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Magnetic flux disorder and superconductor-insulator transition in nanohole thin films
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We study the superconductor-insulator transition in nanohole ultrathin films in a transverse magnetic field by
numerical simulation of a Josephson-junction array model. Geometrical disorder due to the random location of
nanoholes in the film corresponds to random flux in the array model. Monte Carlo simulation in the path-integral
representation is used to determine the critical behavior and the universal resistivity at the transition as a function
of disorder and average number of flux quanta per cell, fo. The resistivity increases with disorder for noninteger
fo while it decreases for integer fo, and reaches a common constant value in a vortex-glass regime above a critical
value of the flux disorder Dc

f . The estimate of Dc
f and the resistivity increase for noninteger fo are consistent

with recent experiments on ultrathin superconducting films with positional disordered nanoholes.

DOI: 10.1103/PhysRevB.94.060504

There is growing interest in the superconductor-insulator
(SI) transition in ultrathin films with a lattice of nanoholes
[1–6]. This system is an important testing ground for models
of the universality class of the quantum phase transition since
the patterned nanostructure provides a sensitive probe for
distinguishing between phase and amplitude fluctuations of
the superconducting order parameter. The magnetoresistance
oscillatory behavior at low magnetic fields near the transition is
analogous to the one observed in microfabricated Josephson-
junction arrays, which undergo a SI transition due to the
small electrical capacitance of the superconducting grains
[7–11]. This common feature results from phase-coherence
effects, which can be described by the same generic model of
phase fluctuations of the superconducting order parameter, a
Josephson-junction array model, with a wider applicability. In
fact, it is closely related to the Bose-Hubbard model, where
Cooper pairs interact on a lattice potential, in the limit of a large
number of bosons per site [8,12], to the quantum rotor model
[12–14], and to ultracold atoms on optical lattices [15–17]. For
a periodic nanohole film at low magnetic fields, the simplest
model consists of a frustrated array of superconducting
“grains”, where the phase is well defined locally, coupled
by Josephson junctions or weak links on a periodic lattice,
with the lattice of nanoholes corresponding to the dual lattice,
which acts as a vortex pinning center [18,19]. The number
of flux quanta per unit cell of the nanohole lattice, which
is proportional to the external magnetic field, corresponds to
the frustration parameter f of the Josephson-junction array
model. The zero-temperature quantum phase transition in the
array model, driven by the competition between the charging
energy and Josephson-coupling energy at different frustration
parameters, corresponds to the SI transition in the nanohole
film in the external magnetic field. The resistivity at the
transition is expected to be finite and universal [12,13,20,21],
depending only on the universality class of the transition,
which generally changes in the presence of a magnetic field
and disorder.

Very recently, intriguing experimental results have been
obtained near the SI transition in thin films with a disordered
triangular lattice of nanoholes with a controlled amount
of positional disorder [5,6]. Such disorder leads to spatial
variations in the magnetic flux per unit cell, which increases
with the magnetic field, similar to the effects of geometrical

disorder in microfabricated Josephson-junction arrays [22,23].
Magnetoresistance oscillations decrease in amplitude and
disappear above a critical value of flux disorder. However,
the resistivity at successive field-induced transitions increases
with flux disorder, in apparent disagreement with predictions
of universality [12,13,20] and a previous numerical simulation
[24], which show a decrease of the resistivity.

In this Rapid Communication, we study the SI transition in
geometrically disordered nanohole thin films by numerical
simulation of a Josephson-junction array model with flux
disorder. Geometrical disorder due to the random locations
of nanoholes in the film corresponds to random flux in the
array model. Monte Carlo (MC) simulation in the path-integral
representation is used to determine the critical behavior and
the resistivity at the transition as a function of flux-disorder
strength Df and average number of flux quanta per cell,
fo. It is found that the resistivity at the transition increases
with disorder for noninteger fo while it decreases for integer
fo, and reaches an approximately common constant value
in a vortex-glass regime above a critical value Dc

f . The
distinct behavior for noninteger fo results from the interplay
of vortex-lattice commensurability and flux-disorder effects.
The estimate of Dc

f and the resistivity increase for noninteger
fo are in good agreement with available experimental data on
positional disordered nanohole thin films [5] for noninteger fo

while it calls for further measurements for integer fo.
We consider a Josephson-junction array model, which

allows for both flux-disorder and charging effects [7,22,24],
described by the Hamiltonian

