moon in the Earth and in the spacecraft. In Chobotov (1991), it has been set 

that, for altitudes beyond 26000 km, the lunisolar perturbation becomes non-

negligible. The lunisolar perturbation is known as the third-body perturbation of 

the Sun and the Moon. 
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The electromagnetic or Lorentz force is due to the motion of an electric current 

flowing in the magnetic field of the Earth (COSMO; LORENZINI, 1997, 

FORWARD et al., 1997; JOHNSON; HERRMANN, 1998; estes et al.,1997; 

LORENZINI et al., 1997). The current flow can be from the payload system itself 

or from the electrodynamic tether. The payload system can generate the 

Lorentz forces and produce internal torques (ZANARDI et al., 2004). The 

internal torque produced by the Lorentz force can also be produced by a 

magnetic torque, but in this case this system would be used for an altitude 

control (TORCZYNSKI et al., 2010). The electromagnetic tether itself can be 

used to create drag or increase the altitude of the satellite or ever to control the 

disturbing forces and maneuver the system (COSMO AND LORENZINI, 1997, 

FORWARD et al., 1997, JOHNSON; HERRMANN, 1998, ESTES et al., 1997, 

LORENZINI et al. 1997, LANOIX, 1999, OLIVEIRA; PRADO, 2015). 
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2  MATHEMATICAL MODELS 

This section introduces the mathematical models used in this thesis to obtain 

the results. The mathematical models chapter is divided by the following topics: 

Perturbation Integrals, STRS, EDT, solar sail, solar radiation pressure, spherical 

harmonic perturbation, atmospheric drag and third-body perturbation from the 

Sun and the Moon. 

2.1. Perturbation Integrals 

The integral approach is subdivided in two forms. The first one that shall be 

introduced is the PI. The PI is based on the integral of the magnitude of the 

disturbing forces per unit mass along the orbit for one orbital period. The 

mathematical formulation for this integral approach is given as follows (PRADO, 

2013) 

PI = ∫ |𝐚|
T

0

dt (2.1) 

where 𝐚 is the acceleration caused by the disturbing force or forces, 𝑡 is the 

time and 𝑇 is the period of the orbit.  

The 𝑃𝐼 [𝑚/𝑠] is actually the total velocity, for one orbital period, that a 

propulsion system must apply in order to keep the spacecraft in a Keplerian 

orbit all the time.  

Note that Equation 2.1 can evaluate the acceleration caused by the disturbing 

forces added together or separately. If all the disturbing forces considered in 

this work needs to be computed, then the net acceleration 𝐚 would be in the 

form given by Equation 2.2 

𝐚 = 𝐚𝑑𝑟𝑎𝑔 + 𝐚𝑀𝑜𝑜𝑛+𝐚𝑆𝑢𝑛+𝐚𝐽𝑛+𝐚𝐶22 + 𝐚𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (2.2) 
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where the sub index 𝑑𝑟𝑎𝑔 is related to the atmospheric drag; 𝑀𝑜𝑜𝑛 and 𝑆𝑢𝑛 are 

related to the third-body perturbations of the Moon and the Sun, respectively; 𝐽𝑛 

is related to the zonal harmonic of nth order; 𝐶22 is related to the sectorial 

harmonic of order n=2 and m=2; and the 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 is related to the solar 

radiation pressure. 

The PI can also evaluate the reduction or the increase in the fuel expenditure 

that a propulsion system needs by simply adding the desired accelerations. 

Therefore, the acceleration caused by the solar sail or the electromagnetic 

tether can be included in order to evaluate its efficiency in Equation 2.2 

(OLIVEIRA; PRADO, 2014b; OLIVEIRA; PRADO, 2015)  

The PI assumes that the spacecraft is in a Keplerian orbit all the time, even 

though there are disturbing forces acting on it. The calculations are performed 

for only one orbital period, which justify this approximation. The values obtained 

would represent the cost to keep a Keplerian orbit all the time. The idea is to 

use those numbers for comparisons of the magnitude of the forces, not to really 

keep the spacecraft in a Keplerian orbit all the time.  

So, it is assumed that the variations of the orbital elements during one orbital 

period, the duration of the integration, is not too large, then this approach is an 

easy way to estimate the magnitude of the disturbing forces with no orbit 

propagation including the disturbing forces. It gives less time-consuming 

numerical calculations.  

Moreover, if the direction of the disturbing force is in the direction of the velocity 

of the orbit or opposite to it, like when considering the atmospheric drag or an 

EDT with radial attitude for equatorial orbits, then the pi is actually the total 

velocity variation the spacecraft receives in one orbital period. The pi would be, 

in this case, the total velocity variation the propulsion system must apply in 

order to raise or decrease its altitude and to compensate these perturbation 

effects. 
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The second formulation for the Perturbation Integral method is the PIMAG. This 

integral is an essential key used to analyze the forces that can be compensated 

during one orbital period of the spacecraft. The magnitude of the PIMAG is 

different from the PI for forces that can be compensated during one orbital 

period. The PIMAG value can be understood as an approximation of the velocity 

increment a propulsion system must apply instantly to compensate the 

deviations caused by the disturbing forces after one orbital period of the 

spacecraft. 

The PIMAG formulation is given as follows 

PI𝑀𝐴𝐺 = |∫ 𝐚
T

0

dt| (2.3) 

The PIMAG calculates the magnitude of the vector after the integral is computed. 

The great difference between PIMAG and PI is that the former allows the 

compensation of the disturbing forces if the directions of the accelerations along 

one orbital period are not orthogonal or if they do not have the same direction.  

It is also possible to create maps for different orbits by varying the Keplerian 

elements of the orbits. The maps are the key to evaluate the behavior of the 

disturbing forces and to evaluate the cost of orbital maintenance for different 

orbits. It allows a fast and easy way to find or compare different orbits based on 

the maps that show the Perturbation Integrals. Orbits that have lower PI values 

are orbits with a good potential to require less fuel for station-keeping 

maneuvers (PRADO, 2013). Moreover, the results in this work show that the 

PIMAG can show critical inclinations for the J2 perturbation. It indicates that both 

versions can be useful, depending on the goal of the study. 

The mathematical equation for the Perturbation Integral given by Equation 2.1 

or Equation 2.3 can be rewritten in order to allow the numerical integration to be 

faster and more precise. The reformulation is the change of the variable of 

integration from the time 𝑡 to the eccentric anomaly “E”. This change of the 
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integration variable is easily made since it is assumed that the orbit is Keplerian. 

The time 𝑡 is related to the mean anomaly 𝑀 as given by Equation 2.4  

M = M0 + 𝑛(𝑡 − 𝑡0) (2.4) 

where M0 is the initial mean anomaly, 𝑛 is the mean motion and 𝑡0 is the initial 

time. The mean motion is the time-average angular velocity over an orbit and it 

is given by Equation 2.5  

n =  (
µ

𝑎𝑠3
)
1/2

 (2.5) 

where µ is the multiplication of the universal gravitational constant with the 

mass of the main body and 𝑎𝑠 is the semi-major axis. In this thesis, µ is given 

by 3.986 ×105 km3/s2, which is the value for the Earth. The variable M can be 

replaced by the eccentric anomaly 𝐸 with the help of the following Equation 2.6 

dM =  (1 − e cos 𝐸)dE (2.6) 

where 𝑒 is the eccentricity of the orbit. 

Therefore, the Equation 2.1 can be written as (PRADO, 2013) 

PI =
1

𝑛
∫ |𝐚|(1 − e cos 𝐸)

2𝜋

0

dE (2.7) 

The PIMAG can be written similarly, but the magnitude should be computed after 

the integration, not before. 

The use of the eccentric anomaly as the integration variable instead of the time 

leads the integration into an analytical step-size regulation in an efficient way to 

compute elliptic orbits. Therefore, the integration in E allows more accuracy than 

the integration in t for the same number of steps for the integration. 
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The PI, as described by Equation 2.1 or 2.7, or the PIMAG, in Equation 2.3, may 

depend on some initial parameters such as the position of the Sun, and the 

Moon. In order to evaluate the PI with no dependence on the initial position of 

the Sun and/or the Moon, an averaging technique is applied in the Perturbation 

Integral. The Perturbation integral with the averaging technique becomes a 

mean value that does not depend on the initial time of the integration and the 

relative position of the Sun or the Moon.  

For example, if the perturbation caused by the Moon needs to be computed in 

the PI with the averaging technique, then the PI becomes 

PI =
1

2𝜋𝑛
∬ |𝐚|(1 − e cos 𝐸)dE𝑑𝑓0𝑀𝑜𝑜𝑛

2𝜋

0

 (2.8) 

where 𝑓0𝑀𝑜𝑜𝑛 is the initial anomaly of the Moon. 

The integration shown in Equation 2.8 considers the mean value of the PI taking 

into account all the possible initial positions of the Moon. The method to find a 

mean value of the PI with all the possible initial configurations of the Moon is 

given by integrating the PI in Equation 2.7 from 0 to 2𝜋 with the integration 

variable being the initial anomaly of the Moon. Then after the integration, the 

result is divided by 2𝜋 to obtain an average value of all the possible values that 

the PI could have. 

Similarly, it is possible to compute the PIMAG with the averaging technique for 

the perturbation due to the Moon.  

If the Sun is the cause of the perturbation or if the solar radiation pressure 

(which includes the solar sail) needs to be computed in the PI with the 

averaging technique, whether they are added together or separated, the 

formulation is given as follows 

PI =
1

2𝜋𝑛
∬ |𝐚|(1 − e cos 𝐸)dE𝑑𝑓0𝑆𝑢𝑛

2𝜋

0

 (2.9) 
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where 𝑓0𝑆𝑢𝑛 is the initial anomaly of the Sun. 

Similarly, it is possible to compute the PIMAG with the averaging technique for 

the Sun perturbation or the others disturbing forces that depends on the position 

of the Sun.  

If the lunisolar perturbation needs to be computed, then the PI with the 

averaging technique becomes (PRADO, 2013) 

PI =
1

4𝜋2𝑛
∭ |𝐚|(1 − e cos𝐸)dE𝑑𝑓0𝑆𝑢𝑛𝑑𝑓0𝑀𝑜𝑜𝑛

2𝜋

0

 (2.10) 

Similarly, it is possible to compute the PIMAG with the averaging technique for 

the lunisolar perturbation. 

The PI can also include the perturbation caused by the EDT, but the inclusion of 

the EDT in the PI with the averaging technique cannot be conceived, since the 

magnetic field of the Earth is not constant and it changes over the time. 

In this thesis, the PI and PIMAG may be used with or without the averaging 

technique. It is specified each time if the averaging technique is used or not.  

For the averaging technique, the orbit of the Sun and the Moon is simplified, in 

order to guarantee a fast numerical integration for the Perturbation Integrals 

and, therefore, a fast creation of maps based on them. For the averaging 

technique, the Sun and the Moon are assumed to be in circular orbits around 

the Earth with semi-major axis of 384.399 km for the Moon and 149.597.870 km 

for the Sun. The inclination of the orbit of the Sun is 23.5 degrees and the 

inclination of the orbit of the Moon (with respect to the Earth's equator) is 18 

degrees. In fact, the inclination of the Moon varies from 18 to 28 degrees, but 

this variation does not produce important changes on the PI values and, for this 

reason, it was fixed in 18 degrees (PRADO, 2013). 

The mass of the Moon is assumed to be 7.349 x 1022 kg, so GmMoon = 

4.9383x103 km3/s2 and the mass of the Sun is assumed to be 1.98892×1030 kg, 
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so GmSun =1,33×1011 km3/s2. The orbit propagation of the Sun and the Moon is 

computed for each step of the integration. 

For values of the Perturbation Integrals with no averaging technique, a more 

detailed method is used based on the time and the ephemeris model of the Sun 

and the Moon. The ephemeris model is based on the Julian dates, to provide 

the accurate position of the Sun and the Moon (TAMBURRO et al., 1968). The 

ephemeris model of the Sun is based in Capó-Lugo and Bainun (2011) and for 

the Moon it is based in Simpson (1999). 

The averaging technique is an easy numerical method that can consider a 

mean value of the PI or PIMAG that does not depend of the initial position of the 

Sun and the Moon. The method conceives a mean value of the Perturbation 

Integral with no dependence in the initial conditions of the position of the Sun 

and the Moon, or the date and time of the initial integration. 

The disturbing forces due to the third-body perturbation and the solar radiation 

pressure are extremely dependable on the initial position of the Sun or the 

Moon. If the averaging technique was not considered, then the results of the 

Perturbation Integrals would be based on the initial parameter of the time and 

the position of those bodies. 

The averaging technique is used to obtain a Perturbation Integral value that 

would be the average value if all the initial positions of the Sun and the Moon 

would be considered in the Perturbation Integral and then calculated its mean 

value. In this way, the result of the Perturbation Integral would not depend on 

the initial time or date.  

2.2. The Spacecraft Trajectory Simulator 

The software STRS is used in this work to validate the solar sail in a realistic 

environment. The realistic environment can set different parameters, failures, 
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errors and more at the actuators, orbital dynamics, sensors, controller, etc 

(ROCCO, 2009). 

This section is concerned with the STRS working principle used in this thesis. 

The solar sail actuates due to the solar radiation pressure in the opposite 

direction of the disturbing forces that need to be reduced. The working principle 

of the solar sail is given in section 2.3.1. 

There are many initial conditions that the user can set to simulate an orbit or a 

maneuver in the STRS, as explained in the introduction section. Figure 2.1 

shows the architecture of the STRS with the solar sail use. 

Figure 2.1 – Architecture of PID controller design STRS with the solar sail use as a 
non-fuel consumer thruster. 

 

 

The work of the thesis related to the STRS is the development of the solar sail 

actuator in the STRS ambience. Therefore, the block named actuators (solar 

sails) in Figure 2.1 with the red contour was the major contribution for the STRS 

topic. 

Figure 2.1 shows the PID control with the solar sail use. The Gregorian date is 

converted to Julian Date. From the Julian Date, it is possible to estimate the 
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position of the Sun, the Moon and the latitude at the ground track of the 

spacecraft. The disturbing forces are set as the initial conditions, as well as the 

time and date. The disturbing forces generate a disturbance in the orbital 

dynamics. The solar sail is used as an actuator that reduces the magnitude of 

the disturbing forces. This thesis uses the Keplerian orbit as the reference orbit 

to be maintained. The orbital dynamics integrates for one step of time with the 

disturbing forces acting on it. The sensors are used to analyze the state of the 

spacecraft given by the position and velocity. The perturbed state is different 

from the Keplerian state (the nominal orbit) and the difference between these 

two states creates an error signal. The controller acts to correct this error signal 

and it activates the actuator (propulsion system with fuel-consumption) to 

reduce the error signal to zero. The loop is closed and the cycle starts again. 

The STRS is used in this thesis as a simulator with a PID controller that corrects 

the shifts caused by the disturbing forces at every step of the time. The solar 

sail is used as an actuator to reduce the disturbing forces and, in this way, to 

reduce the error signal from the reference state.  The fuel propulsion acts as an 

additional actuator that reduces the disturbing forces if the solar sail cannot 

make it zero. 

The purpose of this thesis is to study the feasibility of the solar sail in the STRS 

ambience. Some specific working principles of the software can be read in the 

literature given before. Some other parameters that may not be explicit in the 

results with the STRS use were considered to be irrelevant for the scope of this 

work. 

2.3. The Solar Radiation Pressure 

The solar radiation pressure is one of the perturbation forces that act on the 

spacecraft, deviating the orbit of the spacecraft to a non-Keplerian orbit. The 

solar radiation pressure occurs when the radiation emitted by the Sun collides 

with the surface of the spacecraft, resulting in a force acting on that surface. 

The solar radiation pressure can not only change the orbital motion of the 
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spacecraft, but it can also change the attitude of the spacecraft, if the solar 

radiation pressure force is not directed to the center of mass of the spacecraft 

(ANDERSON, 2001). 

Although the solar radiation pressure is a disturbing force, there are some 

cases where it can be used for the attitude control to help the maintenance of 

the orientation of the spacecraft or even for orbital maintenance (POLYAKA, 

1963; WILLIAMS; WANG, 2000; KUMAR et al., 2004; BORGRAAFE et al., 

2014). 

The magnitude of the solar radiation pressure acceleration applied to a 

spacecraft or a solar sail is given by (FIESELER, 1998): 

𝒂𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =  𝜏(1+∈)
𝑃𝑠

𝑐

𝐴𝑠

𝑚
(

𝑘

𝑘0
)
2

𝑐𝑜𝑠2∅𝑓 (2.11) 

where ∈ is the reflectivity of the surface, assuming values from 0 to 1; 𝑃𝑠 is the 

power delivered from the Sun per square meters at one AU (Astronomical Unit) 

(≈1360W/m2); 𝐴𝑠 is the projected area of the spacecraft or the solar sail that is 

illuminated by the Sun; 𝑚 is mass of the spacecraft; ∅ is the angle between the 

opposite direction of the light flux and the normal direction of the surface, 𝑐 is 

the speed of light, 𝜏 determines the Earth’s shadow/penumbra/illuminated 

region, 𝑘 is the distance from the spacecraft to the Sun and 𝑘0 the mean 

distance from the Earth to the Sun (≈ 1 AU). The unit vector 𝑓 represents the 

direction of the force applied to the surface of the body and it is given by 

(CAPÓ-LUGO et al., 2011): 

𝑓 =  −
(1−∈)𝜎̂ + 2 ∈ 𝑐𝑜𝑠∅ 𝑛̂

√(1−∈)2 + 4 ∈ 𝑐𝑜𝑠2∅
 (2.12) 

where 𝜎̂ is the unit vector with the opposite direction to the light flux and 𝑛̂ is the 

unit vector pointing  to the normal of the surface. 
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Figure 2.2 shows the light interaction with a smooth surface of the body with the 

unit vectors 𝜎̂, 𝑛̂, 𝑓 and the angles 𝛿 and ∅ (CAPÓ-LUGO et al., 2011). 

Figure 2.2 – The light bean interaction of the solar radiation pressure with a smooth 
surface with the incident light bean, the reflection light bean and the 
force produced by the solar radiation pressure. 

