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We have exploited a self consistent many body theory to 

calculate the quasi-particle spectrum of the Hubbard model, in the 

limit of strong intraatomic interaction. The quasi-particle energy of 

each band of the spectrum, consisting of two bands, is calculated 

exactly up to terms linear in the hopping-integral. 

The Hubbard modell, which has been studied very 

extensively during last fifteen years 2 , is described by the 

Hamiltonian 

H = H
I 
 +H 	 (1) 



-2- 

where 

H
I

n. 	n. 	 (2) 
ia 1-0 2 ia 

and 

H = 	Eij a. aja  ; E.. = O 	 ( 3 ) c 	 ia  
ija 

+  
Here a. (a. ) is the Fermion annihilation creation operator for the 

ia 	ia 

Wannier State at the lattice site i corresponding to spin G 	nia  = 

=a.a.;Iisintheintraatomicinteraction,andE..is the hopping 
ia ia 	 ij 

integral between the lattice sites i and j. 

Taking H I  as the starting point, Hubbard found that the 

introduction of the hopping term H e  splits the quasi-particle spectrum 

into two bands separated by an energy gap. And thus he showed the 

possibility of the existence of insulating state due to electron 

correlations for partially filled band. However, some difficulties 

were associated with his solutions. First, for one electron per atom, 

the two bands did not contam n the same number of states required to 

obtain insulating state, as argued by Mott 3 . And second, even for 

arbitrarily small values of (I/A) (where A is the bandwidth in the 

absence of intraatomic interaction), the bands were separated by a 

finite energy gap. Later on Hubbard improved his approximation 4  and 

removed these difficulties. But Edward and Hewson 5  showed that, in 

the metallic region, there was no sharp Fermi surface. In 1972 Ikeda 

et al. 6  solved the Hubbard model taking H as the starting point, 
E 
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instead of H
I' 

and removed ali the difficulties mentioned above. 

However, for strong intraatomic interactions (—
I 

> 1) their solutions 
á 

are not accurate enough to give the ordered magnetic state. In this 

paper we find that this is due to the fact that the quasi-particle 

spectrum of the Ikeda et al. 8  does not contam n ali the terms linear in 

the hopping integral. Using a self consistent many body theory, 

developed by Fedro and Wilson 7 , for the single particle Green's 

functions and extended by Kishore 8  for the many particles Green's 

functions, we obtain the quasi-particle energy of each band of the 

spectrum, consisting of the two bands, exactly up to the first order 

in the hopping integral in the limit of strong intra atomic interaction. 

A brief outline of the self consistent many body theory 

is given as follows 7,8 . An equation of motion for the Green's 

functions 8  

G
íj 

(t) = i e (t) < [A., B. (t)1 	> ; n 	± 	 (4) 
1 	J 	_In 

foranytwosetsofHeiser~perators,A.andB. obeying the 
J' 

condition 

[A., B. ] 	= [A. 	:B.] 	S.. 
1 	n 	1 	1 	n 13 ( 5 ) 

is given as 

i 	a 	G. 	(t) = 	B.] •> S., (5 (t)+i e (t) 	LB.(t)] > 
at 	 n 	lj 	 j 	In 

(6) 
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where for the Hamiltonian H and any arbitrary operator x, the Liouville 

operator L is defined in the following manner 

L X E [H, Xj 	 (7) 

Now, the operator B(t) is broken into two parts 
J 

B(t) E P B(t) + (1 - P) B.(t), 	 (8) 
J 	J 	 J 

where the projection operator P is chosen as 

PE X P. 	 ( 9 ) 
i J  

with 

B
i  <EA .,  x ] 

P. x . 	 il 
> 

J 	
(10) 

<[ A
i

, B
J
. ]

n 
 > 

On substituting the identity (8) in (6) and using the relation 

<[ x, LY ]
n 

> = -<[ LX, Y ]
n
>, obtained from the cyclic invariance of 

the trace implied in the ensemble average, we get 

- —â
a
t G

ij 
(t) = <[A 	B

i 
-I n > d

iJ
. d(t) + X R

it 
G(t) 

2, 

- i e(t) <[L A.  (1 - P) Bi (t) 1 n > 	(11) 

where 

<EL A., B ] > 
- 	 i 	2, 	T)   = - 	 (12) 2 "a  

B st j
n

> 
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From the solution of the equation of motion of the operator 

I)) 13(t) 13.(t), it can be shown that 7,8  

i 
(1 - P) e(t) B 	

T (1 - P)L 	 B
t 	 

.(t) = X i

o 

 dT e 	(1 - P)L 	 G .(t-T) 
J 	 RJ 

2, <1:Ar  B st  4> 

Substitution of the above equation (13) in (10) gives a closed 

equation for the Green's function 

- 1 -2— G. .(t) = <[ A., B. ] > 	M (S 	+ X 2
1
. 2, G

2,3 J 	
.(t) 