H = −Ec

2

∑
i

n2
i −

∑
〈ij〉

Eij cos
(
θi − θj − Ao

ij − tij
)
. (1)

The first term in Eq. (1) describes quantum fluctuations
induced by the charging energy, Ecn

2
i /2, of a non-neutral

superconducting grain located at site i of a periodic reference
lattice, where Ec = 4e2/C, e is the electronic charge, and
ni = −i∂/∂θi is the operator, canonically conjugate to the
phase operator θi , representing the deviation of the number
of Cooper pairs from a constant integer value. The effective
capacitance to the ground of each grain C is assumed to
be spatially uniform, for simplicity. The second term in (1)
is the Josephson-junction coupling between nearest-neighbor
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grains described by phase variables θi . The effect of the
magnetic field B applied in the perpendicular (ẑ direction)
appears through the link variables Ao

ij and tij , which sat-
isfy the constraints

∑
ij Ao

ij = 2πfo and
∑

ij tij = 2πδfp,
where the gauge-invariant sums

∑
ij are over the links ij

surrounding the site p of the plaquette centers. fo is a uniform
constant parameter and δfp is a spatially varying random
variable with zero average. The effects of the positional
disorder of the nanoholes, which correspond to random
plaquette areas Sp of the array, can be incorporated in this
model by identifying fo as the average number of flux quanta
per plaquette BSo/�o, where �o = hc/2e is the flux quantum,
and So as the uniform plaquette area of the reference lattice.
δfp then represents the additional random flux foδSp/So,
where δSp = Sp − So. Previous work on the SI transition [24]
studied this model defined on a square lattice for integer fo and
uncorrelated disorder in tij . In order to compare with available
experimental data for superconducting films with a triangular
lattice of nanholes in the weak disorder limit [1,5], we consider
here the array model defined on a honeycomb lattice [25] and
take δfp as an uncorrelated random variable. For convenience,
we use a uniform disorder distribution δfp = Df [−1,1], with
the random-flux-disorder strength Df = foDa , where Da

measures the disorder in the areas δSp/So. Experimentally, the
flux disorder Df can be varied by changing fo via the external
field or the geometrical disorder Da using different samples
[5]. We also allow for bond disorder in the form of random
Josephson couplings [26] Eij = EJ eij , where eij = 1 ± Db

with equal probability and disorder parameter strength Db. In
the numerical simulations described below we set Db = 0.3,
but its value does not change the main results. With this choice
the magnetoresistance behavior of films with a triangular
lattice of nanoholes without flux disorder [1,4] can already
be described by the array model [18,19]. Here we consider the
effects of increasing the flux disorder Df for integer fo = n

and noninteger rational values fo = n + 1/q of the frustration
parameter.

To study the quantum phase transition at zero temperature,
we employ the imaginary-time path-integral formulation of
the model [8]. In this representation, the two-dimensional
(2D) quantum model of Eq. (1) maps into a (2+1)D classical
statistical mechanics problem. The extra dimension corre-
sponds to the imaginary-time direction. The classical reduced
Hamiltonian can be written as

H = − 1

g

[∑
τ,i

cos(θτ,i − θτ+1,i)

+
∑
〈ij〉,τ

eij cos
(
θτ,i − θτ,j − Ao

ij − tij
)⎤⎦, (2)

where eij = Eij/EJ and τ labels the sites in the discrete
time direction. The ratio g = (Ec/EJ )1/2, which drives the SI
transition for the model of Eq. (1), corresponds to an effective
“temperature” in the 3D classical model of Eq. (2). In general, a
quantum phase transition shows intrinsic anisotropic scaling,
with different diverging correlation lengths ξ and ξτ in the
spatial and imaginary-time directions [8], respectively, related
by the dynamic critical exponent z as ξτ ∝ ξz. The classical