 

 

Source: Adapted from Tewari (2007). 

The angle 𝛿 provides the direction of the solar radiation pressure force and it is 

the angle between the unit vectors 𝑛̂ and −𝑓. In the way shown in Equation 2.12 

and Figure 2.2, the direction of the force caused by the solar radiation pressure 

is related to the reflectivity of the surface ∈ and the angle between the directions 

of the light flux ∅ with the normal of the surface. If the value of the reflectivity of 

the surface is different from one, some of the energy of the light flux is absorbed 

by the surface and then the direction of the solar radiation force is not the 

opposite to the normal unit vector 𝑛̂. Nevertheless, if the value of the reflectivity 

of the surface is one, then the direction of the solar radiation pressure force is 

opposite to the normal unit vector. 

The shadow regions given by 𝜏 is determined by conical projections of the 

umbra and penumbra shadows, given the position and the shape of the Earth, 

the Sun and the distance between those two celestial bodies (LONGO et al., 

1995). The coefficient 𝜏 = 1 occurs when the spacecraft is in the illuminated 
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region. If 𝜏 = 0.5, then the spacecraft is located at the penumbra region and if 

𝜏 = 0, the spacecraft is in the umbra region. A schematic illustration of this 

configuration is given in Figure 2.3 (LONGO et al., 1995) 

For practical reasons, since this thesis is concerned with a conceptual design 

and first analysis of spacecraft’s orbits, the shape of the spacecraft was 

considered to be very simple. The spacecraft has a square shape area. The 

surface of the spacecraft is smooth. For the attitude of the spacecraft, it is 

considered that one of the sides is always pointing to the center of the Earth if 

the electrodynamic tether is not used. When the electrodynamic tether is used, 

the attitude of the system is given by the optimal attitude the system must have 

in order to reduce the disturbing forces effects or to de-orbit. 

Figure 2.3 – Illustration of the umbra, penumbra and illuminated areas. 

 

Source: Adapted from Longo et al. (1995). 

2.3.1. The Solar Sail 

This thesis may use the solar radiation pressure in order to reduce the shifts 

caused by the other perturbation forces. The solar sail is used here to expand 

the effects of the solar radiation pressure and to create a solar sail actuation in 

the opposite direction of the other disturbing forces. To achieve this purpose, 

the attitude of the solar sail is an important key to guarantee that the disturbing 

forces of the solar sail and the external forces acting on the spacecraft are 

opposite (OLIVEIRA et al., 2013a; OLIVEIRA et al., 2014).  
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The direction of the disturbing force or forces that needs or need to be reduced 

is set, then its opposite direction is the direction that the solar sail radiation force 

must be applied in order to reduce the shifts. The attitude of the solar sail is 

given by the unit vector 𝑛̂ and the direction of the force given by the solar sail 𝑓 

is opposite to the disturbing forces. The solution of the optimal attitude of the 

solar sail is accomplished by applying the Newton’s method for non-linear 

systems with the help of Equation 2.12 and the fact that cos∅ = 𝜎̂ ∙ 𝑛̂ 

(RUGGIERO et al., 1996; OLIVEIRA; PRADO, 2014b). 

For the solar sail, the shape considered is a smooth surface with negligible 

base area ∆𝑠, as shown in Figure 2.4 . Once the solar sail has a smooth 

surface, there is no need to define the shape of the solar sail surface. It is only 

necessary to define the area of the smooth surface 𝐴𝑠 and the normal unit 

vector of the solar sail for its attitude.  

The solar sail is used to compensate the other perturbation forces effects, which 

deviates the orbit of the spacecraft. Therefore, it is considered that the 

spacecraft is able to change the attitude of the solar sail at every instant of time, 

compensating the torques and other perturbations that the attitude motion 

suffers. 

Figure 2.4 – The representation of the spacecraft with a rectangular shape with one of 
its face pointed towards the radial direction and the solar sail 
representation. 
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It is proposed two types of solar sails in this thesis: an optimal sail and a sub-

optimal one. The optimal one has an optimal attitude and variable area 𝐴𝑠. The 

optimal attitude means that the solar sail can freely change its attitude to 

guarantee that the solar sail perturbation force is always opposite to the 

disturbing force that needs to be reduced. The variable area is capable of 

controlling the magnitude of the sail and adjusting its magnitude according to 

the magnitude of the disturbing forces. 

The sub-optimal case considers that the area 𝐴𝑠 is fixed, but the attitude of the 

solar sail is optimal. The sub-optimal case cannot guarantee that the magnitude 

of the sail has the same magnitude of the disturbing forces to be compensated. 

There are some parts of the orbit where the solar radiation pressure cannot 

control the other perturbation forces, whether because the spacecraft is on the 

shadow of the Earth or because the optimal angle of the incident of the flux of 

the Sun radiation ∅ is larger than π/2 rad. Whenever the solar radiation cannot 

help to control the other perturbation forces, the solar sail becomes inactive by 

rotating the panels to a direction perpendicular to the normal of the surface of 

the solar sail with the direction of the light flux. In this way, the light flux collides 

with the neglected base area of the solar sail and it becomes inactive. 

(OLIVEIRA; PRADO, 2014b). 

2.4. The Spherical Harmonics Jn And C22 

Planets do not have a perfect symmetry of a spherical shape. The most 

important reason for that is the mass displacement due to the rotation about an 

axis. This mass displacement causes a bulging at the equator of the body and a 

flattened at the poles, resulting in an oblate body. The Earth is not different and 

its non-symmetry can cause a non-Keplerian orbit for the spacecraft.  

The second prominent mass displacement is due to the flattering at the equator. 

This flattering is well observed, in particular in the geostationary orbits, where 

the longitude of the orbit is dragged to Sri Lanka. 
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The non-symmetry of the Earth is usually described with the spherical 

harmonics. The gravity is a conservative force, therefore, it has no influence on 

the total energy of the system and it can be written as a gradient of a scalar 

function. The scalar function, known as geogravitational potential is a sum of 

zonal and tesseral terms in an equation. The zonal terms are related to the 

different zones of the spherical shape, as shown in Figure 2.5. The tesseral 

terms are related to different zones, cutting the spherical shape in a longitudinal 

form, as shown in Figure 2.6. A special case of the tesseral terms are known as 

sectorial terms, shown in Figure 2.7. 

Figure 2.5 – Exemplification of the zonal terms. 

 

Source: Kuga et al. (2011). 

Figure 2.6 – Exemplification of the tesseral terms. 
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Source: Kuga et al. (2011). 

Figure 2.7 – Exemplification of the sectorial terms. 

 

 

Source: Kuga et al. (2011). 

This thesis includes the zonal terms (J2, J3 and J4) and the sectorial term (C22). 

The most important non-symmetry comes from the zonal term that is related to 

an oblate planet (J2) and the flatter at the equator (C22). 
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The geogravitational potential 𝑃𝐽𝐶 of the Earth due to the zonal terms and the 

sectorial term considered in this work can be written as (TEWARI, 2007; KUGA 

et al., 2011) 

𝑃𝐽𝐶  (𝑟, 𝜑, 𝜃) =  −
𝜇

𝑟
{∑ (

𝑅𝑒

𝑟
)
𝑛

𝐽𝑛𝑃𝑛(cos 𝜃)

4

𝑛=2

− (
𝑅𝑒

𝑟
)
2

𝐶22cos (2 ∙ 𝜑)𝑃22} (2.13) 

where 𝜃 is the co-latitude and 𝜑 is the longitude of the spacecraft according to 

the centre of the mass of the system, 𝑟 is the distance of the spacecraft from 

the centre of mass, 𝑅𝑒 is the equatorial radius of the planet, 𝐽𝑛 is the zonal 

coefficients, 𝐶22 is a sectorial coefficient, 𝑃𝑛 is the Legendre polynomials and 𝑃22  

is an associated Legendre function. 

The coefficients 𝐽𝑛 and 𝐶22 are unique for each body. They represent the 

spherical harmonics of the planetary mass distribution, and they reduce in 

magnitude as the order 𝑛 increases for the Earth. In his way, the largest one is 

the term 𝐽2, due to the oblate symmetry. It denotes a non-dimensional difference 

between the moments of inertia about the polar axis and an axis in the 

equatorial plane. The next higher-order form is the term 𝐽3, which indicates the 

pear-shaped, or triangular. 𝐽4 and 𝐽5 are the measures of a square and a 

pentagonal shaped harmonics, respectively. The 𝐶22 represents an oblate 

symmetry as well, flatted at the Equator. The four spherical harmonics normalized 

considered in this work are given by 𝐽2̅ = −484.16555 × 10−6, 𝐽3̅ = 0.95848 ×

10−6, 𝐽4̅ = 0.53997 × 10−6 and 𝐶2̅2 = 0.24394 × 10−5  (TEWARI, 2007; KUGA et 

al., 2011). 

The acceleration caused by the spherical harmonics is obtained by taking the 

gradient of the geogravity potential given in Equation 2.13 with respect to the 

position vector, as follows (TEWARI, 2007; KUGA et al., 2011). 

𝐚𝐽𝑛𝐶22 = −(
𝜕𝑃𝐽𝐶

𝜕𝒓
)
𝑇

= −(
𝜕𝑃𝐽𝐶

𝜕𝑟
) 𝒊𝒓 − (

1

𝑟𝑠𝑖𝑛 𝜃

𝜕𝑃𝐽𝐶

𝜕𝜑
) 𝒊𝜗 − (

1

𝑟

𝜕𝑃𝐽𝐶

𝜕𝜃
) 𝒊𝜽 (2.14) 
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       or, 

𝜕𝑃𝐽𝐶

𝜕𝑟
=

𝐺𝑀

𝑟2

[
 
 
 
 3𝐽2̅ (

𝑅𝑒

𝑟
)
2

𝑃̅2(sin𝜃) + 4𝐽3̅ (
𝑅𝑒

𝑟
)
3

𝑃̅3(sin 𝜃) +

 5𝐽4̅ (
𝑅𝑒

𝑟
)
4

𝑃̅4(sin 𝜃) − 3 (
𝑅𝑒

𝑟
)
2

𝐶2̅2 cos 2𝜑  𝑃̅22]
 
 
 
 

 

 

 

(2.15) 

𝜕𝜑𝐽𝐶

𝜕𝜗
=

𝐺𝑀

𝑟
[2𝐶2̅2𝑠𝑖𝑛 2𝜑 𝑃̅22] (2.16) 

𝜕𝑃𝐽𝐶

𝜕𝜃
= −

𝐺𝑀

𝑟

[
 
 
 
 𝐽2̅ (

𝑅𝑒

𝑟
)
2

sin𝜃 𝑃̅2
′(sin𝜃) + 𝐽3̅ (

𝑅𝑒

𝑟
)
3

sin𝜃 𝑃̅3
′(sin 𝜃) +

𝐽4̅ (
𝑅𝑒

𝑟
)
4

sin𝜃 𝑃̅4
′(sin 𝜃) + (

𝑅𝑒

𝑟
)
2

sin 𝜃 𝐶2̅2 cos 2𝜑 𝑃̅22
′

]
 
 
 
 

 (2.17) 

where 𝑃̅𝑛 and 𝐶2̅2 are the Legendre polynomials and the normalized associated 

function of Legendre, respectively; and the sub-index “ ′ ” means the derivative in terms 

of 𝜃. 𝐺 is the universal gravitational constant (assumed to be 6.67259 ×
10−11𝑚3

𝑘𝑔∙𝑠2 ) 

       The position vector 𝒓 is given as follows  

𝒓 = 𝑟𝒊𝒓 + 𝑟 𝜑 𝑠𝑖𝑛 𝜃 𝒊𝜗 + 𝑟𝜃𝒊𝜃  (2.18) 

in the reference system (𝑟, 𝜑, 𝜃). 

The unit vector denotes the radial, longitudinal, and southward directions, in the 

local horizon frame attached to the spacecraft. 

2.5. The Third-Body Perturbation 

In its simplest form, an orbit model can be created by assuming that only two 

bodies are involved, both of them behaving as spherical point-masses. One of 

them with negligible mass, the other one with significant mass, and no other 

force acting in the bodies. For this case, the model is simplified to a Keplerian 

orbit. 

Nevertheless, in our solar system, there are not only two bodies involved. There 

are the presence of other gravitational bodies such as the Sun, the Moon and 



45 
 

planets. The gravitational influence of those bodies deviates the spacecraft from 

the Keplerian orbit. Therefore, they can be considered as disturbing forces. 

The third-body perturbation comes from a third massive body with gravitational 

influence strong enough to disturb the Keplerian orbit of a two-body problem. 

For spacecrafts orbiting the Earth, it is usually studied the gravitational 

perturbation of the Sun and the Moon. 

In mathematical terms, if the spacecraft mass is neglected and the masses of 

the Earth and the third-body (𝑚𝑡𝑏) cannot be neglected, then the acceleration 

due to the third-body perturbation becomes (TEWARI, 2007; PRADO, 2013) 

𝒂𝑡ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦 =  −G𝑚𝑡𝑏 (
1

𝑟3
𝑒𝑡𝑏

𝒓𝒆𝒕𝒃 +
1

𝑟3
𝑡𝑏𝑠

𝒓𝒕𝒃𝒔) (2.19) 

where 𝒓𝒆𝒕𝒃 is the vector from the Earth to the third-body,  𝒓𝒕𝒃𝒔 is the vector from 

the third-body to the spacecraft and 𝑚𝑡𝑏 is the mass of the third-body (assumed 

to be 7.349 𝑥 1022 kg for the Moon and 1.98892 ×  1030 kg for the Sun). 

The third-body perturbation is a conservative perturbation force since its nature 

comes from gravitational forces. So, it can be written as a scale function or as a 

potential. The scalar function due to the third-body perturbation is given as 

(TEWARI, 2007; PRADO, 2013) 

𝑃𝑡𝑏 =  G𝑚𝑡𝑏 (−
1

𝑟𝑒𝑡𝑏

+
𝒓 ∙ 𝒓𝒕𝒃𝒔

𝑟3
𝑡𝑏𝑠

) (2.20) 

where 𝒓 is the vector from the Earth to the spacecraft. 

The potential is related to the acceleration as follows 

𝒂𝑡ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦 =  (
𝜕𝑃𝑡𝑏

𝜕𝒓
)

𝑇

 (2.21) 

2.6. The Atmospheric Drag 
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The atmosphere can be understood as several layers of gases around the 

planetary surface linked to the planet by the gravitational force.  

A spacecraft passing through the atmosphere is influenced by the atmospheric 

drag. This perturbation is non-conservative and causes orbital decay. 

It is highly important to define the atmosphere in order to define later the 

atmospheric drag perturbation. 

In the lowest layer, less than 15 km, the atmosphere can be regarded as in a 

thermal equilibrium with negligible external influences, such as electromagnetic 

disturbances and chemical reaction. However, this layer is under constant 

perturbation by horizontal winds and non-equilibrium phenomenon due to the 

presence of vapors. This layer comprehends the weather as we know it. 

At low attitudes, from 0 to 86 km, it is possible to define the atmosphere with 

thermal and hydrostatic equilibrium with layers having a linear variation of the 

temperature with the altitude (TEWARI, 2007). 

There are some commonly well-defined layers for low altitudes from 0 to 86 km. 

The troposphere extends from 0 to 11 km and it has a linear decrease the 

temperature with the altitude. The next level, known as stratosphere, consists of 

three layers with constant and linearly increasing temperature at different rates, 

respectively (from 11 to 47 km). Above this point there is the mesosphere, with 

isothermal layers along two consecutive layers with linearly decreasing 

temperature. (TEWARI, 2007) 

In the altitude from 86 to 500 km, there is the thermosphere, which experiences 

a nonlinear behavior due to the solar radiation and sun-spot activities. Beyond 

that layer lies the exosphere. This region also has a nonlinear behavior, due to 

the electromagnetic effects of ionized gas due to the interaction of the solar 

wind and the atmosphere. 
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The atmosphere is highly non-linear and dependable of external conditions 

such as solar activity and the magnetic field of the Earth. The model that should 

be included for the atmosphere at these altitudes must be a complex one that 

comprehends and predicts the magnetic field and the sun activity with great 

precision.  This model is not within the scope of this work and it is used a less 

precise, but still valid model for the orbital analysis presented here. 

The Jacchia Reference Atmosphere is an atmospheric model that covers the 

altitude from 90 to 2500 km. This model is more complex and it includes 

latitudinal, seasonal, geomagnetic and solar effects (JACCHIA, 1977). This 

model was developed in 1970 and updated in 1971 and 1977. Jacchia's models 

are based mostly on spacecraft drag data (JACCHIA, 1971). Assuming diffusive 

equilibrium, the atmospheric profiles are defined by the exospheric temperature. 

It contributed with the thermospheric part (110 km to 200 km) to the CIRA-72 

model. Jacchia (1964) was the first to point out the coupling between solar wind 

and atmosphere.  

The MSIS Model 1986 or Mass-Spectrometer-Incoherent-Scatter (MSIS) model 

describes the neutral temperature and densities in the upper atmosphere 

(above about 100 km). The most important difference between the MSIS model 

and the Jacchia one is the new data analyzed and computed in the newest 

model. The new data sources include measurements from several rockets, 

spacecrafts (OGO 6, San Marco 3, AEROS-A, AE-C, AE-D, AE-E, ESRO 4, and 

DE 2), and incoherent scatter radars (BATTEN et al., 1987). 

There is a new version of the MSIS Model 1986, the MSISE Model 1990. Above 

72.5 km MSISE-90 is essentially a revised MSIS-86 model taking into account 

data derived from space shuttle flights and newer incoherent scatter results. For 

someone interested only in the thermosphere (above 120 km), the author 

recommends the MSIS-86 model. MSISE is also not the model of preference for 

specialized tropospheric work. It is better for studies that reach across several 

atmospheric boundaries (HEDIN, 1991). 

http://ccmc.gsfc.nasa.gov/modelweb/atmos/msis.html
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This thesis uses a Standard Atmosphere Model that comprises consecutive 

layers of specified temperature (𝑇𝑒) variation with the altitude (ℎ), 𝑇𝑒(ℎ). It is 

chosen a convenient model with a linear variation of temperature vs. altitude for 

each nominal temperature at each layer. The model is divided in 21 layers and 

each layer has a nominal temperature that provides a linear variation of the 

temperature with the altitude. In Table 2.1 it is shown the standard atmosphere 

derived from the model implemented. 

