
INPE- 5334—PRE/1733

MANTRA: A SHELL FOR HYBRID KNOWLEDGE REPRESENTATION

J. Calmet

I.A. Tjandra

Guilherme Bittencourt

INPE

São José dos Campos

Dezembro de 1991

SECRETARIA DA CIÊNCIA E TECNOLOGIA

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-5334-PRE/1733

MANTRA: A SHELL FOR HYBRID KNOWLEDGE REPRESENTATION

J. Calmet .
I. A. Tjandra*

Guilherme Bittencourt

Aceito para apresentação na 3rd. International Conference on

Tools for Artificial lnteligence,

San Jos é , CA, Nov. 10-13, 1991

* Inst. of Algorithms and Cognitive Systems

INPE

São José dos Campos

Dezembro de 1991

CDU: 681.3

Key Words: Knowlwdge representation; hydrid systems;

expert systems

MANTRA: A Shell for Hybrid Knowledge Representation*

J. Calmet, I.A. Tjandra 	 G. Bittencourt
Inst. of Algorithms and Cognitive Systems 	Instituto De Pesquisas Espaciais

Am Fasanengarten 5 	 Caixa Postal 515 - 12.201
W-7500 Karlsruhe 1 	 São José dos Campos - SP

Germany 	 Brasil

Abstract

In this 	we present a shell for hybrid knowl-
edge representation. This system supports four differ-
ent knowledge representation formalisms: Firsi-order
logic, terminological language, semantic networks and
production systems.

The system autornatically supports hybrid infer-
ences taking into account lhe knowledge represented
in different formalisms. Ali lhe algorithins involved
in lhe inferences, supported by lhe system, are decid-
able, and have lhe property of being sound and com-
plete according to a four-valued semantics. Besides
these facilities, lhe shell allows lhe user to itpresent
procedural knowledge of a domain using Lhe primitives
embedded aI lhe heuristic levei. The system has been
implemented in Comi -non Lisp, and makes use of an
object-orienied ertension for Mis language.

1 Introduction

To represent an expert's knowledge through the
knowledge base of an expert system one is faced
with choosing among a rather broad repertoire of for-
malisms to achieve this goal. One of Lhe crucial is-
sues in representing an expert's knowledge is to take
into account the semantic correctness of the repre-
sentation and its corresponding inference mechanisms.
Engineering the expert's knowledge, however, would
mean to choose the appropriate representation, if any
is available, and in ma,ny cases it is convenient to use
several formalisms.

We have designed and implemented a shell for
hybrid knowledge representation, MANTRA, based
upon Lhe following design principies: (i) severa/ co-
operating formalisms are better than a unique rep-

"This paper was accepted for publication in the Proceedings
of the 3rd International Conference on Tools for Artificial In-
teligence, held in San José, California, USA, November 10-13,
1991.

resentation formalism, (ii) a clear sentantics explain-
ing the meaning of the knowledge representation lan-
guage is fundamental and (iii) ali algorithms involved
must be decida file and reasonably fast. From a knowl-
edge engineering point of view MANTRA could also
be regarded as a general-purpose shell for building
large knowledge-based systems. This statement is il-
lustrated by its architecture.

MANTRA is a multi-layered system and its archi-
tecture is made up of three leveis:

(i) the epistemological levei, that is concerned
with formalisms showing how facts about the
world can be represented in the memory of a com-
puter,

(ii) the logical levell, that consists of a knowledge
base management including primitives for storing
and legitimating conclusions to be drawn from the
facts stored in the knowledge bases, and

(iii) the heuristic levei, which is concerned with
mechanisms to search spaces of possible solutions,
to resolve conflict situations, to match patterns
and to give explanations if desired.

We adopt a knowledge representation approach
consisting of a representational theory, explaining
which knowledge is to be represented by which for-
malisms, and of a common semantics to define the re-
lationship between expressions of different formalisms
in a semantically sound manner. The decidability
of ali algorithms involved is achieved by adopting a
four-valued semantics based on the works of Belnap
[1] Patel-Schneider [14] [15], Frisch [11] and Thoma-
son et al. [17]. The language includes four differ-
ent knowledge representation formalisms: First order
logic, frames, sema,ntic nets and production systems

lAccording to the notion of epistemology as introduced in
1131, one could regard the following logical levei as being also
part of the episteinological

which are embedded in this system in which asser-
tional reasoning, terminological reasoning, inheritance
with exceptions and heuristic programming are inte-
gr ated .