Hamiltonian of Eq. (2) can be viewed as an XY model on
a layered honeycomb lattice, where frustration effects exist
only in the honeycomb layers. Randomness in eij and tij
corresponds to disorder completely correlated in the time
direction. The honeycomb lattice is defined on a rectangular
geometry with linear size given by a dimensionless length
L. In terms of L, the linear sizes in the x̂ and ŷ directions
correspond to Lx = L

√
3/2 and Ly = 3

2L, respectively. We
choose a gauge where Aij = 2πf ny , on alternating (tilted)
bonds along the rows in the x̂ direction numbered by the integer
ny and Aij = 0 otherwise.

Equilibrium MC simulations for Ec > 0 are carried out
using the 3D classical Hamiltonian in Eq. (2) regarding g

as a “temperature”-like parameter. The parallel tempering
method [27] is used in the simulations with periodic boundary
conditions, as in previous work [19]. The finite-size scaling
analysis is performed for different sizes L with the constraint
Lτ = aLz, where a is a constant aspect ratio. This choice
simplifies the scaling analysis, otherwise an additional scaling
variable Lτ/L

z would be required to describe the scaling
functions. The value of a is chosen to minimize the deviations
of aLz from integer numbers. However, this requires one to
know the value of the dynamic exponent z in advance. Since the
exact value of z is not known, we follow a two-step approach.
First, we obtain an estimate of gc and z from simulations
performed with a driven MC dynamics method, which has
been used in the context of the 3D XY -spin glass model [28].
Then, these initial estimates are improved by finding the best
data collapse for the finite-size behavior of the phase stiffness
in the time direction γτ , obtained by the equilibrium MC
method. For the driven MC method, the layered honeycomb
model of Eq. (2) is viewed as a 3D superconductor and the
corresponding “current-voltage” scaling near the transition is
used to determine the critical coupling and critical exponents
[29]. In the presence of an external driving perturbation Jx

(“current density”) which couples to the phase difference
θτ,i+x̂ − θτ,i along the x̂ direction, the classical Hamiltonian
of Eq. (2) is modified to

HJ = H −
∑
i,τ

Jx(θτ,i+x̂ − θτ,i). (3)

When Jx �= 0, the system is out of equilibrium since the
total energy is unbounded. The lower-energy minima occur
at phase differences θτ,i+x̂ − θτ,i , which increase with time
t , leading to a net phase slippage rate proportional to Vx =
〈d(θτ,i+x̂ − θτ,i)/dt〉, corresponding to the average “voltage”
per unit length. The MC simulations are carried out using the
Metropolis algorithm, and the time dependence is obtained
by identifying the time t as the MC time. The measurable
quantity of interest is the phase slippage response (“nonlinear
resistivity”) defined as Rx = Vx/Jx . Similarly, we define Rτ

as the phase slippage response to the applied perturbation Jτ

in the layered (imaginary-time) direction. Above the phase-
coherence transition, g > gc, Rx should approach a nonzero
value when Jx → 0 while it should approach zero below
the transition. From the nonlinear scaling behavior near the
transition of a sufficiently large system, one can extract the
critical coupling gc, and the critical exponents ν and z.
In the absence of charging effects, Rx remains zero below
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FIG. 1. Phase slippage response in (a) the imaginary-time di-
rection Rτ and (c) spatial direction Rx for fo = n + 1/6, near the
transition. Flux-disorder strength Df = 0.7 and system size L = 60.
The couplings g from the top down are 1.48, 1.47, 1.45, 1.44, 1.41,
1.39, and 1.38. (b) and (d) Scaling plots corresponding to (a) and (c),
respectively, for data near the transition with ξ = |g/gc − 1|−ν and
the same parameters gc = 1.426, z0 = 2.3, z = 1.2, and ν = 1.1.

a critical value Jx = Jc, which provides an estimate of the
critical current for the model of Eq. (1), when Ec = 0.