Table 2.1 – Standard Atmosphere Derived from 1976 and 1962 U. S Standard 
Atmospheres. 

𝑖 ℎ𝑖  (km) 𝑇𝑖 (K) 𝑅(J/kg*K) 𝑏 (K/km) 

1 0 288.15 287.0 -6.5 

2 11.0191 216.65 287.0 0.0 

3 20.0631 216.65 287.0 1.0 

4 32.1619 228.65 287.0 2.8 

5 47.3501 270.65 287.0 0.0 

6 51.4125 270.65 287.0 -2.8 

7 71.8020 214.65 287.02 -2.0 

8 86 186.946 287.02 1.693 

9 100 210.02 287.84 5.0 

10 110 257.0 291.06 10.0 

11 120 349.49 308.79 20.0 

12 150 892.79 311.80 15.0 

13 160 1022.2 313.69 10.0 

14 170 1103.4 321.57 7.0 
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Source: Tewari, 2007. 

The atmosphere model is a blend of two conventions for the atmosphere model, 

the 1976 U.S Standard Atmosphere (COESA, 1976), in the range 0 ≤ ℎ ≤

86 𝑘𝑚 of altitude, and the 1962 U.S Standard Atmosphere (COESA, 1962) up to 

ℎ = 2000 𝑘𝑚. 

The temperature variation 𝑇𝑒(ℎ) is given as follows 

𝑇𝑒(ℎ) =  𝑇𝑖 + b(ℎ + ℎ𝑖) (2.22) 

where the subscript 𝑖 refers to the quantities at the base of the layer (the 

nominal temperature), 𝑏 is the thermal lapse  rate and 𝑇𝑒 is the temperate at 

altitude ℎ.  

The thermal lapse rate is given as follows 

𝑏 =  −
(𝑗 − 1)

𝑛

𝑔

𝑅
 (2.23) 

where 𝑔 is the acceleration due to gravity, 𝑅 is the specific gas constant and 𝑗 is 

the polytropic exponent, which is equal to the specific heat at the hydrostatic 

equilibrium. The pressure of the atmosphere 𝑝 is given by the hydrostatic 

equation (TEWARI, 2007) 

15 190 1205.4 336.68 5.0 

16 230 1322.3 366.84 4.0 

17 300 1432.3 416.88 3.3 

18 400 1487.4 463.36 2.6 

19 500 1506.1 493.63 1.7 

20 600 1506.1 514.08 1.1 

21 700 1507.6 514.08 0.0 
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𝑝 = 𝑝
𝑖
𝑒

−[
𝑔0

(ℎ−ℎ𝑖)

𝑅𝑇𝑖
][1−

𝛽(ℎ−ℎ𝑖)
2

]
 (2.24) 

where 𝑔0 is the acceleration of the gravity at the sea level (≈ 9.81 𝑚/𝑠), and 𝛽 is 

given by the expression 𝛽 =
2

𝑅𝑒
. 

Once the pressure is set, the density is given by (TEWARI, 2007) 

𝜌 =
𝑝

𝑅𝑇𝑒
 (2.25) 

The acceleration caused by the atmospheric drag is proportional to the product 

of the atmospheric density 𝜌 and the square of the relative speed of the system 

𝑣𝑟. It opposes the orbital motion. The acceleration is given as follows (TEWARI, 

2007) 

𝒂𝑑𝑟𝑎𝑔 =  −𝑞𝑣𝑟𝒗𝒓 (2.26) 

where 

𝑞 =  
1

2
𝜌

𝐶𝐷𝐴𝐷

𝑚
 (2.27) 

where 𝐶𝐷 is the drag coefficient (usually this value is ≈ 2), 𝐴𝐷 is the area that is 

in contact with the atmosphere at the opposed direction of the orbital motion 

and 𝑚 is the mass of the spacecraft (KUGA et al., 2011).  

The relative speed of the system is given in Equation 2.28. It is assumed that 

the atmosphere rotates with the Earth at the same speed and rate (KUGA et al., 

2011) 

𝒗𝑟 = 𝒓̇ − 𝝎𝒓 × 𝐫 (2.28) 

where 𝝎𝑟 is the angular velocity of the Earth’s rotation and 𝒓̇ is the velocity of 

the spacecraft relative to the inertial system. 
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2.7. The Electrodynamic Tether 

There are two types of conductive tethers: the insulated wires and the bare 

ones. This thesis includes the study of both of them. This section of 

electrodynamic tethers covers the model of the magnetic field and the 

characteristics of the tethers. 

The tether consists of two spacecraft of mass m1 and m2 linked by an inelastic 

tether of mass mt. The tether is assumed to remain straight. The sub-satellites 

of the tether are given by rectangular shapes with area A1 and A2. 

The attitude (or orientation) of the tether is given by the in-plane pitch angle 𝛼 

and the out-plane roll angle 𝛾. 

The rotation of the system about an axis parallel to the tether elongation does 

not have an effect on the dynamics of the EDT (LANOIX, 1999). For this 

reason, the rotation angle (yaw) is ignored in this thesis. 

There are three main coordinate systems used in this thesis. The first one is the 

vernal coordinate system. The vernal coordinate system OXYZ is the inertial 

system of the thesis and it is used to calculate most of the perturbation forces. 

The OXYZ describes the position and velocity of the centre of mass of the 

system. The origin is at the centre of the Earth. The Z-axis points in the 

direction of the celestial North Pole. The X-axis points toward the vernal 

equinox. The Y-axis completes the right-handed set OXYZ. 

The second coordinate system O′X′Y′Z′ is used to describe the attitude of the 

tether. The EDT perturbation is strictly related to the attitude of the system. The 

X′-axis is parallel to the local vertical, that is, the position vector of the system 

centre of mass of the system from the centre of the Earth. The Z′-axis points in 

the direction of the angular momentum of the orbit and the Y′-axis completes 

the right-handed frame O′X′Y′Z. The angle between the projection of m2 on the 

X′Y′-plane and the X`-axis gives the pitch angle 𝛼. The angle between the 
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position vector of m2 relative to O` and its projection on the X′Y′- plane gives the 

roll angle 𝛾. Figure 2.8 shows the OXYZ and O′X′Y`Z′ coordinate systems. 

Figure 2.9 illustrates the definition of the pitch and roll angles. 

Figure 2.8 – Representation of the coordinates systems OXYZ and O′X′Y′Z′ with 
respect to the centre of the Earth and the center of mass of the 
spacecraft or the system. 

 

 

Source: Lanoix, 1999. 

Figure 2.9 – Definition of the pitch and roll angles at the orbital coordinate system 
O′X′Y′Z′. 
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Source: Lanoix, 1999. 

The third coordinate system is used specially for the magnetic field model and 

the Jn and C22 perturbation. The geocentric coordinates are to 𝑟, 𝜃, 𝜑, which are 

the radius, the co-latitude and the longitude, respectively. The direction 𝒆𝑟 is 

parallel to the local vertircal, 𝒆𝜃 points eastward in the direction of the increasing 

longitude and 𝒆𝜑 lies in the direction of the increasing latitude (see Figure 2.10). 

Figure 2.10 – The representation of the coordinates systems OXYZ and O``𝑒𝑟, 𝑒𝜃 𝑒𝜑 
with respect to the centre of the Earth and the center of mass of the 
spacecraft or the system. 
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Source: Lanoix, 1999. 

The tether is studied for two distinct and opposite goals. One of them is the use 

of an EDT to create a drag force to decay the system faster. The EDT is used 

as a de-orbiter. The second study investigates the EDT as a propulsion system 

capable of reducing the disturbing forces. This study is similar to the solar sail. 

In this case, the EDT can also reduce the atmospheric drag effect. The optimal 

attitude of the tether is given by finding the attitude that the tether should have 

at the centre of the mass of the system to create a Lorentz force on the 

opposite direction of the disturbing forces that needs to be reduced. The 

direction of the EDT perturbation and the disturbing forces are not exactly 

opposite, since the method based on the centre of the mass of the system does 

not consider the anomalies that the magnetic field may have. The magnetic field 

is not constant and it changes over the time. Nevertheless, the attitude is easily 

calculated with this method and does not require an optimization tool to find the 

optimal attitude. The method can be easily computed on-board to reduce or to 

increase the perturbation or drag effects. 

2.7.1. The Magnetic Field Of The Earth 
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The motion of a conductive wire across the magnetic field of the Earth induces 

an EMF and, if there is a current passing through the wire, the Lorentz force is 

induced by the system.  The induced Lorentz force can also occur when there is 

a battery that runs against the EMF and overcomes it. In this case, the direction 

of the force would be opposite to the force induced by the EMF. 

In order to predict the EDT it is necessary to model the magnetic field of the 

Earth. The Earth’s magnetic field generally resembles the field around a 

magnetized sphere, or a tilted dipole, as seen in Figure 2.11. 

Figure 2.11 – Magnetic field geometry. 

 

The geometry of the magnetic field of the Earth with 𝑚̂ axis as the magnetic axis and 

the spin axis inclined 11.5° from the last one. 

Source: Davis, 2004. 

The magnetic axis is inclined around 11.5° from the spin axis, from the centre of 

the Earth. 
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The most used and well accepted model for the magnetic field of the Earth is 

the International Geomagnetic Reference Field (IGRF), and it is the model used 

in this thesis. The IGRF is based on the Gaussian coefficients, 𝑔𝑛
𝑚 and ℎ𝑛

𝑚, that 

are updated each 5 years. The present model of this thesis is the IGRF2010, 

which is good from 2010 to 2015 (INTERNATIONAL GEOMAGNETIC… 2007). 

The magnetic field coefficients are given after several proposals and the best 

values that fit the data available by the International Association of 

Geomagnetism and Aeronomy (IAGA). The model includes secular variations 

and they are used to extrapolate the Gaussian coefficients to the date in 

question. The reader is encouraged to read more about the modeling of the 

magnetic field in the references cited here. The IGRF consists of 120 

coefficients for each epoch (5 years) with 80 of them related to the secular 

variation (DAVIS, 2004) 

The IGRF considers the extrapolations and random variation in the magnetic 

field. The randomness is caused by external factors like the temporal variations 

that occur about every 27 days, when the active solar area of the Sun faces the 

Earth (KRISTIN, 2001). These variations can last from seconds to days. The 

other type of variation is caused by the interaction of the plasma of the 

ionosphere with the magnetic field. The auroral electrojec can cause significant 

changes in the magnetic field. Solar flares can also create temporal changes in 

the magnetic field of the Earth. The mathematics of the IGRF is given bellow 

(KRISTIN, 2001). 

The magnetic field 𝑩 of the earth can be written as a negative gradient of a 

scalar potential 𝑉 (DAVIS, 2004) 

𝑩 = −∇𝑉 (2.29) 

The scalar potential 𝑉 can be modeled by a spherical harmonic expansion as 

shown bellow (DAVIS, 2004) 
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𝑉(𝑟, 𝜃, 𝜑) = 𝑅𝑒 ∑ (
𝑅𝑒

𝑟
)

𝑛+1
𝑘
𝑛=1 ∑ (𝑔𝑛

𝑚𝑛
𝑚=0 cos𝑚𝜑 + ℎ𝑛

𝑚
sin𝑚𝜑)𝑃𝑛

𝑚
(cos𝜃) (2.30) 

where  𝑟, 𝜃, 𝜑 are the geocentric coordinates, which EW the radius, the co-

latitude and the longitude, respectively. The coefficients 𝑔𝑛
𝑚 and ℎ𝑛

𝑚 are the 

Gaussian coefficients and 𝑃𝑛
𝑚(𝜃) represents the Schmidt quasi-normalized 

associated Legendre functions with degree n and order m. 

The magnetic field of the Earth can be computed by taking the gradient of 

Equation 2.30 for the geocentric coordinates, as given by Equations 2.31 to 2.33 

(DAVIS, 2004) 

𝐵𝑟 = ∑ (
𝑅𝑒

𝑟
)

𝑛+2
𝑘
𝑛=1 (𝑛 + 1)∑ (𝑔𝑛

𝑚𝑛
𝑚=0 cos𝑚𝜑 + ℎ𝑛

𝑚
sin𝑚𝜑)𝑃𝑛

𝑚
(cos𝜃) (2.31) 

𝐵𝜃 = −∑ (
𝑅𝑒

𝑟
)

𝑛+2
𝑘
𝑛=1 ∑ (𝑔𝑛

𝑚𝑛
𝑚=0 cos 𝑚𝜑 + ℎ𝑛

𝑚sin 𝑚𝜑)
𝜕𝑃𝑛

𝑚(cos𝜃)

𝜕𝜃
 (2.32) 

𝐵∅ = −
1

sin𝜃
∑ (

𝑅𝑒

𝑟
)

𝑛+2
𝑘
𝑛=1 ∑ 𝑚(−𝑔𝑛

𝑚𝑛
𝑚=0 sin 𝑚𝜑 + ℎ𝑛

𝑚cos𝑚𝜑)𝑃𝑛
𝑚(cos𝜃) (2.33) 

where the 𝐵𝑟, 𝐵𝜃 and the 𝐵𝜑 represents the field strength in local tangential 

coordinates and the other variables were defined before. 

2.7.2.  The Insulated Tether 

The insulated tether can only exchange electrons with the ionosphere using the 

sub-satellites. The wire that connects these two sub-satellites is covered with an 

insulator. Since the wire is insulated, there is the Debye-sheath shielding 

(ESTES et al., 1997; SANMARTIN et al., 1993) effect. This effect limits the 

current of the wire. Lower currents produce lower induced Lorentz force. On the 

other hand, the system itself is efficient on releasing the electron using a hollow 

cathode or an electro gun (LANOIX, 1999). 

Figures 2.12 and 2.13 show the design of the insulated tether and the electrical 

circuit for it, respectively. 
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Figure 2.12 – Design of the insulated tether. 

 

The design of the insulated tether with an electron emitter, an electron collector and 

the current flow along the tether. 

Source: Lanoix, 1999. 

Figure 2.13 – Representation of the electrical circuit for the insulated tether. 

 

The representation of the electrical circuit of the insulated tether with constant 

current flow and the resistances the system may have, like the impedance load, the 

tether resistance, the resistances of the tether emitter and collector.  

Source: Lanoix, 1999. 

where 𝑅𝑙𝑜𝑎𝑑 is the impedance of the load (which depends on the application); 𝑅𝑡 

is the tether resistance, 𝑅𝑒 is the resistance of the tether emitter and the 
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resistance 𝑅𝑐 of the tether collector. As in many other references, like Johnson 

and Hermann (1998), Estes et al. (1997), Lorenzini et al. (1997) and Sanmartin 

et al. (1993), the tether resistance 𝑅𝑡 is neglected. Although the tether 

resistance is different from zero, this assumption is made due to the complexity 

of the equations and the minor differences on the results obtained with and 

without this assumption. 

If 𝑅𝑙𝑜𝑎𝑑 is negative, then there is a battery that drives the current against the 

induced EMF. If 𝑅𝑙𝑜𝑎𝑑 is positive, then the current flows according to the EMF. 

The induced EMF 𝛾, or electrical potential induced in the system by the motion 

of a wire in the presence of a magnetic field, is given as follows (LANOIX, 1999) 

𝜁 = ∫ 𝒗𝑟 × 𝑩 ∙ 𝑑𝒍
𝐿𝑡𝑜𝑡𝑎𝑙

0

 (2.34) 

where 𝑩 is the magnetic field, 𝒗𝑟 is the relative velocity of the system (the same 

presented in Equation 2.28), 𝑑𝒍 is the infinitesimal vector element pointing along 

the tether from m1 to m2 and 𝐿𝑡𝑜𝑡𝑎𝑘 is the length of the tether. 

Figure 2.14 represents the end masses of the tether, the relative velocity and 

the magnetic field of the Earth. 

Figure 2.14 – Tether motion through the magnetic field of the Earth. 

 

Source: Lanoix, 1999. 
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The EMF 𝜁 is positive whenever m2 has an electrical potential higher than m1 

and the current 𝐼 that passes through the tether is positive when the electrons 

flow from m2 to m1. 

If a battery is used to overcome the EMF, than m1 has an electrical potential 

higher than m2 and the current is negative with the electrons flowing from m1 to 

m2. 

The maximum current that can flow from the insulated tether with a zero 𝑅𝑙𝑜𝑎𝑑 is 

given by the Parker-Murphy law (PARKER; MURPHY, 1976) with the help of 

the TSS-1R mission (THOMPSON et al. 1997): 

𝐼𝑚𝑎𝑥 ≈ 𝐾1𝑛𝑒√𝑇∞ [
1

2
+ (

𝛾

𝛾0
)

0.528

] (2.35) 

where 𝐾1 = 5.1255 × 10−15𝐴𝑚𝑝 ∗ 𝑚3/°𝐾5, 𝑛𝑒 denotes the ionospheric electron 

density. This density can vary from 1012 e-/m3 during the day to 1010 e-/m3 at 

night. 𝑇∞ is the undisturbed inonospheric plasma temperature and 𝛾0 is given by 

(LANOIX, 1999) 

𝛾0 = 
𝐴𝐵2𝑒−

8𝜋𝑚𝑒
 (2.36) 

where 𝐴 is the total surface area of the collecting electron body, 𝐵 is the 

magnitude of the magnetic field, 𝑒− represents the elementary electron charge 

and 𝑚𝑒 is the electron mass. 

The current flowing through the tether induces a Lorentz force that is given by 

(LANOIX, 1999) 

𝑭𝑚𝑎𝑔 = ∫ 𝐼𝑑𝑳

𝐿𝑡𝑜𝑡𝑎𝑙

0

𝑥𝑩 (2.37) 

The current 𝐼 can be factored out of the integral in Equation 2.37, since the 

current is constant across the system. 
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2.7.3. The Bare Tether 

The bare tether consists on a bare wire that collects itself the electrons. The 

bare tether cannot release the electrons as efficiently as the insulated one. The 

bare tether system has one sub-satellite that acts as an electron emitter and the 

other end mass that serves as a ballast to keep the tether taut. 