The paper is organized as follows. Instead of de-
scribing separately the semantics of each formalism
embedded in the system in full details, which would be
too long and can be found in [2], we present in section
2 the theoretical background of a decidable first-order
logic relying on the notions described in [14]. This
approach is used in the logic, liame and semantic net-
work modules. In section 3, we describe the architec-
ture and, in particular, the language embedded ia the
system. The implementation is described in section
4. In section 5, we present some concluding remarks.
In this section, we shall present a very concise report
on a possible, real application of MANTRA, and it is
better described ia [7].

2 A decidable first-order logic

The standard first-oder logic is widely used ia knowl-
edge representation systems due to its expressive
power. Adopting this standard logic implies that one
faces an undecidable problem when reasoning about
a given formula. Therefore, there are some modifica-
tions, e.g., extending the first order logic and changing
its inference mechanism, and some restrictions, e.g.,
the length of derivations and elapsed time, which have
to be imposed within such an approach. In our work,
we adopt a four-valued approach based on the work of
Patel Schneider [14] such that it is possible to devise
a decidable algorithm for determining whether a for-
mula follows from a set of formulae. The semantics of
this approach is weaker than that of first order logic.
This approach is a variant of first-order relevance logic
[1].

First of ali, we briefly introduce propositional tau-
tological entailments — a simple type of propositional
relevance logic. The syntax of the logic of proposi-
tional tautological entailment is the same as that of
standard propositional logic, but without an implica-
tion operator. Besides the standard two-valued as-
signment, formulae can also be assigned neither true
nor false or both true and false. Its semantics is based
on the four-valued setups of propositional relevance
logic [1], i.e., 8 = {{T} ,{F},{T, F}, o). The propo-
sitional tautological entailment is defined as follows:
a entails written a 0, iff O' is true whenever a is
and a is false whenever fl is. This entailment is a much
weaker notion than implication as known ia standard
propositional logic due to the four-valued seittps which

include the set of two-valued assignments. For exam-
ple, a A -ia 74 b and a 74 b V which mean that
the classical unsatisfiability and tautologies are not
defined ia this semantics. In this entailment modas
ponens is not a valid rule due to a A (-ia V b) 74 b.

Definition 1 A situation s consists of a triplet con-
taining a non empty sei D, lhe domain of lhe situ-
ation, a function e„, lhe environment function of s,
and a function e3 , lhe extension function of s, i.e.
s = (D,e,,e,). 6'3 maps each function leiter, int()
a function from Dfl to D and e, consists of a pair of
functions 	,e;) associating to each predicate a pos-
itive extension, 	lhe tuples in lhe domam n known to
possess lhe property of lhe predicate, and a negative
extension, lhe tuples known not to possess this
property.

Definition 2 A variable map is a mapping from vari-
ables into some set. If v is a variable map into D, x is
a variable, and d is an element of D, then vfi is a vari-
able map indo D with v(y) = d, if y = x, and vã(y) =
v(y), otherwise. Given a situation, s, and a variable
map, v, a inapping, v:, from terms into domain of s
can be defined as follows: v(z) = v(x), if a is a vari-
able, v: Ur (ti, • ,tn)) = (E3(f3"))(v s* (t1), •

otherwise.

Definition 3 The support relationships of first-order
relevance logic for atomic formulae are defined as foi-
lows : s , v 1=1At; (ti, • • ,in) 	(v;(ii), • -,t,:(tn)) E
C(I17), s supports lhe truth of 447(4,- ,tn) under
v, and s,v =j A7(tl • • •) in) 	(t);(ti), • • • ,v:(tn))

E e: (A7), e supports lhe falsity of 	,tn) na-
der v.