We show in detail the results for fo = n + 1/6 and Df =
0.7. This value of frustration was chosen to allow a comparison
with the available experimental data [5]. Figure 1 shows the
behavior of the nonlinear phase slippage response Rx and Rτ as
a function of the applied perturbation Jx and Jτ , respectively,
for different couplings g and large system size. The behavior
is consistent with a phase-coherence transition at an apparent
critical coupling in the range gc ∼ 1.41–1.44. For g > gc,
both Rx and Rτ tend to a finite value, while for g < gc they
extrapolate to low values. The critical coupling gc and critical
exponents ν and z can then be obtained from the best data
collapse satisfying the scaling behavior close to the transition.
The required scaling theory is described in detail in Ref. [30].
Rx and Rτ should satisfy the scaling forms

gRxξ
z0−z = F±(Jxξ

z+1/g),
(4)

gRτ ξ
z+z0z−2 = H±(Jτ ξ

2/g),

where z0 is an additional critical exponent describing the
MC relaxation times, tx ∼ ξz0 and tτ ∼ ξz0

τ , in the spatial
and imaginary-time directions, respectively, and ξ = |g/gc −
1|−ν . The + and − signs correspond to g > gc and g < gc,
respectively. The two scaling forms are the same when z = 1,
corresponding to isotropic scaling. The joint scaling plots
according to Eqs. (4) are shown in Fig. 1, obtained by adjusting
the unknown parameters, providing the estimates gc = 1.426,
z0 = 2.3, z = 1.2, and ν = 1.1.

The above estimate of gc and z does not take into account
the finite-size effects. It assumes that the system is sufficient
large and the coupling is not too close to gc such that the
correlation length is smaller than the system size. To improve
these estimates we consider the finite-size behavior of the
phase stiffness in the imaginary-time direction γτ . The phase
stiffness γτ , which is a measure of the free energy cost to

1.0 0.5 0.0 0.5 1.0
0.5

1.0

1.5

2.0

g g L

Γ Τ
L

1.40 1.42 1.44 1.46 1.48 1.50

0.5

1.0

1.5

2.0

g

Γ
Τ
L
2
z

0.2 0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

Ω n 2 2Π Ωn LΤ

Σ
Ω
n
Σ L 36

L 30
L 24
L 18

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

Df

I c

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1.2

1.4

1.6

1.8

2.0

2.2

D

g c

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D

Ρ
Ρf n

f n 1 6

(a)
(b)

(c)
(d)

FIG. 2. (a) Phase stiffness in the imaginary-time direction γτ for
different system sizes L, near the transition point estimated from
Fig. 1. Lτ = aLz, with aspect ratio a = 0.628 and z = 1.25. Inset:
Scaling plot of γτ with gc = 1.424 and ν = 0.97. (b) Scaling plot
of conductivity σ (iwn) at the critical coupling gc with α = 0.15.
The universal conductivity is given by the intercept with the x =
0 dashed line, leading to σ∗

σQ
= 0.56(3). (c) Critical coupling gc at

different values of the average frustration fo and increasing flux-
disorder strength Df . Inset: Behavior of the corresponding critical
currents Ic at Ec = 0. (d) Resistivity ρ∗ = 1/σ ∗ in units of ρQ =
1/σQ at the transition for the different average frustrations indicated
in (c) and increasing flux disorder Df .

impose an infinitesimal phase twist in the time direction, is
given by [13]

γτ = 1

L3g2

[
g〈ετ 〉 − 〈

I 2
τ

〉 + 〈Iτ 〉2
]
D
, (5)

where ετ = ∑
τ,i cos(θτ,i − θτ+1,i) and Iτ = ∑

τ,i sin(θτ,i −
θτ+1,i). In Eq. (5), 〈· · · 〉 represents a MC average for a
fixed disorder configuration and [· · · ]D represents an average
over different disorder configurations. In the superconducting
phase γτ should be finite, reflecting the existence of phase
coherence, while in the insulating phase it should vanish in
the thermodynamic limit. For a continuous phase transition,
γτ should satisfy the finite-size scaling form