The bare tether does not have an insulated wire and, for that reason, the tether 

radius is much smaller and does not suffer from the Debye shielding effect. The 

Debye shielding effect limits the current of the tether for insulated systems. 

Therefore, the bare tether is capable of collecting more electrons and achieving 

greater currents (ESTES et al., 1997). 

The bias voltage 𝑉∗ for the bare tether is given by 

𝑉∗(𝑙) =  𝐸0l − 𝐼𝑚𝑎𝑥𝑅𝑙𝑜𝑎𝑑  (2.38) 

where 𝐸0 is the motional electric field. The bias voltage can be understood as 

the difference between the motional EMF at the distance l of the tether from m1 

and the voltage drop or rise for the load or battery, respectively (ESTES et al., 

1997). 

Figure 2.15 shows the design for a bare tether with the current flowing through 

the induced EMF and with a battery, respectively. 

Figure 2.15 – The design of the bare tether. 
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The design of the bare tether with a ballast mass, the tether itself as an electron 

collector and the electron emitter. 

Source: Lanoix (1999). 

In mathematical terms, the electron collection in bare tethers, when the bias is 

positive, is given as follows (ESTES et al., 1997; SANMARTIN et al.,1993). 

𝐼(𝑙) =
2

3
𝐾2𝑛𝑒𝑟𝑡√𝐸0[𝑙𝑐

3
2 − (𝑙 −

𝐼𝑚𝑎𝑥𝑅𝑙𝑜𝑎𝑑

𝐸0
)
3/2

] (2.39) 

where 𝐾2 = 1.9𝑥10−13𝐶1.5/𝑘𝑔0.5, 𝑛𝑒 denotes the ionospheric electron density, 𝑟𝑡 

is the tether radius, 𝐸0 is the motional electric field [V/m], 𝑙𝑐 is the electron 

collection length, 𝐼𝑚𝑎𝑥 is the maximum value of the current and it does not 

change after the voltage bias becomes negative and 𝑅𝑙𝑜𝑎𝑑 is the impedance 

load (LANOIX, 1999).  

The tether electron collection length 𝑙𝑐 is given by (LANOIX, 1999). 

𝑙𝑐 = 𝑙𝑡𝑜𝑡 −
𝐼𝑚𝑎𝑥𝑅𝑙𝑜𝑎𝑑

𝐸0
  (2.40) 

For the interval where the voltage bias is negative, the maximum current is 

given by Cosmo and Lorenzini (1997) as follows. 



63 
 

𝐼𝑚𝑎𝑥 =
2

3
𝐾2𝑛𝑒𝑟𝑡√𝐸0𝑙𝑐

3
2 (2.41) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

3 RESULTS 

This section provides the results of this thesis, obtained based on the 

mathematical formulations given before.  

3.1. Perturbation Integrals 

This section presents the disturbing forces in the perturbation integrals analysis. 

The behavior of the disturbing forces is analyzed as a function of the Keplerian 

elements. Therefore, several orbits are included and the pattern of the 

disturbing forces is analyzed. 

The shape of the spacecraft is considered to be rectangular with the area of 

each side equal and given by Table 3.1 . It is considered also that one of the 

faces of the spacecraft is always pointing towards the centre of the Earth. 

In this section, the averaging technique for the PI and PIMAG are used. Table 3.1 

presents the initial parameters for the Perturbation Integral study. 

Table 3.1 – Initial Parameters of the Spacecraft for the Perturbation Integrals studies. 
 
 

 

 

 

3.1.1. The Semi-Major Axis Variation 

In order to guarantee that the results of the PI and PIMAG are independent of the 

time of the integration, or the period of the orbit, the PI and PIMAG results are 

multiplied by the period of a nominal orbit and divided by the period of the orbit 

under study. 

Table 3.2 – Initial Parameters of the Orbit for the PI and PIMAG studies. 
 

Mass (kg) ∈ 𝐶𝐷 Area (m2) 

1000 0.8 2 6 

Eccentricity Inclination Argument of Ascending 
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Figure 3.1 shows the behavior of the disturbing forces change given by the PI 

as the semi-major axis varies from 6700 to 7000 km. The nominal orbit used 

has semi-major axis of 7000 km. 

Figure 3.1 – PI of the atmospheric drag as a function of the semi-major axis from 6700 
to 7000km. 

 

The atmospheric drag decreases as the semi-major axis increases. This 

behavior occurs because the atmospheric density decreases exponentially with 

the altitude. In addition, the atmospheric drag is also related to the relative 

speed of the system (see Equation 2.28), so as the semi-major axis increases, 

this velocity decreases and so does the atmospheric drag acceleration. 

Perigee Node 

0 0 0 0 



67 
 

It is hard to predict analytically the exponential decay without computing all the 

parameters since the density given by Equation 2.25 is related exponentially to 

the temperature, the thermal lapse and the altitude. Moreover, the drag 

acceleration is also related to the relative speed of the system (see Equation 

2.25). On the other hand, Figure 3.1 shows the exponential decay as the altitude 

of the orbit is raised. The greatest advantage of the PI maps is that it is possible 

to interpolate easily the results and to estimate the disturbing force behavior by 

only accessing Figure 3.1. In other words, it gives a quantification of the effects 

of the drag force in terms of removing energy from the spacecraft. 

If the PI of the atmospheric drag is interpolated as a polynomial function PIpoly of 

fourth degree, the result would be: PIpoly (x) = 1.6025 ∙10-10 x4 - 4.4259 ∙10-6 x3 + 

4.5839 ∙10-2 x2 - 2.1101 ∙102 x + 3.6424 ∙105, where x is the semi-major axis. 

This polynomial of fourth order leads to a precision of |PI𝑝𝑜𝑙𝑦 −  PI| ≤ 0.003 m/s. 

it means that it is possible to obtain an analytical equitation to predict the effects 

of the drag. 

The PI is the magnitude of the velocity variation that a propulsion system must 

apply in order to keep the spacecraft in a Keplerian orbit all the time. Therefore, 

as the semi-major axis is increased, the velocity change required is reduced. As 

given by Equation 2.26, the atmospheric drag applies a force that is always on 

the opposite direction of the orbital motion. 

Since the acceleration caused by the drag is always opposite to the direction of 

motion, it gives an interesting result: the estimative of the orbital decay based 

on the PI value for the atmospheric drag. The process that explains how it is 

possible is given as follows.  

The equation of motion of the spacecraft with a non-impulsive disturbing 

acceleration or with a propulsion acceleration (𝑭/𝑚) is given by Equation 3.1 
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𝒓̈ =  −𝜇
𝒓

𝑟3
+

𝑭

𝑚
  (3.1) 

If the direction of the force 𝑭 is opposite to the direction of the orbital motion, 

then Equation 3.1 becomes 

𝒓̈ =  −𝜇
𝒓

𝑟3
+

𝐹

𝑚

𝒓̇

𝑟̇
 (3.2) 

Multiplying Equation 3.2 by a dot product of 𝒓̇, the equation becomes 

𝒓̈ ∙ 𝒓̇ =  −𝜇
𝒓 ∙ 𝒗

𝑟3
+

𝐹

𝑚

𝒓̇ ∙ 𝒓̇

𝑟̇
 (3.3) 

where 𝐫̈ ∙ 𝒓̇ =  
1

2

dv2

dt
 and µ

𝐫∙𝐯

r3 = −
d

dt
(
μ

r
). Therefore, Equation 3.3 can be written as 

𝑑

𝑑𝑡
(
𝑣2

2
−

𝜇

𝑟
) =

𝐹

𝑚
𝑣 (3.4) 

where 𝑣 =  𝑟̇. 

The energy of an orbit is given by 𝐸 =
v2

2
−

μ

r
. 

If the orbit is circular, it is possible to reduce the Equation 3.4 to the following 

equation: 

𝑑

𝑑𝑡
(

𝜇

2𝑟
−

𝜇

𝑟
) =

𝐹

𝑚
√

𝜇

𝑟
 (3.5) 

Separating the variables, it is obtained 

𝑑(
𝜇
𝑟)

√
𝜇
𝑟

= −2
𝐹

𝑚
𝑑𝑡 (3.7) 

Integrating both sides of Equation 3.7, the equation becomes 
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𝑣𝑓𝑖𝑛𝑎𝑙 − 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −
𝐹

𝑚
∆𝑡 (3.8) 

The term  
𝐹

𝑚
  in Equation 3.8 can be approximated by PI/𝑇 if it is considered that 

the acceleration of the disturbing force (drag) is constant. The difference 

𝑣𝑓𝑖𝑛𝑎𝑙 − 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the difference of the velocity of the spacecraft in the final orbit 

and in the initial orbit. 

The force caused by the atmospheric drag is constant for the same altitude.  

The approximation to estimate the time of the decay can be obtained by 

substituting 
𝐹

𝑚
 in Equation 3.8 by PIpoly /T and the velocity of the circular orbit 𝑣 

per √
𝜇

𝑎
, where 𝑎 is the semi-major axis of the orbit. In this way, Equation 3.8 

becomes 

∆𝑡𝑁 = −(√
𝜇

𝑎𝑁+1
− √

𝜇

𝑎𝑁
)

𝑇𝑁̅

PI𝑝𝑜𝑙𝑦(𝑎)𝑁
 (3.9) 

where N is the order of the step and 𝑇𝑁̅ is the period of the orbit given by the 

orbit related to N step. If the result is given by M steps, then the total decay time 

𝑡𝑑𝑒𝑐𝑎𝑦 is 𝑡𝑑𝑒𝑐𝑎𝑦 = ∑ ∆𝑡𝑁
𝑀
𝑁=1 .  

As the order of steps is reduced, the precision is increased. 

The idea to estimate the time of the decay based on the PI value is a rough 

approximation, since the correct way would be to integrate the motion equation 

as update the Keplerian elements over the time. As the orbit decay, for 

example, the eccentricity of the orbit increases and this method does not 

consider this fact. This rough approximation can be valid for small orbital 

decays or when the magnitude of the disturbing force is relativity large in a short 

time period. Nevertheless, this approximation always leads to errors.  
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The idea of this thesis is to present the estimation of the orbit decay as a simple 

and practical tool, just like the PI method, for a first estimate the time of decay 

that a force in the opposite direction of motion would provoke in a spacecraft, if 

no propulsion system is used to regain its altitude. This tool does not require a 

sophisticated integration and atmosphere model or any simulator with numerical 

integration. Equation 3.9 and the map based on the PI are capable of estimating 

the time of decay. 

This thesis is also not concerned with the analysis of the errors and the study of 

the boundaries that this method could be valid. It is just presented a potential 

new, fast and powerful method. The orbit analysts should study carefully if this 

method could be used to estimate the orbit decay for a first mission analysis 

according to the numerical errors and other effects. 

If the method based on Equation 3.9 is applied with the help of Figure 3.1 for M 

= 31 (number of steps), them the estimated time of decay would be 86.95 days 

from 7000 to 6700 km of semi-major axis.  

In order to validate this method, the same initial parameters were computed in 

an orbit integrator. The orbit integrator estimated 88.78 days for the orbit to 

decay from 7000 to 6700 km of semi-major axis. The results are relatively close. 

This result, as many others that are included in this thesis, validate this method 

(see the electrodynamic section). But, once more, this method is not always 

valid as an estimative if the time of the integration is long enough to change 

drastically the Keplerian elements like eccentricity or argument of perigee. 

Figure 3.2 shows the semi-major axis decay as a function of time obtained by 

the orbit integrator. 

Figure 3.2 – The semi-major axis time evolution in the presence of the atmospheric 
drag. 
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The atmospheric model used in this work may have some errors. The solar 

activity is not considered in this model and this activity can change drastically 

the upper layers of the atmosphere, especially the exosphere. Some other 

approximations considered in the atmospheric model may also lead to some 

errors. 

Figures 3.3 and 3.4 show two hypothetical cases of errors in this model based 

on Figure 3.1. The first one considers an error on the density of the atmosphere 

of ±5%, and the next one considers ±10%. The error is based in the 

mathematical formulation of the atmosphere given in the last chapter. 

Figure 3.3 – PI of the atmospheric drag with ±5% of error of the density as a function 
of the semi-major axis from 6700 to 6800 km. 
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Figure 3.4 – PI of the atmospheric drag with ±10% of error of the density as a function 
of the semi-major axis from 6700 to 6800 km. 
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The error in the density leads to different values of the PI. As the semi-major 

axis decreases, the altitude of the orbit decreases. Consequently, the density of 

the atmosphere increases. The error proposed in this analysis is based on the 

density of the atmosphere. It means that when the density increases, the error 

related to the magnitude of the atmospheric drag is also increased. 

The analysis of the error in a model that is not accurate is essential to estimate 

the potential difference the PI must have and to study the viability of the mission 

before the launch, even if the atmospheric model is not 100% accurate. 

The PI values for the other disturbing forces are given in Figures 3.5 and 3.6 . 

Figure 3.5 – PI of the several disturbing forces as a function of the semi-major axis 
from 6700 to 7000km. 
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Figure 3.5 presents the variation of the PI for the disturbing forces of the Moon, 

the Sun and the solar radiation pressure. The magnitude of the perturbation of 

the Moon is more than two times larger than the Sun for this range of semi-

major axis. The increase of the disturbing forces occurs gradually as the semi-

major axis increases. As the semi-major axis increases, the mean distance from 

the spacecraft to the third-body (Sun and Moon) decreases, and, therefore, the 

magnitude of the perturbation, related to the square of the distance of the 

spacecraft to the third-body (see Equation 2.19) is decreased ( 
1

𝑟𝑡𝑏𝑠
2 ). 

The total velocity variation that must be applied to the spacecraft for one orbital 

period to eliminate the effects of the solar radiation pressure and the third-body 

perturbation is significantly low, in the order of ≈ 10−3 𝑚/𝑠. This means that, for 

the orbits studied here, the low-thrust propulsion system is a good candidate to 

overcome those perturbing forces. 
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The sum of the solar and luni perturbation separately has different results from 

the computation of both effects together in the PI. This occurs because the 

Moon can sometimes compensate the solar radiation pressure effect and the 

Sun perturbation, depending on the geometry of the problem. In this way, the 

lunisolar perturbation is smaller than the third-body perturbation of the Sun and 

the Moon computed separately. 

The range from the semi-major axis from 6700 to 7000 km includes LEO. For 

these orbits, the magnitude of the disturbing forces of the J2 is much larger if 

compared to the other disturbing forces, as shown in Figure 3.6 . 

Figure 3.6 – PI of J2 disturbing force as a function of the semi-major axis from 6700 to 
7000 km. 

The magnitude of the perturbation caused by the J2 term is much larger than 

the atmospheric drag for this range. So, the range from 64 to 76 m/s of the PI 

becomes unviable for the propulsion system to correct the shifts caused by this 

perturbation.  



76 
 

Moreover, even though the J2 perturbation has the larger magnitude, this force 

is conservative and it requires less attention than the atmospheric drag. The 

atmospheric drag for this simulation can decay the spacecraft up to 300 km in 

approximately 85 days. The atmospheric drag is a non-conservative force and 

requires constant maneuvers. The J2 perturbation effect added to the J3, J4 and 

C22 can easily be maneuvered after several orbits since there are some 

compensations of the force for one orbital period. The same occurs for the third-

body perturbation. Figure 3.7 shows the PIMAG for the same simulation with the 

J2, third-body and the solar radiation pressure perturbations. 

Figure 3.7 – PIMAG of several disturbing forces as a function of the semi-major axis from 
6700 to 7000 km. 

 

Since the third-body and the J2 perturbations are conservative forces, the PIMAG 

of these forces is much smaller than the PI (compare Figures 3.5, 3.6  and 3.7). 

Even if the forces are conservative, the PIMAG values are not zero. The PI and 

PIMAG of the solar radiation pressure are similar, since the nature of this force is 
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non-conservative and the integration occurs for one orbital period. The solar 

radiation force for the PIMAG has the largest magnitude in Figure 3.7. The 

atmospheric drag and the solar radiation force are adequate for the PIMAG since 

these forces are non-conservative. The atmospheric drag always acts on the 

direction of the motion of the spacecraft, so it changes the energy of the 

system. The best evaluation for the atmospheric drag and solar radiation 

pressure perturbations is the PI. 

The pattern of the J2 perturbation, which decreases with the semi-major axis, 

also occurs for the PIMAG. This occurs because any spherical harmonic 

perturbation of order “n” is inversely proportional to the distance to the centre of 

the Earth at the power “n”. 

Nevertheless, the magnitude of PIMAG from the J2 perturbation must be analyzed 

carefully. Figures 3.9 and 3.10 explain this point. 

Figure 3.8  shows the PI of the disturbing forces of J2, J3 and J4 and C22 

separately. 
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Figure 3.8 – PI of Jn`s and C22 disturbing forces as a function of the semi-major axis 
from 6700 to 7000 km. 

 

Note that the values of the PI for J2 and J4 are modified in order to have the 

same disturbing forces in the same magnitude range. The J2 value is divided by 

200. This means that the J2 magnitude perturbation is around 200 times larger 

than the J3 perturbation for this simulation. In Equations 2.15 and  2.17, it is 

possible to see that, if the order “n” of the Jn is increased, the magnitude of the 

disturbing force is decreased because of the multiplication of the term (
𝑅𝑒

𝑟
)
𝑛

, 

where 𝑅𝑒 < 𝑟 or even 𝑅𝑒 ≪ 𝑟. It is also noted that the Jn coefficients as the 

degree and order increases.  

Even if the coefficients J3 and J4 are much smaller than J2, at this range, the J3 

and J4 have a magnitude of the PI larger than the solar radiation pressure and 

the lunisolar perturbation. 
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The magnitude of the C22 perturbation is more than 3 times larger than the J3 

perturbation for this simulation. Figure 3.8 shows that the PI values for J2 and 

C22 are the most prominent perturbations due to the spherical harmonics. 

Figures 3.9 and 3.10 show the PIMAG of the disturbing forces of J2, J3, J4 and 

C22, separately.  