The relationships are extended to arbitrary first-
order formulae — very similar to standard tarskian
semantics — by the following rules:

1. s, v 	iff s,vki a
s, v 	iff s, v k, a

2. s,v 1=2 a V P. iff s,v f= a or s,v 	fi
s,v kl a V fi iff s,v 1=1 a and s,v

3. s, v kt a A)3 iff s, v 	a and s, v

	

s, v kf a A fl iff s, v ki 	or s, v

4. s,v 1=t Vxa iff for ali d E D s, vã k
s , v 1=f Vza iff for some d E D s, vã Kf

5. 8, v = 1a iff for some d E D s, vã k t
s,v j 3xcr iff for all d E D s, v 1=i a

Definitiore 4 If a and # are first-order sentences, a
efluas iff for ali situations, s, and ali variable maps,
v, if s,v k i a then s,v l=t fl and if s,v Kr 13 then
s,v f á.

The drawback of first-order tautological entailment
is that it can be used to simulate first-order implica-
tion and, thus, it is undecidable.

Now, we deal with a variant of relevance logic. Ini-
tially, we need to introduce the notion of compati-
ble sets of situations. A compatible set of situations
is a set of situations with the same domain and the
same environment function. Given S, a compatible
set of situations each with domain D, and v, a vari-
able map into D, the two support relations for this
logic, S,v S a and S,v Kr a are defined as follows.

1. s, v 	Vxa iff for all d E D S,v kt a
S,v I=j \Pira iff for some d E D S,vfi Kr a

2. S, v St 3xot iff for some d E D S,vj kt a
S,v =j 3xa iff for all d E D S,v,5 kf

3. S, v Si a iff for all s S s, v 	ce
S, v Si a iff for all s E S s, v

The interpretation of the formula 9xPx would be:
There exists a known individual for which the P is
true, i.e., for some domain element x Px is true in
each situation.

There are three different versions of entailment of
a —+ /3: (i) must be true whenever a is, t-entailment
(written (ii) a must be false whenever 13 is,
f-entailment (written --v) and (iii) Both conditions
must be fulfilled, tf-entailment (written The en-
tailments for quantifiers can be expressed as follows:

VxPx Pa
	

Pa
VxPx Pa A Pb
	

PaV Pb 74t 3xPx
VxPx 74r Pa A Pb
	

Pa V Pb —>f 3xPx
VxPx Pa A Pb
	

Pa V Pb 74 3xPx

Thus, the t-entailment is best-suited for knowl-
edge representation since a universal quantifier (t)-
entails the conjunction of any number of instantia-
tions whereas a disjunction of instantiations does not
(t)-entails an existential quantifier.

Finally, using the following theorem we are able to
devise a decidable algorithm to compute t-entailment
as described above.

Theorem 1 If a and # are sentences in skolemized
prenex conjunctive normal forra, i.e., a = VFAai and

= 3í* \fii, where is some ordering of the univer-
sally quantified variables in a and 	is some order-
ing of the existential quantified variables in 	then
a —>e there existe 0, a substitution for such
that for each 13i there exist some ai and th, a substitu-
tion for such that ai t1) C Pie where ai and AO are
treated as seis of literais.

3 The Architecture

In this section, we introduce the three levels which are
built modularly. First of ali, we describe the episte-
mological and the logical level, and then the heuristic
level of MANTRA.

3.1 The epistemological and the logical
leveis

The epistemological levei consists of three modules:
An assertional module, based on the logic as described
in section 2, a frame module, based on the termino-
logical box of Krypton [4], and a semantic network
module providing inheritance with exceptions [9]. The
primitives of these modules are used as parameters of
the Tell and Ask primitives of the logical levei. The
Te!! and Ask primitives are used to store facts and
to interrogate knowledge bases, respectively.

In the logical levei two kinds of interfaces are imple-
mented: The interactive interface and the program-
ming interface. The syntax of the programming in-
terface allows the applications of the Tell and Ask
primitives like ordinary Lisp functions. The syntax
of the interactive interface is easier to be understood
and, therefore, it is more appropriate for users who
are not familiar with Lisp. In the sequei, the syntax
of the language is presented according to the interac-
tive interface and in section 3.2. we shall present the
lisp-like syntax of the language for the heuristic levei.

The syntax of these two primitives, which can be
regarded as commands, is the following:

command ::= tell(knotvledge base, Fact)1
ask(knowledge base, Query)

Fact 	::= to-logic(formula) 1
to-frame(frarne-def) I
to-snet(snet-def)

Query 	::= from-logic(fornzula) 1
from-frame(frame-question) I
from-snet(sne1.-question)1
from-logic-frame(logic-frame- question) 1

from-logic-snet(logic-snet-quesiion) I
from-frame-snet(franze-snet-queslion)

where knowledge base is Lhe name of a particular
knowledge base.