γτL
2−z = F (L1/νδg), (6)

where F (x) is a scaling function and δg = g − gc. This scaling
form implies that data for γτL

2−z as a function of g, for
different system sizes L, should cross at the critical coupling
gc. Figure 2(a) shows this crossing behavior obtained near the
initial estimate of gc by varying z slightly from its initial value.
In the inset of this figure, we show a scaling plot of the data
according to the scaling form of Eq. (6), which provides the
final estimates gc = 1.424 and ν = 0.97.

We have also determined the universal conductivity at the
critical point from the frequency and finite-size dependence of
the phase stiffness γ (w) in the spatial direction, following
the scaling method described by Cha et al. [12,13]. The
conductivity is given by the Kubo formula

σ = 2πσQ lim
wn→0

γ (iwn)

wn

, (7)
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where σQ = (2e)2/h is the quantum of conductance and
γ (iwn) is a frequency-dependent phase stiffness evaluated at
the finite frequency wn = 2πn/Lτ , with n an integer. The
phase stiffness in the x̂ direction is given by

γ = C[g〈εx〉 − 〈|I (iwn)|2〉 + 〈|I (iwn)|〉2]D, (8)

where C = 1/[(4/3
√

3)NLτg
2], N is the total number of sites

in each layer,

εx =
∑
τ,j

(x̂ · ûj,j+x̂)2ei,j+x̂ cos(�xθτ,j ),

(9)
I (iwn) =

∑
τ,j

(x̂ · ûj,j+x̂)ei,j+x̂ sin(�xθτ,j )eiwnτ ,

ûj,j+x̂ is a unit vector between nearest-neighbor sites and
�xθτ,j = θτ,j − θτ,j+x̂ − Ao

j,j+x̂ − tj,j+x̂ . At the transition,
γ (iwn) vanishes linearly with frequency and σ assumes a
universal value σ ∗, which can be extracted from its frequency
and finite-size dependence [13]

σ (iwn)

σQ

= σ ∗

σQ

− c

(
wn

2π
− α

2π

wnLτ

)
· · · . (10)

The parameter α is determined from the best data collapse of
the frequency-dependent curves for different systems sizes in a
plot of σ (iwn)

σQ
vs x = ( wn

2π
− α 2π

wnLτ
). The universal conductivity

is obtained from the intercept of these curves with the line x =
0. The calculations were performed for different system sizes
with Lτ = aLz, using the above estimates of z and gc. From
the scaling behavior in Fig. 2(b) we obtain σ ∗/σQ = 0.56(3),
where the estimated uncertainly is mainly the result of the error
in the coupling gc.

We have performed extensive calculations as a function of
the flux-disorder strength Df for integer fo = n and nonin-
teger fo = n + 1/6. The behavior of the critical couplings
gc for the SI transition as a function of Df is shown in
Fig. 2(c) and the corresponding behavior of the resistivity at the
transition ρ∗ = 1/σ ∗ is shown in Fig. 2(d). Disorder changes
significantly the values of the critical coupling and resistivity
for small Df while they remain essentially unchanged and
frustration independent above a critical value Dc

f ∼ 0.5.
Below Dc

f , the resistivity at the transition increases with
disorder for noninteger fo but it decreases for integer fo. This
critical disorder Dc

f should correspond to a transition into
a vortex-glass regime, where one expects that gc should be
insensitive to the value of the frustration. Similar behavior is
also expected for the critical current in absence of charging
effects [31]. Calculations for the critical current for the
model of Eq. (1) with Ec = 0 using the driven MC dynamics
are shown in the inset of Fig. 2(c). The transition from a
low-disorder regime, where the critical current is sensitive to
frustration, to a glassy regime occurs at approximately the
same critical value Dc