Figure 3.9 – PIMAG of the Jn`s and C22 disturbing forces as a function of the semi-major 
axis from 6700 to 7000 km. 
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Figure 3.10 – PIMAG of J2 and J4 disturbing forces as a function of the semi-major axis 
from 6700 to 7000 km. 

 

Figures 3.9 and 3.10 show an interesting result and the proof that the value of 

the PIMAG should be studied in details. The magnitude of the PIMAG of the J3 

perturbation and C22 are much larger than the J2 and J4 perturbations. The 

PIMAG considers the compensations of the perturbations for one orbital period. 

The most important difference from J2 and J4 perturbations compared to J3 and 

C22 perturbations is the shape of the perturbations. While the J2 and J4 

perturbations comes from ellipsoid and square shapes, the J3 is a pear-shaped 

perturbation and C22 is asymmetric. The geometries of the pear shape and of 

the uniform shape of C22 at the PIMAG allow less compensations of the 

perturbations, since the geometric nature of this perturbation is not symmetric, 

as the ellipsoid or the square for orbits with zero inclination.  
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The PIMAG, later on in this thesis, will prove to be extremely valuable to find less 

perturbed orbits when a symmetric perturbation is considered and centered in 

the centre of the inertial coordinate system.  

The behavior of the disturbing forces is not always like the range of 6700 to 

7000 km. The next investigations regarding the semi-major axis include the 

range from 11000 to 27000 of the MEO (Medium Earth Orbits), with a nominal 

orbit of 20000 km and from 32000 to 52000 for the HEO (High Earth Orbits), 

with a nominal orbit of 45000 km of semi-major axis. The MEO and HEO orbits 

are not at all influenced by the atmospheric drag. 

Figure 3.11 – PI of J2 and C22 disturbing force as a function of the semi-major axis from 
11000 to 27000 km. 

 

In Figure 3.11, it is shown the J2 and C22 perturbations as the semi-major axis 

increases. The decay of the PI is mainly related to 1 𝑟4⁄ . The PI follows the 

decay related to J2 and C22 shown in Equations 2.15, 2.16 and 2.17. Since Jn and 
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C22 perturbations decrease exponentially, it is possible also to extrapolate the 

results and predict others PI values for different semi-major axis. 

The PI related to J2 has the same magnitude decay of the C22. As shown before, 

the value of the PI for the J2
 perturbation is much larger than the other 

perturbations. The PI for the J2 is more than 100 times larger than the C22 for 

this simulation.  

Figure 3.12 – PI of several disturbing forces except Jn and C22 as a function of the 
semi-major axis from 11000 to 27000 km. 

There is an illusion created in Figure 3.12. It seems that the rate that the Moon 

and the Sun increases is linear and that the inclination of the curve related to 

the Moon is larger than the Sun. The rate either of the Sun or the Moon is not 

linear, as the acceleration of the third-body is related to the square distance of 

the spacecraft to the third-body. In this way, as the spacecraft approximates 

from the third-body, it would be clearer that the rate is exponential, and not 

linear. Figure 3.12 has a range of the semi-major axis small if compared to the 
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distance from the spacecraft to the third-body, and in this way, there is an 

almost linear relation. The magnitude of the Moon perturbation is larger than the 

Sun, since the Moon is much closer. As the semi-major axis increases until the 

orbit of the Moon and a little bit beyond, the magnitude of the Moon perturbation 

will always overcome the Sun. Prado (2013) shows the PI results for orbits 

close to the Moon. 

The solar radiation pressure slowly increases, but the rate of the increase is 

much smaller, if compared to the rate due to the third-body. The magnitude of 

the solar radiation pressure is a sensitive perturbation that is proportional to 

(
𝑘

𝑘0
)
2

, as given in Equation 2.11. A noticeable increase of the solar radiation 

pressure in the PI maps would require a large value for the 𝑘 distance, from one 

semi-major axis to another. In others words, the range of semi-major axis 

should be much larger to give differences in this value.  

Figure 3.13 shows all the disturbing forces as the semi-major axis varies from 

32000 to 52000 km.  
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Figure 3.13 – PI of several disturbing forces as a function of the semi-major axis from 
32000 to 52000 km. 

 

Figure 3.13 has an important behavior. The sum of all perturbations, given by 

the black line, has a minimum at the semi-major axis of 46000 km. The 

minimum occurs when the Jn perturbation decreases exponentially and the 

lunisolar perturbation overcomes the Jn perturbation effect.  

The magnitude of the acceleration of each perturbation can be easily computed 

and it might change for several different positions of the Moon and the Sun. The 

PI uses the averaging technique to provide a result that is independent of the 

position of the Sun or the Moon. In other words, the mean value that PI can 

have for different initial positions of these bodies can have. 

This averaging technique shows the minimum value of the magnitude of the 

disturbing forces considering several orbits. It is interesting to note that the 
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magnitude of the third-body perturbation becomes larger than the Jn 

perturbation at the semi-major axis of 43000 km, approximately.  

This map is very important also for MEO and HEO, searching for orbits that are 

as Keplerian as it can be. The deviations of the orbit are strictly related to the 

magnitude of the disturbing forces and, if it is possible to choose the semi-major 

axis of the orbit, Figure 3.13 is capable of estimating the best one from the point 

of view of having less perturbations. 

If not only Jn is computed in Figure 3.13, but alto the C22 perturbation, the 

minimum would occur at the same semi-major axis of Figure 3.13. This means 

that the J2 perturbation is the largest perturbation of the spherical harmonics, as 

expected 

3.1.2. The Eccentricity Variation 

The eccentricity variation section maps orbits for on different eccentricities. It 

means that the magnitude of the disturbing forces acts different from circular 

orbits, which the values depending on the true anomaly of the spacecraft. 

Table 3.3 – Initial Parameters of the Orbit for the PI study. 
 
 

 

 

 

The semi-major axis of 12,252 km is carefully chosen, so the maximum perigee 

distance of the orbit would be 7000 km and the apogee 15000 km, with an 

eccentricity of 0.3636. In this way, there is a passage through the atmosphere 

along the orbit.  

 

 

Semi-major 
axis 

Inclination Argument of 
Perigee 

Ascending 
Node 

12,252 km 0 0 0 
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Figure 3.14 – PI of several disturbing forces as a function of the eccentricity from 0 to 
0.3636. 

The disturbing forces of the third-body perturbation increase with the 

eccentricity, as shown in Figure 3.14. As the eccentricity of the orbit increases, 

the apogee distance increases and the time that the spacecraft passes near the 

apogee increases as well. This means that the distance from the third-body 

decreases, along with the time spent at a lower distance from the third-body. 

Those facts make the magnitude of the third-body perturbation to increase.  

The solar radiation pressure remains almost constant with the variation of the 

eccentricity. There is a slight decrease of the perturbation with the eccentricity 

increases, because the perigee decreases, then the trajectory passes more 

time through the shadow region, reducing the solar radiation pressure. Figure 

3.15 shows this effect. 
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Figure 3.15 – PI of the solar radiation pressure as a function of the eccentricity from 0 
to 0.3636. 
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Figure 3.16 – PI value of J2 and C22 as a function of the eccentricity from 0 to 0.3636. 

 

The J2 and C22 perturbations increase exponentially with the eccentricity as 

well. As the eccentricity increases, the J2 and C22 accelerations increase, since 

the perigee distance decrease. The accelerations of the J2 and C22 are 

proportional to the square distance from the centre of the Earth. The magnitude 

of the J2 perturbation, for this range of semi-major axis, is high and the cost to 

reduce this perturbation effect can be very fuel consuming. Nevertheless, 

Figure 3.16 illustrates the J2 pattern as a function of the eccentricity of the orbit. 

The pattern is the same for the eccentricity variation at any nominal semi-major 

axis for the J2 and C22. It increases exponentially. 
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Figure 3.17 – PI of the atmospheric drag as a function of the eccentricity from 0 to 
0.3636. 

 

Figure 3.17 shows the PI for this orbit as the eccentricity increases. The 

decrease of the perigee is related to passages through more dense layers of 

the atmosphere, and, therefore, the atmosphere drag increases exponentially. 

The eccentricity of 0.315 for this simulation has a perigee smaller than 2000 km. 

This means that for eccentricities equal or larger than 0.315, the atmospheric 

drag perturbation begins to act.   

3.1.3. The Inclination Variation 

This last study involves the inclination, both for the PI and PIMAG. The semi-

major axis chosen is based on the geostationary orbit. The change of the 

inclination is from 0 to 180 degrees. 

Table 3.4 – Initial Parameters of the Orbit for the PI study. 
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Figure 3.18 – PI of several disturbing forces as a function of the inclination change from 
0 to π rad. 

Figure 3.18 shows different pattern behaviors for each disturbing force. Even 

the solar radiation pressure has a unique pattern as a function of the inclination. 

It is not clear in the figure due to the scale. The next figures will present in more 

details the patterns and explanations for that. 

 

 

 

Semi-major 

axis 

Eccentricity Argument of 

Perigee 

Ascending 

Node 

42164 km 0 0 0 
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Figure 3.19 – PI value of J2 as a function of the inclination change from 0 to π rad. 

 

Figure 3.19 has two interesting minimums at 26.46° and 153.44° inclination 

degrees.  The explanation for these minimums is given bellow. 

The PI of the J2 is the norm of the acceleration at every step of the time. In this 

way, the first step is to take the norm of the Equation 2.14 with the J2 coefficient 

only (|𝐚𝑱𝟐|). 

|𝐚𝑱𝟐| = {(
3𝐺𝑀𝐽2

𝑟2
)
2

(
𝑅𝑒

𝑟
)
4

[
1

4
(3 cos2 𝜃 − 1) + sin2 𝜃 cos2 𝜃]}

1/2

 (3.10) 

 

Figure 3.19 changes only the inclination. Therefore, the 𝑟 is constant. The 

change of the acceleration must be due to 𝜃, which is the co-latitude of the 

system and the minimum or maximum must occur at 
𝑑|𝐚𝑱𝒏|

𝑑𝜃
= 0. After some 

manipulations, the last derivate can be reduced to 
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𝑐𝑜𝑠𝜃 = √1/5 (3.11) 

      or  

𝑐𝑜𝑠𝜃 = ±1 

      or 

(3.12) 

𝑠𝑖𝑛𝜃 = ±1 

 

(3.13) 

This means that 𝜃 = 63.4349° 𝑜𝑟 116.5°. Since 𝜃 is the co-latitude, the latitude 

(90- 𝜃) would be effectively 26.46° and 153.44°. But, this result does not prove 

why the PI for the J2 has a minimum at 26.46°. It just proves that, at this latitude, 

there is a minimum or a maximum magnitude acceleration.  

The prove of the minimum for the PI comes from plotting the coefficients of 

Equation 3.10, given by 𝐴𝑐𝑒 = [
1

4
(3 cos2 𝜃 − 1) + sin2 𝜃 cos2 𝜃]

1/2

, as a function 

of the co-latitude. Those coefficients are related to the magnitude of the 

acceleration of the J2 with a constant factor multiplying it. Those coefficients 

shall be called ace. 
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Figure 3.20 –The study of the Ace acceleration as a function of the co-latitude from 0 to 
π/2 rad. 

 

Figure 3.20 shows the magnitude of the acceleration due to J2 as a function of 

the co-latitude. An equatorial orbit may have the latitude constant at 0 degrees 

and the inclination as well. A polar orbit must have the latitude in the range 90 

to -90 degrees. The inclination would be 90 or -90 degrees. The maximum 

latitude of the orbit is the inclination of the orbit. The minimum occurs when the 

latitude is 0.48 rad, or 27.5 degrees. 

In this way, the inclination of the orbit can be related to the maximum latitude of 

the orbit. The mean magnitude area of the Ace is shown in Figure 3.20 for each 

different latitude. The orbit inclination is related to the maximum latitude the 

orbit can have. Figure 3.21  plot the mean ace acceleration for different 

inclinations. 
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Figure 3.21 –The study of the mean magnitude of Ace as a function of the co-latitude 
from 0 to π/2 rad. 

 

The PI pattern in Figure 3.20 is coherent with Figure 3.21. The assumption that 

the minimum occurs because of the J2 is proven in Figure 3.21.  

The maximum value occurs at the polar orbit, when the inclination is 0 or 180°. 

The minimum of Figure 3.20 is also the minimum in Figure 3.21. 

The next Figure 3.22 presents now an interesting result for the J2 perturbation 

with the PIMAG. 
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Figure 3.22 – PI of J2 as a function of the inclination from 0 to π rad. 

 

The minimums values of the PIMAG occur exactly at the critical inclinations, 

63.43° and 116.56°. It should be mentioned that the PIMAG is not zero at the 

minimums. Figure 3.22 shows the critical inclination of the J2 perturbation with 

an easy and fast method of integration. The PIMAG does not use any algebraic 

analysis, just the numerical integration. The minimum occurs exactly at the 

critical inclination. Many readers may ask the advantage of the PIMAG, since 

Figure 3.22 shows what it already known in the previous literature. 

It is important to remember, first of all, that PIMAG can show minimums for 

different perturbations, whether they are added together or studied separately. 

The PIMAG does not require any algebraic analysis, just numerical analysis. 

The perturbations, orbits and stability of spacecrafts orbiting the Earth are well 

known. Nevertheless, the study of irregular bodies like asteroids and comets is 

intriguing and challenging for the researchers today. The PIMAG can be a useful 
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method to find less perturbed orbits with no algebraic calculation, just the 

numerical integration.  

The problem with the J3 and C22 perturbation is that they are asymmetric and 

therefore the magnitude of the PIMAG are larger. The J4 is a symmetric 

perturbation but was omitted here since the magnitude of this perturbation does 

not show any significant result isolated. The sum of the J2 and J4 perturbation 

did not change the critical inclination value. 

Figure 3.23 – PI of several disturbing forces as a function of the inclination from 0 to π 
rad. 

 

Figure 3.2 shows an interesting behavior. The maximum value of the third-body 

perturbation occurs when the inclination of the spacecraft is aligned with the 

inclination of the third-body and the minimum occurs when the inclinations of 

the orbit of the spacecraft is perpendicular to the third-body perturbation. The 

inclination of the Moon is 18 degrees and the Sun is 23.5 degrees.  
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The higher values for the mean PI appear for the cases where the orbit is 

coplanar with the third-body, either prograde or retrograde. They have about the 

same values, which mean that, regarding costs for station keeping maneuvers, 

prograde and retrograde orbits are similar. The orbits with minimum values are 

the ones that lie in a plane that is perpendicular to the plane of the orbit of the 

third-body. This is expected, because the co-planar orbits are the ones that 

pass closer to the third-body, compared with the inclined orbits.  Of course, the 

perpendicular orbit is the one that makes the spacecraft to stay at a longer 

distance from the third-body, and therefore, the minimum occurs there. 

The point now is that if the mean distance of an orbit co-planar to the third-body 

is the same compared to an orbit perpendicular to this plane. The third-body is a 

perturbation that is related to the square distance from the third-body. The proof 

that the PI values are different at co-planar and perpendicular orbits can be 

evaluated by a line integral of the trajectory of the orbit (let’s state as k) and the 

acceleration of the third-body 𝐚𝑇ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦, as given below 

𝑀𝑎𝑔 = ∫ 𝑑𝒌 ∙ 𝐚𝑇ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦

𝑘𝑓

𝑘0

 (3.14) 

where 𝑘0 is the initial position of the trajectory and 𝑘𝑓 is the final position of the 

trajectory, after one orbital period. 

If the PI values are correct, then the  𝑀𝑎𝑔 values would follow the PI pattern. 

But, it is important to remember that the PI considers the averaging technique. 

The integration in Equation 3.14 would have to consider the averaging 

technique, when the inclination of the orbit is changed. 

On the other hand, there is an easier and fast way to demonstrate the 

difference on the PI values for the planar and perpendicular orbits. 

Let’s consider a reference system Oijk (see Figure 3.24 ). The third-body lies in 

the i axis. There are two circular orbits to be compared; a planar one (Orbit 1), 

that lies in the ik plane and a perpendicular one (Orbit 2), that lies in the jk 
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plane. The radius of the orbits is 3 and the centre of the orbit is the centre of the 

reference system. The distance from the third-body to the centre of the 

reference system is 4.  

The acceleration of the third-body perturbation is related to square distance of 

the spacecraft to the third-body. Let’s compute the acceleration in 4 points of 

each orbit to compare them. The points for the Orbit 1 are ∓ 3i and ∓ 3k. The 

points for the Orbit 2 are ∓ 3j and ∓ 3k (see Figure 3.24 ).  

Let’s state that the magnitude of the acceleration is related to 1/r’2, where r’ is 

the distance from the third-body to the spacecraft.  

Then the magnitude of the acceleration of the Orbit 1 would be 1 at 3i; 1/72 at -

3i; and 1/52 at ∓ 3k. The magnitude of the acceleration of the Orbit 2 would be 

1/52 at ∓3j and at  ∓3k. If it is summed all the 4 magnitude accelerations of 

each orbit, Orbit 1 would have the value 1348/1225 and the Orbit 2 would have 

196/1225. 

Figure 3.24 – Third-body and the reference system Oijk. 

 

This easy calculation shows that, at planar orbits, the magnitude acceleration 

when the orbit is planar is larger compared to the case where the orbit is 

perpendicular. The planar orbits are the ones that pass closer to the third-body 
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and the magnitude increase of the acceleration is larger than in perpendicular 

orbits.  

Figure 3.25 – PI of the solar radiation pressure as a function of the inclination from 0 to 
π rad. 

 

Figure 3.25  has the mass of the system of 100 kg. The mass was changed in 

order to amplify the magnitude of the solar radiation pressure. Also, the semi-

major axis of this orbit was considered to be 7000 km. The semi-major axis was 

reduced so there would be more time and passages through the umbra and 

penumbra areas of the geometric configuration of the Sun, Earth and the 

spacecraft. Figure 3.25  shows clearly that the minimum value occurs when the 

inclination of the orbit is the same of the Sun. This means that there are more 

passages through the umbra region, where the solar radiation pressure 

perturbation drops to zero. The maximum occurs, evidently, when the orbits are 

perpendicular. This means that the spacecraft receives more frequently the 
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radiation of the Sun and there are fewer passages even through penumbra 

regions. 