As described above, the expressions of Query can be
formed either by using a specific module or by using
one of three combinations of the modules currently
available: logic+frame, logic+snet and frame+snet.
Other interactions between modules, e.g., logic-frame-
snet, are currently still being developed. The idea of
Lhe interaction between the three modules is that the
functionalities of one module can be used in order to
increase the inference power of another module. For
example, to bypass Lhe invalidity of modus ponens in
the assertional module one can use the frame or the
semantic networks module to represent the chaining
of a predicate in an appropriate way. In this way,
Lhe user is given a possibility not only to represent a
specific domam by means of several knowledge repre-
sentation formalisms, but the user can also make use
of the hybrid reasoning in order to get a semantically
motivated answer from a specific knowledge base.

3.1.1 The assertional module

This module is intended to be used to represent as-
sertional knowledge about a particular domain. The
expressions of this language are first-order logic for-
mulae. The reasoning of this logic is based ou t-
entailment, cf. section 2. The syntax of the primitives
embedded in this module is Lhe following:

formula ::= (formula) 1
!E ideniifier formula 1
!V identifier formula 1
formula 1 formula 1
formula Sz formula 1

formula 1
identifier(term,. • ,terrn)

ierm 	::= identifier
identifier(term,. • • ,term)

The symbols !E and !V are used to represent Lhe
existential and universal quantifiers, respectively. The
symbols ez, 1 and correspond to the logical conjunc-
tion, disjunction and negation, respectively.

To give an idea of using the Tell and Ask primitives
according to the assertional module, we give some sim-
ple examples. Consider the following commands:

teul(kbase0,to-logic(robin(tweety)))
tell(kbase0,to-logic(size(tweety,small)))

tellabase1,to-logic(number(nO)
& first(nO,Paul) & name(nO,Smith)
& sex(nO,male) & prolession(nO,lawyer)
& "married(nO)
& address(nO,Madison41)))

tell(kbasel,to-logic(number(n1)
& first(n1,Paul) \te name(n1,McCartney)
& sex(n1,male) \& profession(nl,Singer)
& married(n1)\& address(n1,Abbeyroad)))

The following questions can be given to MANTRA
and Lhe answer are given below.

Ask(kbase0,from-logic(!Ex size(x,small)
k robin(X)))

> The answer is YES,
with substitution (((x.tweety)))

Ask(kbasel,from-logic(!En !Ea address(n,a)
& !Ex name(n,x)))

The answer is YES
with substitution

(((x.Smith) (a.Madison41) (n.n0))
((x.McCartney) (a.Abbeyroad72) (n.n1)))

To give an idea of Lhe results of the entailment
calculation we sketch the algorithm performing this
task: Given a set of asserted facts, F , a,nd a question
Q = Ai Q. The algorithm searches for the set of ali
substitutions such that, for each Q in the query, there
is at least one F which implies, according to Lhe das-
sical semantics, this Qi when one of Lhe substitutions
is applied. Once this set is calculated the algorithm
trios to find a compatible subset, i.e., where the same
variables are substituted by the same terms. If this
subset is not empty then we say that Fi entails Q.

3.1.2 The frame module

This module is intended to be used to represent a ter-
minology by means of concepts, Lhe categories of ob-
jects, and relations, Lhe properties of objects. The
notion of relations is an extension of the notion of
roles, usually used in terminological languages. Roles
are binary relations and relations are arbitrary n-place
relations. The main idea of extending roles is that it
provides a better integration of this module with the
assertional module: The correspondence of n-place re-
lations to n-ary predicates. The principal operation
in this module is Lhe subsumption relation which ver-
ifies whether a concept or relation subsumes another
concept or relation.

The terminological language embedded into the
system has some additional characteristics usually not
possessed by other terminological languages or hybrid

systems: (i) It possesses a rich set of primitives, in-
cluding disjunction and negation of both concepts and
relations, (ii) It provides special symbols for the uni-
versal concept and for the bottom concept as well
as for the universal relation and for the bottom re-
lation and (iii) It includes tests for subsumption and
for equality between concepts and between relations.