1 	1 	n 	13 at 

+ 	dr y. (t) G . (t - T) 
1R 	2,J 	

(14) 

where 

y 12. (t) = 

iT(1-P)L 
e(t) < [ L A., e 	(1 - P)L B 2. ] n  > 

<[A2., B £  ] n > 

(15) 

For a special case, where subscripts 1, j or t corresponds to 

lattice sites or Wannier states and the system is spatially 

homogeneous, Eq. (14) can be Fourier transformed into energy-momentum 

space by introducing the Fourier transform 

1 	 + i t.(R i  -  Ri ) + iwt 
F
ij
(t) - 	 X 	dw 	e 	 F(w) 	(17) 

where N is the number of lattice sites and F
ij 

stands for G
ij

,  2
ij 

or 

Y ij... Use of (17) in (14) gives the Dyson equation 
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<[ , B i  4>  
G(w) 	w  _ 	- yi(>" (w) 

Now we shall restrict ourselves to the spatially 

homogeneous systems and Eq. (18) will be the starting point of the 

+ 	 + 
presentwori . n. 	, where n. 	E n. 	and 

i-a 	1-0 

n . 	E 1 - n. 	; B. = a.f , and n = +, Eq. (18) gives 
i-a 	i-o- 	1 	la 

G
k 

 4- (w) = 
a 

n - 
-a 

w - 	- y± (w) 
ka 	ka 

where from (4), (12) and (15) G71>(-0 (w), 2-1>(-0.  and yty(w) are respectively 

the Fourier transforms of 

+ 
G
ija

(t) = i e (t) <[ a
ia 

n ±
1-a 

a
ja

(t) I> 	 ( 20) 

	

1- 	+ 	, <[ L a. 	nt 	, a. -] 	> + 	ia 1-0 	JO -  I- 2T. - -  	 (21) 
ma 	 + 

n
-a 

and 

(t) = - 

it (1 - 13- )L 
i e (t) <CL a. 	e

+ 	+ 
(1 - P)L a. i >(22) 

ia 1-a, 	 aja- + 

n
:a 

Because of spatial homogeneity we have replaced 

<1.1. 
-G 
> by n- 

-a  , as independent of the site i. From (10), the 1  

projection operators P -(11  are defined as 

(18) 

(19) 
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+ 
P -  E y P -s . 	 (23) 

J 

with 

+ 
a. 
i a   <r_ a. n+-: , x 1 > 	 (24) + 

p: x - 
Ja 	n+ 	Ja J -a 	- + 

-a 

If we divide the Liouville operator L into two parts 

	

L = L
I 

+ I_
c 	

(25) 

where L I 
and L are defined by 

c 

L I 
x= [H 1 , X] (26) 

and 

L X = [ H c , x 1 	 (27) c 

then, from (2), (3) and (24), we obtain the following easily verified 

relations: 

L
I 

a
ia 

= -I a. 	n. 	 (28) 
ia 1 -a 

L
I 

a
ia 

n
. -a

= -I a. 	n. 	 (29) 
10 1 -0 

L a
ia 

= - y E. a. 	 (30) 
E ij ia 

i 

L
E 

a
ia 

n
i-a 

= X ['cij ( - a 	n. ja 1-a 
i 

+ a. (a + a. 	- a -I-  a 	) li>1 	 (31) 
1 ia j-a 	-a 	i-a  j-a 



(1- P ± ) L a+. =0 
E ja 

<C L 1  a ia  (1 - n i-a ), (1 - P ± ) x 	> = O 	 (33) 

Use of (28) to (31) in (21) and (32) and (33) in (22), 

we get 

, 	 I 	_,_ 	I 
QT. = c.. T 	— 
lja 	13 	2 	2 

and 

it (1 - P ± ) ( L + L ) 
a 	I + 	e 4_ 

y 1T- 2  (t) = - 	
en+

(t)  < [ Le a. n. ± 	e 	(1 - P- ) L 1  aia  j +> (35) 
ija 	 ia 1-a' 

-a 

We are interested in calculating the single particle 

Green's function 

G ija 
(t) = i e (t) <r a. , a+. (t) ]

+ 
> 	 ( 36) 

- ia 	ja 

which is equal to the sul of the Gr-eeri's functionsG 	(t) and ija  

(t). From (19) its Fourier transform 

G
k 

 4- (w) = G k  +4- (w) + G -4- (w) 
a 	 a 	ka 

is given as 

1 - n
-a 	 (38) 

n - c 

	

(w) = 	  ka - 
2 	

, , 
w 	Yk÷  (w) 
	w - 	 - y 

ka 	a 	
5.2 	 ui)) 

ka 

where, from (17), (34) and (35) 

± 	I 	I 	, 
= 	± 	 E÷ 

ka 
2 	2 

(39) 

(32) 

(34) 

(37) 



and 

--iwt 

	

1 	 1 	j 

	

+ 	 •L• j dt e 

	

n 	1-j 
-a 

Y k-cs (4)  