It is insignificant the variation of (
𝑘

𝑘0
)
2

 in Equation 2.11 as the spacecraft 

approaches the Sun. When the spacecraft closer to the Sun, it receives more 

radiation, and the solar radiation pressure should increase the magnitude 

(coplanar orbits). When the orbit is perpendicular to the Sun’s orbit, the solar 

radiation magnitude would decrease. The logic is the same of the third-body 

perturbation pattern. Nevertheless, the passages through the umbra and 

penumbra areas overcome this effect. In many references (KUGA et al., 2011; 

CAPÓ-LUGO; BAINUN, 2011), the power radiation that comes from the Sun in 

an Earth orbit is considered to be constant, because its change due to the 

distance of the spacecraft to the Sun is negligible.  

3.2. The Solar Sail Study 

The solar sail is used, in this section, to reduce the disturbing forces effects. 

The solar sail can have a variable flat area or a fixed area. The solar sail is used 

to reduce one or more disturbing forces. The initial parameters of this section 

include the initial time and date of the simulation. The time and date provides 

the position of the Sun and the Moon. The PI studied in this section has the 

averaging technique. The solar sail finds, at every step of time, the optimal 

position it must have in order to reduce the disturbing forces by applying a solar 

radiation pressure perturbation in the opposite direction. The initial position and 

the time and date are essential to predict the optimal attitude of the solar sail. 

The magnitude reduction is extremely dependent on these parameters. 

Therefore, the averaging technique is used in this section for the PI to find 

average results with no dependence on the initial parameters. 

The initial time for the integration is 1st of January, 2016, at 17:30 00’ for the 

cases that do not use the averaging technique. 
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Table 3.5 – Initial parameters of the orbit solar sail study. 
 

 

Table 3.6 – Initial Parameters of the Spacecraft for the solar sail study. 
 
 

 

 

 

The reflectivity parameters for the solar sail is ∈𝑠𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙= 0.9. 

Figure 3.25b shows the magnitude of the solar sail and the magnitude of all the 

disturbing forces (lunisolar, Jn and solar radiation pressure) considered for one 

orbital period. The solar sail was considered to have a variable area, with the 

maximum area of 500 m2. 

 

 

 

 

 

 

 

 

Semi-major 
axis 

Inclination Eccentricity Argument f 
Perigee 

Ascending 
Node 

26000 km 0 0 0 0 

Mass (kg) ∈ Area (m2) 

200 0.8 6 
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Figure 3.25b– Acceleration of the solar sail and the disturbing forces for a system with 
100 kg and maximum area of 500m2. 

 

Figure 3.25b shows that the solar sail can reduce the effects of the disturbing 

forces. Nevertheless, the maximum area of the solar sail in this simulation is 

500 m2
, even if the necessary area to overcome the sum of all the disturbing 

forces effect is much larger than 500 m2.  

Figure 3.26 considers the mass of the spacecraft of 50 kg. The mass reduction 

is related to the magnitude of the solar radiation pressure or the efficiency of the 

solar sail. 
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Figure 3.26 – Acceleration of the solar sail and the disturbing forces for a system with 
50 kg and maximum area of 500m2. 

 

The lighter spacecraft allows the solar sail to increase its efficiency, since the 

smaller mass is related to less inertia and the increase of the magnitude of the 

solar radiation pressure. The period of the time where the red line of the 

acceleration is zero is the period of the time where the solar radiation pressure 

can overcome totally the disturbing forces effects. This means that the solar 

radiation pressure can cancel the disturbing forces during a short interval. 

Figure 3.27  shows the area of the variable solar sail for the spacecraft of 50 kg. 
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Figure 3.27 – Area of the solar sail for one orbit period. 

 

The same interval where the solar sail can reduce the disturbing forces is the 

interval where the area of the solar sail is smaller than 500 m2. At this interval, 

the area required to overcome the disturbing forces effects is smaller than the 

maximum area and, for that reason, the magnitude of the perturbation is zero. 

The next Figure shows why the area of this simulation is not always smaller 

than the maximum area and that there are some intervals where the solar sail 

cannot reduce the disturbing forces, since the area achieves its maximum 

value. 
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Figure 3.28 – The angle of incidence of the solar sail for one orbit period. 

 

Equation 2.11 shows that the magnitude of the solar radiation pressure is 

proportional to 𝑐𝑜𝑠2∅. Due to this correlation, as the angle of incidence 

increases, the magnitude of the solar radiation pressure reduced. The interval 

of the time where the solar sail can reduce the disturbing forces effects is the 

interval where the angle of incidence has its lowest values. The angle of 

incidence shown in Figure 3.28 guarantees that the direction of the disturbing 

forces that needs to be compensated and the direction solar sail are opposite. 

Even if the magnitude is not the same, the direction of the solar sail is 

optimized. 

Figure 3.29 shows the direction of the acceleration caused by the sum of all the 

disturbing forces and the acceleration caused by solar sail for the X axis in the 

inertial reference system. 
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Figure 3.29 – Versor for the X axis of the solar sail and of the disturbing forces for one 
orbit period.  

 

The direction of the solar sail and the disturbing forces are opposite. This 

means that the solar radiation pressure could create a disturbing force that is 

totally opposite to the other forces. But this is not always true. If there is a 

passage through the umbra region, than the solar sail becomes inactivate 

because there is no solar radiation. There is also another exception, when the 

angle of incidence is larger than 90 degrees, which means that the solar 

radiation pressure cannot reduce the disturbing forces and must be inactive 

until this angle drops below 90 degrees. It is impossible that an angle of 

incidence is above 90 degrees, but the numerical solutions can be found in 

Equation 2.11. The angle of incidence above 90 degrees means that the 

geometry of the position of the Sun and the direction of the disturbing forces 

does not allow the solar sail to reduce the disturbing forces.  
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Figure 3.29 shows also the normal direction of the solar sail at the X axis if 

∈𝑠𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙= 1. A surface 100% reflective means that the normal of the solar sails 

is opposite to the direction of the force of the solar radiation pressure. It is 

convenient to consider a solar sail with 100% of efficiency, since the numerical 

calculations become easier and there is no need to solve a non-linear system of 

equations. Unfortunately, up to now, the solar sail efficiency is around 90%. 

This means ∈𝑠𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙= 0.9. The method used in this thesis with a non-perfect 

solar sail reflector requires that the software solves the nonlinear system of 

equations given by Equation 2.12. The attitude of the solar sail for non 100% 

reflective solar sails are given by the norm of the solar sail 𝑛̂. 

The next figures show the attitude of the solar sail 𝑛̂ for ∈𝑠𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙= 0.9 and the 

direction of the disturbing forces. 

Figure 3.30 – Normal of the solar sail with reflectivity of 0.9 and the versor of the 
disturbing forces for X axis.  
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Figure 3.31 – Normal of the solar sail with reflectivity of 0.9 and the versor of the 
disturbing forces for Y axis.  

 

The direction on the Z axis was omitted because the magnitude of this direction 

is much lower, if compared to the X and Y axis. 

It is possible to see in Figures 3.30 and 3.31  that the directions are not always 

opposite for of the normal and the disturbing forces, since the solar sail is not 

100 reflective. As the efficiency of the solar sail drops, the direction of the 

normal deviates more from the direction of the disturbing forces. Figures 3.32 

and 3.33 show the directions, for the same simulation but with ∈𝑠𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙= 0.7 
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Figure 3.32 – Normal of the solar sail with reflectivity of 0.7 and the versor of the 
disturbing forces for X axis.  
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Figure 3.33 – Normal of the solar sail with reflectivity of 0.7 and the versor of the 
disturbing forces for Y axis.  

 

Figure 3.34 shows the efficiency of the solar sail with a fixed area, now of 400 

m2
, and mass of the system of 50 kg. 
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Figure 3.34 – Acceleration of the solar sail and the disturbing forces for a system with 
50 kg and fixed area of 400m2. 

 

There is an interval where the acceleration of the solar sail is larger than the 

disturbing forces. The problem with a fixed area for the solar sail is that the 

magnitude of the solar sail perturbation cannot be controlled and may overcome 

the disturbing forces. This means that, at the interval where the solar sail 

perturbation is larger, the solar sail not only overcomes the disturbing forces 

effects but it also creates a perturbation on the opposite direction. Even if the 

solar radiation pressure with fixed area can exceed the perturbation that needs 

to be reduced, this excess may represent a reduction of the total magnitude of 

the disturbing force. Figure 3.35 shows the same simulation of Figure 3.34 , but 

with the sum of all the perturbations with the solar sail acceleration. 
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Figure 3.35 – Acceleration of the solar sail and the disturbing forces with the solar sail 
for a system with 50 kg and fixed area of 400m2. 

 

Figure 3.35 shows that even if the solar radiation pressure exceeds the 

disturbing forces magnitude, it stills compensates the effects caused by them in 

this simulation. 

The PI value without the averaging technique for this simulation is given in 

Table 3.7  for the mass of 50 kg for the system. 

Table 3.7 – PI values for the solar sail study. 
 
 

 

 

 

 

PIall perturbations PIall perturbations + 

variable solar sail 
PIall perturbations 

+ fixed solar sail 

2.3585 m/s 1.1699  m/s 1.3499  m/s 
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Table 3.7 shows that the solar sail with the variable area could reduce almost 

half of the magnitude of the perturbation. The fixed area for the solar sail is not 

that efficient as the variable one, but it can still reduce considerably the 

perturbations effects.  

The solar sail used to reduce the other disturbing forces demonstrates to be 

efficient and a promising concept for future missions. 

The mission must evaluate carefully the disturbing forces that are needed to be 

reduced and also the area that the solar sail must have in order to make the 

compensation. 

The idea of the results is to show the reader the potential use the solar sail can 

have and the optimal results it can achieve. Nevertheless, the results can only 

be used as first mission analysis, since many other factors must be taken in 

account, like the physical parameters of the actuators, the internal torques, the 

failures, etc. 

Figure 3.36 shows a passage through an umbra region and the drop of the 

efficiency of the solar sail. The semi-major axis chosen for this simulation was 

10000 km. 
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Figure 3.36 – Acceleration of the solar sail and of the disturbing forces with a semi-
major axis of 10.000 km. 

 

In Figure 3.36 it is possible to see that there is a range where the solar sail 

cannot reduce the perturbations effects. This is due to the passage through the 

umbra, as it is shown in Figure 3.37. 
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Figure 3.37 – Parameter for the luminosity of the orbital path. 

 

The next two Figures, 3.38 and 3.39, consider the solar sail use at a 

geostationary orbit. The magnitude of the solar sail acceleration reduction is 

shown in Figure 3.38, while the angle of incidence is shown in Figure 3.39. 
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Figure 3.38 – Acceleration of the solar sail and of the disturbing forces for a 
geostationary orbit. 
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Figure 3.39 – Angle of Incidence of the solar sail for the geostationary orbit. 

 

In Figure 3.39, the necessary angle of incidence achieves values beyond 90 

degrees. Physically, it is impossible to conceive an angle of incidence larger 

than 90 degrees, and therefore the solar sail is inactivated. 

As the semi-major axis changes, or other Keplerian elements, the magnitude of 

the perturbation changes as well. Not only the area that the solar sail must have 

to compensate the effects of disturbing forces changes just the Keplerian 

elements, but also the angle of incidence. At the geostationary orbit, the 

magnitude of the third-body perturbation becomes more prominent (see Figure 

3.13) than the Jn perturbation. The direction of the disturbing forces changes as 

the source change (Earth or third-body) or when the magnitude of the forces 

changes. 

With the working principles of the solar sail introduced, the next results show 

the PI to evaluate the efficiency of the solar sail as a function of some 



118 
 

Keplerians elements of the orbit. Only the solar sail with variable area will 

presented, since the results are optimized. 

For the next Figure 3.40, the values of the PI using the averaging technique is 

considered as a function of the semi-major axis. The mass of the spacecraft is 

considered to be 100 kg. Many different maximum areas were considered for 

the variable solar sail. 

Figure 3.40 – PI of the disturbing forces with the solar sail use as a function of the 
semi-major axis from 3500 to 55000 km. 

 

It is possible to see that when the maximum area increases, the minimum value 

of PI and the semi-major axis also decrease. When the maximum area of the 

solar sail increases, the solar sail is capable of reducing more efficiently the 

perturbations.  
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Figures 3.41 and 3.42 show the variable solar sail with the maximum area of 

500 m2 and the total mass of the system of 100 kg considering variations in the 

eccentricity and inclination. 

Figure 3.41 – PI of the disturbing forces and the solar sail as a function of the 
eccentricity from 0 to 0.3. 
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Figure 3.42 – PI of the disturbing forces and the solar sail as a function of the 
inclination from 0 to 𝜋 rad. 

 

The solar sail is efficient in reducing the magnitude of the disturbing forces. The 

minimum J2 perturbation vanishes as the solar sail is used to reduce the 

disturbing forces effects. But, as the inclination achieves the polar orbits, the 

efficiency decreases if compared to equatorial orbits. When the inclination 

increases, the angle of incidence increases and the efficiency of the solar sail 

decrease. 

When the eccentricity increases, the magnitude of the perturbation increases 

and the efficiency of the solar sail decreases. The increase of the eccentricity, 

grows the magnitude of the disturbing forces. The solar sail area is fixed and, 

for that reason, the magnitude of the solar sail perturbation cannot increase. 

The PI maps with the solar sail are a good tool to analyze the efficiency of the 

solar sail in reducing the total perturbations. It is a simple method that can 
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predict the magnitude reduction for many different orbits as a function of the 

Keplerian elements. It is possible to study different solar sails with different 

areas and to analyze the efficiency of each one. The solar sail proposed here is 

capable of reducing the magnitude of the perturbation in an efficient way. This 

solar sail can become a great future propulsion system, with no fuel 

consumption, to reduce the disturbing forces effects. 

The last topic of the solar sail is to validate it in the STRS. The STRS can 

provide a realistic environment for the solar sail use with a PID control. 

The STRS used the solar sail to reduce the disturbing forces effects. And, if the 

solar sail cannot cancel the magnitude of the perturbation, then the propulsion 

system acts on the system to zero the perturbation. As the simulator is a PID 

controller, at each step of time, the orbit is constantly trying to keep the 

Keplerian orbit. The solar sail acts like a primary propulsion system that reduces 

the perturbation effect with no fuel consumption. The second propulsion system 

is an actuator that consumes fuel in the maneuvers.  

It is assumed that the propulsion system can actuate at every direction. The 

propulsion system considered is based on the plasma engine named PHALL 2 

studied and developed by Dr. Leonardo Ferreira at UnB (University of Brasilia). 

The specific impulse is 1607 s and the average measured thrust is 120 mN. 

(FERREIRA et al., 2016) 

The orbit studied is the geostationary orbit. Table 3.8 shows the initial 

parameters for the simulations. The disturbing forces included are: the solar 

radiation pressure, the J2 perturbation and the third-body perturbation of the Sun 

and the Moon. 

Table 3.8 – Initial Parameters of the Spacecraft for the STRS study. 
 
 

 

 

Mass (kg) ∈ 𝐶𝐷 Area (m2) 

500 0.9 2 10 
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Table 3.9 – Initial Parameters of the Orbit for the STRS study. 
 
 

 

The initial time and date of the simulation is 05/01/2013 at 0:00:00’. 

Figures 3.43 to 3.51  show the results for the solar sail with maximum area of 

500m2. 

Figure 3.43 – ∆𝑉 value for the solar sail, the perturbations and the thrust for one orbital 
period with a variable area for the solar sail. 

 

Figure 3.43 shows the ∆𝑉 of the solar sail, the thrust and the perturbations. The 

∆𝑉 thrust decays as the solar sail ∆𝑉 increases. At the length of the time where 

the solar sail can fully control the perturbations the thrust is off. There is a small 

portion of the interval where the solar sail is reducing the perturbations that the 

solar sail fails to reduce them. The explanation for this factor comes in Figure 

Semi-major 
axis 

Eccentricity Inclination Argumento f 
Perigee 

Ascending 
Node 

42164 km 0 0 0 0 
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3.45. At the end of the simulation, the solar sail perturbation is zero and the 

thrust begins to act again to reduce the disturbing forces effects. 

Figure 3.44 – The fuel consumption evolution for one orbital period with a variable area 
for the solar sail. 

 

At Figure 3.44 is possible to see the total propellant mass as the time pass by. 

The total mass consumed by the thrust is steady when the solar sail is active. 

The solar sail can reduce the disturbing forces for a range of time and no fuel is 

used. As the solar sail efficiency drops, the thrust begins to act again and the 

fuel is consumed. The total fuel consumption with the solar sail use and the 

thrust engine for one orbital period is 0.01675 kg. If the solar sail was inactive 

and only the thruster was active to reduce the disturbing forces effects, then the 

fuel consumption for one orbital period would be 0.02356. The solar sail 

reduced up to 29% of the fuel consumption in this simulation. 
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Figure 3.45 – The angle of incidence for one orbital period with a variable area for the 
solar sail. 

 

Figure 3.45 shows the angle of incidence of the sail. The interval where the 

solar sail can fully control the disturbing forces is when the angle of incidence is 

low. Lower angle of incidence requires smaller areas to guarantee that the 

magnitude of the solar sail perturbation is equal to the magnitude of the 

disturbing forces. The “belly” that occurs around 2.75 x 104 s has an increase of 

the angle of incidence and this increase requires that the solar sail area is larger 

than the maximum one imposed. In this way, the solar sail cannot fully control 

the disturbing forces in this region. The angle of incidence for the second part of 

the period of the orbit goes to 90 degrees. This means that the solar sail cannot 

reduce the disturbing forces. Nevertheless, there are some small intervals that 

the angle of incidence drops and the solar sail can slightly reduce the disturbing 

forces effects. 
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Figure 3.46 – The area of the solar sail evolution for one orbital period with a variable 
area for the solar sail. 