f .
The results for noninteger fo are in good agreement

with available experimental observations on ultrathin super-
conducting films with positional disordered nanoholes [5].
As in other calculations of the resistivity at the transition
[11–13,17,19], the obtained value differs significantly from
the experimental value. However, the trend as a function
of disorder and the magnetic field dependence should be

consistent with experiments. In fact, the resistivity for large
flux disorder found experimentally for the field-induced SI
transition in nanohole films [5] is a factor of 1.8(2) higher
than in the absence of disorder, which agrees reasonably
well with our numerical estimate of 1.5(3) for noninteger
fo in Fig. 2(d). The experimental data also allow a rough
estimate of the critical exponent product zν ∼ 1.4(4), from
the expected scaling behavior of the resistivity derivative at
the transition [21] as a function of temperature T , ∂ρ/∂B ∝
T −1/(zν). Our numerical estimate zν = 1.21(5) is compatible
with the experimental value, although the error bars are
large. Moreover, the critical disorder strength below which
magnetoresistance oscillations are observed experimentally
[5], δfc ∼ 0.3, can also be compared with the critical disorder
strength Dc

f ∼ 0.5 found numerically. These oscillations occur
below Dc

f , where the critical coupling for the SI transition gc in
Fig. 2(c) is sensitive to frustration, with decreasing amplitude
as the flux disorder Df = foDg approaches Dc

f for increasing
frustration. Since in the present calculations δf is uniformly
distributed, rather than approximately Gaussian distributed
as in the experiments, a conversion factor is required for
comparing the critical values. Requiring the variance of both
distributions to be the same leads to an equivalent flux-disorder
strength ∼0.5/

√
3 = 0.29, which is in reasonable agreement

with the experimental value. For integer fo, the resistivity
in Fig. 2(d) for large flux disorder decreases by a factor of
1.7(3). A much larger decrease has been found previously
[24] for the model of Eq. (1) defined on a square lattice with
uncorrelated disorder in tij . Unfortunately, experimental data
for integer fo, including fo = 0, on the same sample are not
available yet to make a comparison to the numerical results.
However, the resistivity found in recent experiments for larger
flux disorder [6] decreases by a factor ∼2 compared with
earlier measurements on samples without flux disorder [1],
which is compatible with the present calculations.

The change of the resistivity and the different behavior for
noninteger fo as a function of Df can be understood as the
interplay of vortex-lattice commensurability and flux-disorder
effects. In absence of disorder, the SI transition for noninteger
fo is in a different universality class from the zero field
case [11]. The net circulating currents around each plaquette,
introduced by the external field, correspond to a pinned
commensurate vortex lattice which changes the ground-state
symmetry. Since the resistivity depends on the universality
class [20], its value for noninteger fo can be significantly
different. For fo = 1/2 on a square lattice [10,11,13,17], for
example, it decreases by a factor of 2. In the present case
of a honeycomb lattice, the SI transition for fo = 1/2 is yet
in another universality class different from the square lattice
[19], and the resistivity decreases by a factor of approximately
4. On the other hand, for large flux disorder, where there is
a vortex-glass phase for both integer and noninteger fo, the
universality and the resistivity should be the same, since the
vortices are in a highly disordered configuration.

In conclusion, we found that the resistivity at the SI transi-
tion increases with magnetic-flux disorder Df for noninteger
frustration fo while it decreases for integer fo, and reaches
an approximately common value in a vortex-glass regime
for Df > Dc

f . In the simplest scenario, one expects different
critical behavior for weak and strong disorder. Although
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the obtained constant value of the resistivity for Df > Dc
f

indicates universal behavior in a different universality class,
the variation of the resistivity for small disorder, however,
may be a result of crossover effects due the limited system
sizes. In the experiments, temperatures not sufficiently low
should have similar effects. In the absence of such effects,
the results cannot rule out a truly nonuniversal behavior. The
results could also be tested experimentally in microfabricated
Josephson-junction arrays with controlled parameters. How-

ever, for a more realistic description of these systems, disorder
from offset charges and dissipation effects [7], which have
been neglected in the present model, should be taken into
account.
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