-9- 

i + (1 -P ± ) (L +L ) 
a 	I +c 

x <I: E 	a  L a i  n i  _a  , e 	 (1- P - ) L a 
j
+  ] 

a 	I 	a + 
> 

(40) 

It should be noted that (38) is an exact expression for 

the single particle Green's function, G k-cy  (w), and is appearing for the 

first time in the literature, as far as we know. It shows that quasi-

particle spectrum consists of two bands 

+ 	+ 	+ 1 + 

	

 
ka =2k-ci 	Yk-a).  “')k-cs') 	

(41) 

and 

0Jk4-2 4-  
= ka 	ka 	ka) 	

(42) 

with density of states 11_ 0.  and 1 - n_ a  respectively. The terms 

y k-à- (wí+a ) give the shift and width of the quasi-particle energies 2-Écy . 

If they are neglected, one gets the quasi-particle spectrum and also the 

single particle Green's function of Ikeda et al. 6 . For zero bandwidth 

(E-)" = 0) and zero intraatomic interaction (1=0)
' 	

(w--0 are zero. 
ko 

Thus, in principie, y±  (w>) can be expanded perturbationally for 

small bandwidth (strong intraatomic interaction) and small intraatomic 

interaction (large bandwidth). We develop a perturbation expansion for 



strong intraatomic interaction, and calculate the quasi-particle 

energies exactly up to terms linear in the hopping integral, by an 

iterative procedure. For small intraatomic interactions, this 

perturbation procedure is not valid for a part of Brillouin zone where 

1 e±
k  I > 1. We shal 1 not consider this case. However, recently, for 

small intraatonnic interaction, quasi-particle energies are calculatedlo 

up to second order in the intraatomic interaction, by using a method 

similar to that of Fedro and Wilson 7 . 

By using the operator identity 

it (A + B) 	itA 	t 	i TA 	i(t-T) (A+B) 

e 	 =e 	+i 	dr e 	Be 

o 

it A 	t 	i TA 	i (t-T)A 

=e 	+i 	dr e 	Be 	+  	(43 

o 

	

it (1 - P ± ) (L 1 	L ) 
for the exponential factor e 	a 	i 	C  with A = (1 - P ±  ) L 

a 	I 

and B = (1 - P ai- ) L e  in Eq. (46) we get a perturbation expansion of 

+ 	+ 
y i >ci  (úJ -1 >-0 ) in terms of hopping integral as 

+ 	+ 
y it ( w ) = ± I G 	G 

B-÷ 
-1- 	ka  ne+ + 

-0 k 
n

+ 
-a 

I 	I 
w - --___ -1- ___ 

2 	2 



I 	1 -i- . 0. - 	— Tz.) - i (w- 	± —) + 
I 	

.X. 	

°°-i 
	

1 
j dt e 	

J 	 2 	2 
x 

n 	1-J -a 	 -m 

it (1 - P -1 )L 
a I 

	

x <1L a. n. -  , e 	 (1 - P i- )L 	a+. 	> 
ia 1-0 	 a c j-a 3-0 -+ 

(44) 

where 

1  
B

14("a 
- 	

12 
<[L L

I 
a
ia

, (1 - 	P ) L
I 

aja+ 
 > (45) 

and the projection operators P ta  are defined as 

+  p 	x  = a 	<rL a
ta s X 1 +  > Sta 	£a 

(46)  

And explicit form of Brcy  in terms of correlation functjons is given by 

Fedro and Wilson 7 . First term of (44) is calculated by performing the 

time integral and using the identity 

it (1 - P,2;)1- 	
it 

I 
	 n. 	a. 	(47) = I e 

j-a J 
(1 - P --0.1") L1 aj 

a 

e 
a 

which is obtained by 

projection operator, 

in (41) and (42) and 

particle energy, 2L> 

by retaining the ten 

the use of (29) and the definition of the 

+  
p - , given by (23) and (24). Now we substitute (44) 
a 

use the iterative procedure with starting quasi-

. For strong intraatomic interaction (1q1/I < 1), 

ns linear in the hopping integral, we set 

B k,ã. 

wka 	-a-  = 	n 	E÷ 	
(48) 

	

k 	n 
-a 



BI,
i‘ 	 a  

ka 	-a 	n 	 (49 ) 
1 - n 

- a 

Thus, each band of Ikeda et al. 6  is shifted and 

narrowed. This shifting and narrowing gives rise to ordered magnetic 

statell, not obtained by the solutions of Ikeda et al. 6 . The quasi-

particle spectrum (48) and (49) is the same as that of Esterling and 

Lange 12  including terms of the two site and three sites variety which 

they neglected. 7  However, their quasi-particle self-energy is not 

exact up to terms linear in the hopping integral, as shown by 

Esterling. 13  Recently Arai et a1. 14  have obtained the self-energy 

exactly up to terms linear in the hopping integral, but it is not 

possible to calculate the quasi-particle spectrum correctly through 

terms linear in the hopping integral since their equation Grl(w)-- O 

is polynomial in w. 