 

Figure 3.46 shows that the area of the solar sail is strictly related to the angle of 

incidence. As the angle of incidence decreases, the required area to reduce the 

disturbing forces decreases as well. The area achieves the maximum for the 

solar sail when the angle of incidence increases. The area drops to zero when 

the angle of incidence is equal to 90 degrees. The area of the solar sail does 

not have to necessary drop to zero, but the area that is illuminated by the Sun 

must drop to zero. If the maximum area of the solar sail were larger than 500 

m2, the solar sail could reduce the disturbing forces more efficiently when the 

angle of incidence increased. 
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Figure 3.47 – The magnitude of the thrust of the propulsion system for one orbital 
period with a variable area for the solar sail. 

 

Figure 3.47 shows the thrust applied in Newton for each different axis and for 

the magnitude of the thrust. It is possible to see that for the interval that the 

solar sail reduces almost to zero the disturbing forces effects, the thrust is 

inactive. For the other periods of the orbit, the thrust is active and the maximum 

force applied was 6.5 10-3 N. This means that, for the PHALL 2 plasma thruster 

used in this simulation, the magnitude of only one thruster is capable of 

controlling the disturbing forces. 
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Figure 3.48 – The velocity increment of the perturbations in the OXYZ reference 
system evolution for one orbital period with a variable area for the solar 
sail. 

 

Figure 3.48 shows the velocity increment due to the disturbing forces in each 

inertial axes and the magnitude of the disturbing forces. It is possible to note 

that the pattern of the thrust + solar sail is the pattern of the magnitude 

increment of the disturbing forces. 

The Figures 3.49 to 3.51 show the versors, on the inertial frame, of the solar sail 

perturbation direction and the sum of all the disturbing forces that needs to be 

cancelled. 
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Figure 3.49 – The versors of the solar sail and the perturbations in the X axis for one 
orbital period. 

 

Figure 3.50 – The versors of the solar sail and the perturbations in the Y axis for one 
orbital period. 
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Figure 3.51 – The versors of the solar sail and the perturbations in the Z axis for one 
orbital period. 

 

The station-keeping maneuver for the Keplerian orbit is achieved successfully 

for this simulation. The thruster is capable of reducing the disturbing forces 

when the solar sail is not active and the PID controller is capable of keeping the 

spacecraft following the nominal trajectory with small errors. 

Figures 3.52 and 3.53 show the solar sail with a fixed area of 300 m2. Figure 

3.45 shows that the angle of incidence is the same for the fixed area of the solar 

sail. The angle of incidence is the same when the propulsion system is capable 

of reducing the disturbing forces effects. 
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Figure 3.52 – ∆𝑉 values for the solar sail, the perturbations and the thrust for one 
orbital period with a fixed area for the solar sail. 

 

The ∆𝑉 now differs from the solar sail with the variable area for the thrust and 

the solar sail perturbation. The solar sail with fixed area follows clearly the 

pattern of the angle of incidence. When the angle of incidence of the solar sail is 

low, the ∆𝑉 achieves its highest values; when the angle of incidence increases, 

the magnitude decreases. The propulsion system is active all the time reducing 

the disturbing forces to guarantee that the perturbations are compensated. The 

fuel consumption for this maneuver is 0.01863 kg. The reduction of the fuel 

consumption is 20%, if compared to the maneuver with the thrust usage only. 
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Figure 3.53 – The fuel consumption evolution for one orbital period with a fixed area for 
the solar sail. 

 

3.3. The Electromagnetic Tether Study 

This section includes the electromagnetic tether study. The initial parameters for 

the simulations are given in Table 3.10. The results in this section are related to 

de-orbit employment of the tether, when the tether current runs in the direction 

of the induced EMF. The tether attitude is the radial attitude (vertically oriented). 

Table 3.10 – Parameters of the spacecraft system 

Dimensions (Asub1, 
A sub2) 

6 m2, 0.6m2
 

Mass (m1, m2) 100 kg, 5 kg 

Load resistance 
(Ohm) 

0 

 

Table 3.11 – Parameters of the Tether Cable 
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Tether core 
material 

Aluminium  

Core density 
(kg/m3) 

2850 

Core resistivity 27.4 x 10-9 

Tether radius (mm) 0.2 

 

The resistance of the tether is neglected, although the system described in 

Table 3.11 would generate a non-negligible resistance. The resistance 

complicates the tether modeling and it is neglected in most of the investigations 

like in Johnson and Hermann (1998), Estes et al. (1997), Lorenzini et al. (1997) 

and Sanmartin et al. (1993). 

Table 3.12 – Electron Density Profile (e-/m3). 

Illuminated region 2 x 1012
 

Penumbra region 1 x 1011
 

Umbra region 0.1 x 1011
 

 

Table 3.13 – Initial Physical and Orbital Parameters. 

Semi-major axis 
(km) 

6978 (600 km of 
altitude) 

Eccentricity 0 

Inclination 0 
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Tether length (km) 5 

Pitch and Roll 
angles for the de-

orbit 

0 

Initial time of the 
simulation 

12:00 

Date of the 
simulation 

01/01/2015 

 

Several simulations are carried out to study the effect of the EDT. The effect of 

each factor is determined by varying its value and keeping the other parameters 

as given by the tables above. 

The angles of pitch and roll are zero and it results in the component of the 

Lorentz force along the x’-axis to be zero. The results in this section are given in 

the orbital coordinates. The explanation of the zero axis perturbation is given in 

Equation 3.15. The direction of the Lorentz force given in Equation 2.37 is given 

by the cross product 𝑑𝑳𝑥𝑩. 

𝑑𝑳𝑥𝑩 =  (𝐿𝑦′𝐵𝑧′ – 𝐿3𝐵𝑧′)𝑥̂` + (𝐿𝑧′𝐵𝑥′ – 𝐿𝑥′𝐵𝑧′)𝑦̂` +  (𝐿𝑥′𝐵𝑦′ – 𝐿𝑦′𝐵𝑥′)𝑧̂` (3.15) 

The tether with radial attitude direction (pitch = 0 and roll = 0) does not have any 

perturbation for this integral, since 𝑑𝑳 =  𝐿1𝑥̂` and |𝑑𝑳𝑥𝑩|𝑥̂` = 0. 

3.3.1. The Tether Length Study 

Forward et al. (1997) et al. states that the EDT should have a length of 5 to 20 

km in order to guarantee that the tether remains taut all the time. The Figures 

shows the average EMF, the mean current at m1 and the average Lorentz force 
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for the insulated and bare tethers. The average value means the mean value for 

one orbital period. 

Figure 3.54 – The average EMF for insulated and bare tethers for tether lengths from 5 
to 20 km. 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

Figure 3.55 – The average current for insulated tether for lengths from 5 to 20 km. 
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Figure 3.56 – The average current for bare tether for lengths from 5 to 20 km. 
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Figure 3.57 – The acceleration on the Y’ axis for insulated tether from lengths from 5 to 
20 km. 
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Figure 3.58 – The acceleration on the Y’ axis for bare tether from lengths from 5 to 20 
km. 
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Figure 3.59 – The acceleration on the Z’ axis for insulated tether from lengths from 5 to 
20 km. 
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Figure 3.60 – The acceleration on the Z’ axis for bare tether from lengths from 5 to 20 
km. 

 

The average EMF in Figure 3.54  is the same for both of the tethers, because it 

depends only on 𝒗𝑟, 𝑩, 𝑑𝒍 and total length 𝐿𝑡𝑜𝑡𝑎𝑙 (see Equation 2.34). 

The current for the insulated tether follows the 0.528th power law behavior given 

by Equation 2.35 in Figure 3.55. The Lorentz forces in Figures 3.57 and 3.59 

approximately follow the 1.528th power law, since the force is proportional to 

both the current and tether length (see Equations 2.35 and 2.37). 

The induced current for the bare tether follows the 1.5th power law behavior of 

the tether length in Figure 3.56, related to Equations 2.39 and 2.41. The Lorentz 

fore given by Figures 3.58 3.60 grows with 2.5th power of the tether length. 

The results are consistent with the mathematical model and the growth power of 

the bare tethers, in terms of the current and the Lorentz forces. It is a major 

advantage of the bare tethers. 
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3.3.2. The Tether Semi-Major Axis Study 

This section studies the current, average EMF and the induced Lorentz force in 

tethers as a function of the semi-major axis. 

Figure 3.61 – The average EMF for insulated and bare tethers from 6500 to 9500 km of 
semi-major axis. 
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Figure 3.62 – The average current for insulated tether from 6500 to 9500 km of semi-
major axis. 
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Figure 3.63 – The average current for bare tether from 6500 to 9500 km of semi-major 
axis. 
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Figure 3.64 – The acceleration on the Y’ axis for insulated tether from 6500 to 9500 km 
of semi-major axis. 
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Figure 3.65 – The acceleration on the Y’ axis for bare tether from 6500 to 9500 km of 
semi-major axis. 
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Figure 3.66 – The acceleration on the Z’ axis for insulated tether from 6500 to 9500 km 
of semi-major axis. 
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Figure 3.67 – The acceleration on the Z’ axis for bare tether from 6500 to 9500 km of 
semi-major axis. 

 

Once again, the EMF does not depend if the tether is bare or insulated, as 

shown in Figure 3.61. The decay on the EMF force as the altitude increase 

follows the decay of 3.67th power of the altitude. The decay is due to the 

prominent term of the magnetic field of the Earth (≈3rd power of decay) added 

with the 0.5th power decay of the orbital speed (COSMO AND LORENZINI, 

1997). The difference between the decay of the results of 3.67th and the 

expected decay of 3.5th is due to the higher order terms of the magnetic field 

model (see Figure 3.61). 

The insulated current varies with the 0.528th power of the EMF. The current 

would decay with the 1.85th power of altitude (3.5*0.528=1.85) for the first order 

of approximation. The result obtained with a current and refined model lead to a 

decay with the 1.78th
, power as shown in Figure 3.62 .  
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For bare system, the decay of the current would be with the 1.84th order for the 

first approximation, with the multiplication of 3.5th due to the prominent term of 

the magnetic field and 0.5 due to the velocity decay, as the altitude increases. 

The results obtained in this thesis with the IGRF10 have the 1.83th power law of 

decay, as shown in Figure 3.56. 

The Lorentz force is related to the current and the magnetic field of the Earth. In 

this way, the expected decay, at first order approximation, would be 5.54th and 

5.25 of the semi-major axis for insulated and bare wires, respectively. 

Nevertheless, the results obtained were 4.91th and 5.02th power of semi-major 

axis, respectively (see Figures 3.64 3.65 3.66 and 3.67 ). 

3.3.3. The Tether Inclination Study 

This study is related to the orbital inclination change. As the inclination of the 

orbit changes, the orbit goes from direct to retrograde, the EMF and the current 

reverse their directions (see Figures 3.68 to 3.7). The current, EMF and force 

magnitudes are larger in orbital inclination of π-𝑖 than in 𝑖, since the retrograde 

orbits have larger velocity magnitudes. 
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Figure 3.68 – The average EMF for insulated and bare tethers from 0 to 𝜋 rad of 
inclination. 
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Figure 3.69 – The average current for insulated tether from 0 to 𝜋 rad of inclination. 
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Figure 3.70 – The average current for bare tether from 0 to 𝜋 rad of inclination. 
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Figure 3.71 – The acceleration on the Y’ axis for insulated tether from 0 to 𝜋 rad of 
inclination. 
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Figure 3.72 – The acceleration on the Y’ axis for bare tether from 0 to 𝜋 rad of 
inclination. 
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Figure 3.73 – The acceleration on the Z’ axis for insulated tether from 0 to 𝜋 rad of 
inclination. 
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Figure 3.74 – The acceleration on the Z’ axis for bare tether from 0 to 𝜋 rad of 
inclination. 

 

The study encloses the de-orbit study with the Fy` negative for most of the 

cases. Fy` positive means that the EDT is used to apply thrust and raise the 

altitude of the system. 

For altitudes above the geostationary orbit, the relative speed of the magnetic 

field becomes greater than the orbital velocity and the EDT has an induced 

current flowing in the direction of the EMF can be used as a thrust and an 

electrical power. Altitudes under the geostationary orbit can use the induced 

current flowing in the direction of the EMF as a drag/de-orbiter. Furthermore, if 

there is a power supply that overcomes the EMF and allows the current to flow 

in the opposite direction of the EMF, then the EDT below the GEO can be used 

as a thrust with the consumption of the electrical power. 
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This first study of the EDT presented so far includes only the de-orbit case. But 

the thrust EDT with power consumption for orbits below the GEO presents the 

same pattern of the EDT tether, like EMF, current and force. The only difference 

is that it is assumed that the system has a power supply that can overcome the 

EMF and allow the current to flow in the opposite direction of the EMF. Since 

the tether resistance is neglected, the average EMF multiplied by the average 

current presented in the results, in the average power the power supply must 

apply. 

3.3.4. The De-Orbiter EDT Effect In Orbital Motion And Perturbation 

Integrals 

This section presents the perturbation integrals and the effect of the EDT in the 

altitude change in the orbital motion. 

The EDT used as a de-orbiter can also be included in the estimative of the orbit 

decay using Perturbation Integrals. 

The estimative of the orbit decay can also be applied for eccentric orbits. The 

mathematical model should be different, as given in the previous section for 

circular orbits. It is necessary to evaluate the time of the orbit decay with the 

help of  Equation 3.4. After some manipulations, Equation 3.4 can be written as 

∆𝐸𝑁 =
𝐹𝑁

𝑚
𝑣𝑁 ∆𝑡𝑁 (3.16) 

where 𝐸𝑁 is the energy of the orbit N.  

For each interaction N, 𝑇𝑁 is the period of the orbit N, and PIN is given by 
𝐹𝑁

𝑚
𝑇𝑁. 

In order to make this estimative more precise, it is possible to use a little trick. 

For eccentric orbits, the estimation of the time decay can consider the initial 

position of the spacecraft. Considering the changes of the energy of the orbit 
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that occurs when the orbit is decaying, the position of the spacecraft in the 

eccentric orbit can be found by  solving the Kepler’s equation: 

𝑛∆𝑡 = u − esin(u) (3.17) 

where n is the mean motion, e is eccentricity of the orbit and u is the eccentric 

anomaly (which gives the position of the spacecraft). 

Equation 3.17 allows the estimative of the orbit decay to be more precise, 

especially for highly eccentric orbits with high apogee distance. The Equation 

3.1 is not a must, but it helps to reduce the error of the estimation. 

The torques on the motion of the conductive tether are neglected. Nevertheless, 

since high currents (from 0.5 to 5 Amp) generates larger Lorentz induced 

torques that can destabilize the system, the maximum current imposed for this 

study is given as follows 

𝐼 = (0.2 + 0.1 ∗ sin (3𝑗)) (3.18) 

where 𝑗 is the true anomaly of the orbit of the spacecraft. The 3𝑗 helps the 

tether to be stabilized in the roll oscillations.  

The results presented next are based in one circular and two eccentric orbits, 

with eccentricity equal to 0, 0.1 and 0.15, respectively. The results are based on 

Tables 3.10 to 3.13 , except for the different eccentricities. The attitude of the 

tether was considered to be radial. In addition, it is necessary to consider a 

constraint for the estimated time of the orbit decay. The constraint is that when 

the position of the spacecraft reaches the Earth’s surface, the simulation stops. 

The same constraint is considered for the orbit propagator. 

Table 3.14 – Time of decay for different eccentricities. 

 Estimated Time Orbit Propagator 
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(days) (days) 

Eccentricity = 0 20.03 19.69 

Eccentricity = 0.1 11.27 10.77 

Eccentricity = 0.15 5.96 5.94 

 

Figure 3.75  shows the PI values for these three different equatorial orbits. 

Figure 3.75 – The PI of the disturbing forces for different eccentric orbits as a function 
of the semi-major axis from 6500 to 7900 km. 

 

As we can see from Figure 3.75, when the eccentricity of the orbit increases, 

the magnitude of the PI value of the tether perturbation also increases. As the 

magnitude of the PI value increases, the time of orbit decay is shortened (as we 

can see in the table above). The eccentricity also decreases the apogee of the 
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orbit. Equation 3.17 is essential to guarantee the estimate time of the decay of 

the orbit with minimum error. 

The orbit studied is a LEO. Therefore, the atmospheric drag can be included in 

the PI with the EDT. The result below shows the PI integrals with the 

atmospheric drag included as a perturbation. The results are based in the initial 

parameters in Tables 3.10 to 3.13  

Figure 3.76 – The PI of the disturbing forces for different eccentric orbits as a function 
of the altitude from 150 to 1500 km.. 

 

It is possible to note that the magnitude of the drag perturbation increases 

exponentially as the altitude of the orbit decreases.  

The estimate time for the orbit decay of Figure 3.69 is shown below. 

Table 3.15 – Time of decay for different eccentricities. 

 Estimated Time 
(days) 

Orbit Propagator 
(days) 
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Tether 20.03 19.69 

Tether + Drag 18.90 18.12 

 

The estimative of the orbit decay with the PI is an easy method to estimate the 

orbit decay without making numerical integration.  

Figure 3.77 shows the decay of the system based on Tables, for an initial 

altitude of 1500km. The EDT and the atmospheric drag were considered as the 

forces to de-orbit the spacecraft, but the other disturbing forces were also in the 

model. 

Figure 3.77 – The decay of the tethered system over the days from zero to 18 days. 
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3.4. The Electrodynamic Tether Use For Reducing The Disturbing Forces 

This section presents the use of the EDT to reduce the disturbing forces effects. 

The results present here are based on one orbital period of the spacecraft. The 

analysis is performed by assuming that the spacecraft is in a Keplerian orbit all 

the time. It is also assumed that a thrust is applied to compensate the disturbing 

forces effects that the tether cannot compensate.  

The initial parameters of the simulation are based on Tables 3.10 to 3.13 . The 

initial time and date for this simulation is 01/01/2014  12:30 GMT. The pitch and 

roll angles are not zero in this case. The idea of using the solar sail to reduce 

the disturbing forces effects is also applied in the EDT study. The disturbing 

forces that needs to be reduced are computed and the optimal angle of pitch 

and roll are found to guarantee that the Lorentz force can reduce the effects of 

the disturbing forces. The computation of the angles is based on the centre of 

the mass of the system. This system has the direction for the magnetic field and 

the direction of the force to be reduced. The direction of the attitude of the 

tether, given by 𝑑𝑳, is then found. 