The syntax of the terminological language is the
following:

from e-def 	::= identifier :c=concept I
identifier :r= relation

concept 	::= (concept) I
concept I

concept I concept I
concept & concept 1
*1

identifier
!E relation:[concept,- • • ,concept] I
!V relation4concept,- - -,concept]

relation 	::= (relation) I
•-••drelation 1
relation II relation I
relation && relation I
< * > 1
<-> 1
identifier 1
relation:[concept,• • ,concept]

frame-question ::= concept > concept
relation >> relation
concept < concept 1
relation << relation 1
concept = concept 1
relation == relation

The symbols * and < * > represent the univer-
sal concept and the universal relation, respectively.
Analogously, the symbol _ and <_ > represent the
bottom concept and relation. The operator rep-
resents negation. The operators & and I represent
conjunction and disjunction of concepts, respectively.
Analogously, the operators && und II represent con-
junction and disjunction of relations. The primitive
!V relationlconcept,• • • ,concept] restricts the values of
the n-valued relation relation to the set of concepts
[concept,• • • ,concept]. The meaning of this primitive
can be interpreted as follows: "Ali entities such that,
if they have property retation, then this property takes
its values in the concept list [concept,- • -,conceptr .

Analogously, the primitive !E relation : [concept,
•- ,concept] represents an entity whose relation re-
lation necessarily takes values in the concept list
[conceA• • •,concept]. The meaning of this primitive
is: "All entities which necessarily present the prop-
erty relation with values taken from the list of concepts
[concept,. • • ,concepi" . The primitive relation:[concept,
• • 	concept] represents the sub-relation of relation
with values taken from the list of concepts [concept,
•• • , concept]

Two different primitives are provided: identifier
:c= concept is used to associate a concept description
with an identifier and identifier :r=relation is used to
associate a relation description with an identifier.

To give an idea of using the Tell and Ask primitives
according to this module, we give a simple example.

The terminology of fauna (part) can be represented
in the following way:

Tell(kbase0,to-frame(blood :r= body-part :
[liquid] && body-paxt : [red]))

Tell(kbase0,to-frame(mammal :c=animal
/c !V blood : [wara]
& !V reproduction : [viviparous]))

Tell(kbase0,to-frame(bird :c= animal :
St !V blood : Nana]
& !V reproduction : [oviparous]))

Tell(kbase0,to-frame(elephant :c= mammal :
It !V food : [plant]
gc !E organ 	[trunk]))

Tell(kbase0,to-frame(robin :c= bird
ft !V size : [small] & ! E organ : [wing]))

Tell(kbase0,to-frame(carnivore :c= animal
& !V food : [animal]))

Tell(kbase0,to-frame(herbivore :c= animal
& !V tood : [plant]))

The reasoning in this module can be shown by the
following questions:

Ask(kbase0,from-frame(herbivore > elephant))
---> The answer is YES.
Ask(kbase0,from-frame(mammal > robin))
---> The answer is YES.

Using the assertional module and the terminologi-
cal module according to the given examples one can
make use of the hybrid reasoning possessed by the sys-
tem, for instance, in the following way:

Ask(kbase0,frota-logic-frame(!Ex size(x,small)
k animal(x)))

---> The answer is YES, with substitution
(((X.TWEETY)))

The idea of the interaction algorithm is to deter-
mine ali the frame entities subsumed by the predi-
cates appearing in a logical question and to use this
subsumed entities as they were predicates t-entailed
by the original predicates.

3.1.3 The semantic network module

This module manipulates the notions of classes and
hierarchies. The hierarchies can be explicitly created
by defining links among classes. Two types of links are
provided: Default links and Exception links. The hier-
archies are used as inheritance paths between classes.
The main inference proce dure of this module calcu-
lates the Subclasses relation taking jato account the
explicit exception. The syntax of the primitives in
this module is the following:

snel-def
identifier :k= class 1
idenlifier :h= hierarchy

class 	• —
identifier 1
class+ • • • +class

hierarchy 	::=
idenlifier 1
ideatifier ---> identifier 1
identifier -/-> identifier 1
hierarchy -F • • • ± 	hierarchy

snet-guestion ::=
hierarchy(identifier ---> identifier) I
hierarchy(identifier -1-> idenlifier identifier)

The infix oper ator takes two classes and creates
a new class which is more specific than the two given
classes. The infix operators ---> and -/-> take two
classes and construct a hierarchy consisting of a single
positive or negative link, respectively. The infix oper-
ator ++ takes two hierarchies and constructs a new
hierarchy consisting of ali positive and negative links
occurring ia these hierarchies. identifier :k= class and
identifier :h= hierarchy are used to associate a class
description with an identifier and to associate a hier-
archy description with an identifier, respectively. Two
kinds of questions are allowed ia the module ia order
to verify whether a class is a sub-class of another dass
ia a given hierarchy or not.