The tether used for this studied is the bare tether, because it has been proved 

that this tether is capable of larger currents and Lorentz forces. As the 

atmospheric drag needs to be reduced in all the simulations, the tether must run 

a current in the opposite direction of the induced EMF. So is necessary a 

battery to overcome the EMF to allow the current to flow in the correct direction. 

Figure 3.78 shows the acceleration considering only the atmospheric drag and 

on the Y axis of the OXYZ reference frame. The orbit is circular and Keplerian, 

therefore, the Y axis is actually the direction of the orbital motion. 
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Figure 3.78 – The acceleration of the tether and the disturbing forces for one orbital 
period. 

 

Figure 3.78 shows that the tether can apply a disturbing force at the opposite 

direction of the atmospheric drag with almost the same magnitude. There are 

some intervals where the tether cannot reach the required magnitude. Figure 

3.79 provides the explanation for this limitation. 
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Figure 3.79 – The ionospheric density, umbra and illuminated areas for one orbital 
period. 

 

Figure 3.79 shows the ionospheric electron density 𝑛𝑒. The 𝑛𝑒 is strictly related 

to the incident of solar rays. The electron density also defines the current that 

flows in the tether, as given by Equations 2.39 and 2.41. The current is related to 

the magnetic force (see Equation 2.37) and, if the current is not sufficient to 

guarantee the optimal magnitude, the tether cannot fully control the disturbing 

force. 

The attitude that the tether must have, in this case, to reduce the disturbing 

force effects of the atmospheric drag is shown in Figure 3.80 . 
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Figure 3.80 – The pitch and roll angles for one orbital period. 

 

The pitch angle remains steady all the time, at 180 degrees. The 180 degrees 

means that the direction of the tether remains parallel to the position vector, as 

expected. The current flow requires a battery to drive the current into the 

opposite direction of the induced EMF, therefore the pitch angle is 180 degrees. 

In the case of a de-orbit, the tether would be required to act as a drag, so the 

pitch angle should be zero. The roll angle is not zero. The attitude direction of 

the tether is based on the centre of mass of the system. At that point, the roll is 

optimal and guarantees that the direction of the electromagnetic tether force 

along with the pitch angle is opposite to the direction of the disturbing forces. 

The power and the current that the tether must provide in order to perform this 

maneuver is shown in Figure 3.81. 
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Figure 3.81 – The power and current of the tether for one orbital period. 

 

The power shown in Figure 3.81 is the power that the battery must apply in 

order to guarantee that the current flows in the right direction. The current is the 

one that must flow in the tether to guarantee that the magnitude of the tether 

force is coherent with the magnitude of the disturbing force. The current shown 

in Figure 3.81is not the maximum value that the tether can deliver to the system 

(see Equation 2.41 for the maximum current definition). For this simulation, the 

maximum current is around 20 A. This means that the tether itself can also 

allow a current flow larger than the one shown in Figure 3.81 to overcome the 

gap of the current through the passage by the umbra region.  

The PI integral, without the averaging technique, as given by Equation 2.1, can 

provide the amount of the magnitude reduction of the disturbing force for this 

maneuver. Table 3.16 provides the 𝑃𝐼 values without the averaging technique 

for the tether and for the disturbing force.  
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Table 3.16 – PI values based on Equation 2.1. 

 PI values 

Atmospheric Drag 1.7127 m/s 

Tether only 1.2173 m/s 

Atmospheric Drag + 

Tether 
0.6299 m/s 

 

Table 3.16 shows the efficiency of the tether proposed in this context. The 

atmospheric drag has the 𝑃𝐼 value of 1.7127 m/s. This means that the velocity 

delivered to the spacecraft due to this disturbing force, for one orbital period, is 

1.7127 m/s. It would be required a thrust with a total velocity variation of this 

magnitude for one orbital period to guarantee that the spacecraft does not 

deviates from its orbit. The tether itself delivers a 𝑃𝐼 value of 1.2173 m/s to the 

system. The combination of the atmospheric drag and the tether has a 𝑃𝐼 value 

of 0.6299 m/s. The optimal direction of the tether requires a long processing 

time for the computer. The method of defining the attitude of the tether based 

on the centre of mass of the system is fast, but it involves also some errors due 

to the asymmetry of the magnetic field and its fluctuations. The price of not 

computing the fluctuations on the magnetic field of the Earth is that the 

subtraction of the 𝑖𝑛𝑡𝑒 value of the atmospheric drag and the tether itself is not 

the 𝑖𝑛𝑡𝑒 value of the atmospheric drag and the tether. The passage through a 

umbra region also reduces the efficiency of the tether to zero the atmospheric 

drag 

The tether proposed in this work for this specific maneuver could reduce the 

magnitude of the disturbing force effects of the atmospheric drag up to 63.22 %. 

The tether has 5 km length, which is enough for the proposed mission. The 
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current necessary to reduce the magnitude of the disturbing force effect (≈ 3 𝐴) 

is far lower from the maximum value (≈ 20 𝐴). 

Drag-free missions are missions that use a drag-free control system, more 

essentially the atmospheric drag to be eliminated from the equations of motion 

of the spacecraft. The proposed use of the EDT to reduce the atmospheric drag 

can be understood as a drag-free control mission and it is extremely important 

for LEO. The reduction or the elimination of the drag can reduce significantly the 

cost of orbital maneuvers to overcome the altitude decay. The atmospheric drag 

must be counteracted continuously as this disturbing force causes the orbital 

decay and its magnitude increases exponentially and the altitude decays 

(LANGE, 1964; VAILLON ET AL., 1990) 

The next step is to study the case where the tether will not only reduce the 

atmospheric drag effect, but also the other disturbing forces effects: third-body 

perturbation from the Sun and the Moon and the solar radiation pressure.  

Satellites at LEO experience several disturbing forces: predominantly high order 

of gravitational components, such as J2 and C22, the third-body effects, solar 

radiation pressure and the atmospheric drag (EISNER ET AL., 1982). The 

control of these disturbing forces is extremely important for space missions that 

require a great accuracy of the trajectory. The reduction of the fuel consumption 

is highly recommended in order to increase the life-time of the system. 

Figures 5 and 6 show the acceleration of the tether and the sum of all disturbing 

forces as a function of time. The component of the Z axis was omitted, because 

the magnitude of the disturbing force on this axis is much smaller compared to 

the other two components. 
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Figure 3.82 – Acceleration of the tether and all the perturbations on the X axis for one 
orbital period. 
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Figure 3.83 – Acceleration of the tether and all the perturbations on the Y axis for one 
orbital period. 

 

It is clear that the accelerations of the tether and the disturbing forces are 

almost opposite. Since the initial time of the simulation and the initial 

parameters are the same, it is possible to note that there is the same gap of the 

acceleration of the tether for an interval of the time. This occurs, as shown in 

Figure 3.79, due to the passage of the spacecraft by the shadow of the Earth. It 

is also interesting to note that the acceleration of the disturbing forces shown in 

Figures 3.82 and 3.83 also have a discontinuity. The passage by the shadow 

area reduces the solar radiation pressure perturbation effect to zero and, 

therefore, there is a decrease in the sum of all the perturbations for this interval 

as well. 

The attitude of the tether, given by the pitch and the roll angles, is different from 

the previous maneuver. Now, the sum of all the disturbing forces changes the 

direction that the tether force must be applied. Figure 3.84 shows the pitch 
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angle that the tether must have for this maneuver. The roll was neglected, since 

it does not play an import role in this simulation.  

Figure 3.84 – Pitch angle for one orbital period. 

 

There is a discontinuity in the pitch angle, due to the decrease of the solar 

radiation pressure perturbation at the shadow region. Besides this discontinuity, 

the change of the pitch angle is smooth and changes from 180 to 167 degrees. 

If it is possible to build a tether that can change and control of the pitch angle, 

then it is possible to reduce all disturbing forces effects included in this paper. 

The advantage of reducing all the disturbing forces is to reduce the secular and 

periodic variations effects. The PI reduction with this maneuver is given in Table 

6. The reduction of the magnitude of the disturbing forces is 62.46 %. 

Table 3.17 – PI value based on Equation 2.1. 

 PI values 
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Atmospheric Drag 1.7177 m/s 

Tether only 1.2223m/s 

Atmospheric Drag 
+ Tether 

0.6449 m/s 

 

3.4.1. The Perturbation Integrals Results For The EDT 

This section shows the PI obtained using the averaging technique. 

The first result, shown in Figure 3.85 , changes the semi-major axis of the orbit 

from 6678 to 6978 km (300 to 600 km of altitude). The integration for one orbital 

period is multiplied by the period of a nominal reference orbit and divided by the 

period of the current orbit. This procedure avoids time dependence in the 

results. The nominal reference orbit is 6978 km of semi-major axis. Figure 3.85  

shows the PI when the tether is used only to reduce the atmospheric drag 

effect. 
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Figure 3.85 – PI of several disturbing forces and the tether as a function of the semi-
major axis from 6678 to 6978 km. 

 

Figure 3.85  shows that the tether is efficient in reducing the magnitude of the 

disturbing forces. This reduction could be better, if different tether lengths are 

considered for each semi-major axis interval. The reduction of the magnitude 

close to the 6678 km semi-major axis is low, due to the magnitude of the 

atmospheric drag. The magnitude is so large that, even using the maximum 

current Imax, the tether is not able to guarantee that the disturbing forces can 

have the same magnitude (Figure 3.86 ). 
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Figure 3.86 – Current and power of the tether as a function of the semi-major axis from 
6678 to 6978 km. 

 

Figure 3.86  shows the maximum current and the nominal current to reduce the 

disturbing forces effects. From 6678 to 6750 km of semi-major axis, the nominal 

current of the tether is at the maximum value. Therefore, for this case, the 

magnitude of the tether cannot be the magnitude of the disturbing force due to 

the current restriction of the bare tether.  

Figures 3.87 -  and 3.88 show the use of the tether to reduce all the disturbing 

forces effects that this work considers.  The range of the semi-major axis goes 

from 6978 to 7278 km. 
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 Figure 3.87 - PI for several disturbing forces as a function of the semi-major axis from 
6978 to 7278 km. 
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Figure 3.88 – PI for several disturbing forces and the tether as a function of the semi-
major axis from 6978 to 7278 km. 

 

The tether can reduce better the disturbing forces effects when the semi-major 

axis increases, because there are fewer passages by the umbra region, so the 

spacecraft has more electron density to reduce the disturbing forces effects. 

The next simulation shows the study of the PI as a function of the inclination of 

the orbit. When the inclination of the orbit increases, the induced EMF 

decreases. The power used to drive a current on the opposite direction of the 

induced EMF decreases. Figure 3.89  shows a simulation with the initial 

parameters given in Tables 3.10 to 3.13 , except for the orbit inclination, which in 

this case varies from 0 to 90 degrees. 
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Figure 3.89 – PI for the disturbing forces and tether as a function of the inclination from 
0 to 90 degrees. 

 

The magnitude of the force due to the tether increases when the inclination 

increases. The induced EMF decreases when the inclination of the orbit 

increases. Therefore, there is less power that the battery must provide to 

overcome the EMF. Nevertheless, although the tether works as an efficient way 

to reduce the disturbing forces effects, the roll attitude at the orbital inclination of 

90 degrees varies from 0 to 90 and from 270 to 360 degrees along one orbital 

period and the pitch angles varies from 0 to 360 degrees. This occurs due to the 

geometry of the magnetic field. Although it seems promising the application of 

this method for highly inclined orbits, the pitch angle variation demands more 

challenges from the attitude control. Figure 3.90 shows the pitch and roll angles 

for the simulation with 90 degrees of inclination. 
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Figure 3.90 – Pitch and roll angles for one orbital period. 

 

The pitch angle varies from 0 to 360 degrees. It means that the direction of the 

current changes. This change occurs with the signal change of the EMF as well. 

This means that, even if the current changes the direction, the battery still has 

to provide power to overcome the EMF. In this case, it is assumed that the 

current can flow in both directions of the tether and that both end masses can 

emit electrons. The drastically change of the pitch angle is related to the 

direction of the magnetic field at the poles of the Earth. At the poles, the 

direction of the magnetic field becomes radial and this fact results in a change 

of the tether direction from mainly radial to the direction of the orbital velocity, to 

guarantee that the tether can reduce the disturbing forces effects, mainly the 

atmospheric drag. Figure 3.91  shows the power that the battery must provide 

or the induced EMF and the current to perform the maneuver for different orbital 

inclinations. 
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Figure 3.91 – Current and power of the tether as a function of the inclination from 0 to 
90 degrees. 

 

The current required for the station-keeping maneuver is almost constant, 

although the power required from the battery decreases when the inclination 

increases. The maximum current decreases, as well as the inverse EMF and 

the motional electric field decreases (see Equations 2.34, 2.39 and 2.41). 

3.4.2. The Orbital Propagator Results 

This section simulates the spacecraft trajectory with an orbit integrator. The 

initial parameters of the simulation are given in Tables 3.10 to 3.13 . Figure 3.92  

shows three trajectories: i) considering only the external perturbations (no 

tether), ii) considering the external perturbations and the tether to reduce only 

the atmospheric drag effect; iii) considering the external perturbations and the 

tether to reduce all the perturbations effects. The integration is performed for 

13.5 days (20 orbital periods of the nominal orbit). 
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Figure 3.92 – Altitude decay in days due to the disturbing forces with and without the 
tether control. 

 

It is clear that the tether reduces the deviations caused by the atmospheric 

drag. The decay of the orbit using the tether is much smaller for the same 

integration time. The situation where the tether is used to control the 

atmospheric drag and all the disturbing forces provides almost the same results. 

This occurs because the atmospheric drag is the main perturbing force in this 

trajectory. 

Let’s estimate in a fast and easy way how much fuel consumption the EDT can 

save based on Figure 3.92. Let’s suppose that after the approximately 14 days, 

the final orbit is a circular one with the altitude decayed. Then a Hohmann 

transfer is computed based on the circular initial orbit with altitude of 600 km. 

The final orbits are, therefore, a circular one with altitude of 580 km and another 

one with 485 km. The ∆𝑣 required to increase the altitude of the orbit would be 

0.4426 km/s for the initial altitude orbit of 580 km and 3.0328 km/s for the initial 

altitude orbit of 485 km. 
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The estimative of the fuel consumption can be obtained as 

∆𝑚 = 𝑚0(1 −∈−∆𝑣/𝐼𝑠𝑝𝑔0) (3.18) 

where ∆𝑚 is the amount of propellant expended to produce the velocity 

increment ∆𝑣, 𝑚0 is the initial mass of the system, 𝐼𝑠𝑝 is the spedict impulse of 

the system and 𝑔0 is 9.81 m/s2. 

Then, if we consider that the propulsion system has a specific impulse of 200 s, 

then the fuel consumption would be 0.1622 kg for the inner orbit and 0.0237 for 

the orbit with altitude of 580 km. 

If the propulsion system is more efficient, around 1000 s, then the consumption 

would be 0.0325 and 0.0047 kg. 

This fast calculation demonstrates that the EDT can be used to reduce the 

atmospheric drag decay and lower the fuel-consumption in orbital maneuvers 

that has a drag-free control. 
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4 CONCLUSION 

The perturbation integrals showed to be an effective method to evaluate the 

magnitude of the disturbing forces. The maps based on the PI as a function of 

the Keplerian elements are important to study the pattern of the disturbing 

forces and to search for the best orbits in the sense of receiving less 

perturbation. 

It has been proved that the PI is also capable of analyzing the efficiency of an 

electrodynamic tether or a solar sail, if they are used to reduce the effects 

coming from the disturbing forces or to de-orbit the spacecraft. 

The solar sail used to reduce the disturbing forces have been proven to be 

efficient. The magnitude reduction of the disturbing forces varied from 30% to 

70% in some cases. There are many factors that influence the efficiency of the 

solar sails, like the passages through the umbra region, the magnitude of the 

disturbing forces and the area of the solar sail. 

The EDT could reduce the magnitude of the disturbing forces, especially the 

atmospheric drag, up to 80% in some cases. The efficiency of the EDT tether 

depends also of many factors, such as the magnitude of the disturbing forces, 

the maximum current of the tether, the magnetic field of the earth, the number 

and duration of the passages through the umbra region, and so on. 

The PI could be used to estimate the efficiency of these two free-fuel thrusters 

easily and map many orbits as a function of their Keplerian elements. 

The estimation of the orbital decay based on the PI was proven to be close to 

the values obtained from the numerical integrations. The estimation of the 

orbital decay based on the PI has the great advantage of computing an 

estimate time of the orbital decay with no numerical integration, just by 

analyzing the PI as a function of the semi-major axis. The error obtained was 

smaller than 10% when compared to the results coming from the orbit 
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integrator. The estimation of the time of the orbital decay is based on the 

atmospheric drag effect with or without the EDT. The estimative of the orbital 

decay of eccentric orbits were also included. 

The spacecraft trajectory simulator enables to make a study related to the solar 

sail in a complex and more realistic environment. The parameters of the 

propulsion system allow the possibility to include errors that the sensors or the 

propulsion systems may have. This work included, in the STRS, the solar sail 

subsystem that can be used now in the simulator. The results shown in this 

thesis proves that the solar sail subsystem works well. The STRS user can now 

study many solar sail maneuvers with different parameters for several missions. 

The PHALL2, a Brazilian electric propulsion system, was included in some 

STRS results and the magnitude of this thruster was able to eliminate the 

disturbing forces effects with the solar sail use. The reduction of the fuel 

consumption based on the STRS results can achieve up to 30%. 

The electrodynamic tether, whether used to de-orbit or to reduce the effects of 

the disturbing forces, is a powerful idea that can save fuel in orbital maneuvers 

and also help the control of the space debris (if used as a drag). The 

electrodynamic tether is still a non-practical and highly-costly system nowadays. 

But, as the technology develops, the EDT can be used as an efficient system 

that may save fuel and investments in futures missions. 

The solar sail idea is the same. In the future, the solar sail can be used to 

reduce and control viably the disturbing forces with no fuel consumption. 

The use of the EDT  to reduce the disturbing forces have been proved to be 

efficient as the orbital decay of the system were lower and the estimative of the 

fuel consumption to regain attitude was optimistic for future drag-free missions. 
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