The following example shows how the primitives of
this module can be used to define hierarchies.

Te11(kbase0,to-snet(circus-elephant :k=

norraal-elephant + flying-elephant))
Tell(kbase0,to-snet(color :h=
elephant --> gray
++ royal-elephant -/-> gray))

Tell(kbase0,to-snet(circus :h=
african-elephant --> elephant
++ royal-elephant --> elephant
++ circus-elephant --> royal-elephant))

The reasoning using only inheritance can be shown
by the following examples:

Ask(kbase0,form-snet(color
++ circus(circus-elephant -/-> gray)))
---> The answer is YES
Ask(kbase0,from-snet(color
++ circus(african-elephant ---> gray)))
---> The answer is YES.
Ask(kbase0,from-snet(color
++ circus(circus-elephant ---> gray)))
---> The answer is NO.

The interaction algorithin for the assertional and
semantic network modules is very similar to the pre-
vious algorithm, but ia the present case a hierarchy
is used to represent an explicit entailment between
first-order logic predicates according to the subclass
relation represented ia the hierarchy. The following
example shows the hybrid reasoning using these two
modules.

Ask(kbase0,from-logic-snet(color ++circus,
!Ex size(x,big) & gray(x)))

---> The answer is YES, with substitution
(((X.Clyde)))

The next hybrid reasoning is the interaction be-
tween frame and semantic network modules. The idea
of this algorithm is to explicitly construct the sub-
sumption graph of the frame hierarchy, and to use the
union of this graph and of the given hierarchy graph
to calculate subsumptions of primitive concepts dur-
ing the subsumption calculation. The next example
presents this hybrid reasoning.

Ask(kbase0,from-frame-snet(circus,
animal > african-elephant))
---> The answer is YES.

3.2 The heuristic levei

Nowadays, there is a controversy between declara-
tivists, believing that the essence of knowledge does
not lie in procedures, and proceduralists, asserting

that our knowledge is primarily a "knowing how" [18].
As described above our system can appropriately be
used for representing declarative knowledge using the
primitives at the logical levei. In order to synthesize
the advantages of the two approaches, declarative and
procedural, we integrate the heuristic levei into the
system in the hope that the user can also represent the
procedural knowledge of a domaMunder consideration
using the primitives at this levei. Furthermore, these
primitives allow the introduction of ad hoc rules in
Lhe inference process. These rules cari specify strate-
gies for the utilization of the logical levei Ask and Tell
primitives.

At this levei, the primitives that allow the definition
of production systems for the automatic manipulation
of knowledge bases are defined. The syntax of the lan-
guage at this levei is given below. A rule of a rule base
is made up of Lhe following parts: (i) rule identifier,
(ii) a list of variables, (iii) condition part and (iv) ac-
tion part. The condition and the action parts mainly
rely on the Tell and Ask primitives as defined at the
logical levei. We allow the user to encapsulate a set of
rules in a context, i.e., the rules are valid or can fire
if the context is active. Activating, or deactivating,
a context can be performed by an appropriate primi-
tive embedded in the action part. The major goal of
introducing such contexts is to exclude "redundant"
rales while the rule interpreter is selecting rules to be
executed, i.e., to minimize the set of conflict rules.

The interpretation of rules is performed by invok-
ing the primitive Execute. Presently, the interpreta-
tion is performed merely by means of forward chain-
ing. The conflict resolution strategy can explicitly be
given by the user. Three kinds of strategies, which are
embodied by the following three filters, are currently
available:

(i) context-filter: this fitem works in such a way
that Lhe following strategies are taken into ac-
count successively:

uniqueness —+ context order —> recency 	gener-
ality —) rule order.

(ii) recency-filter:

uniqueness —■• recency 	generality —+ rule ordem

(iii) rule-filter:

uniqueness 	rule ordem 	recency.

The meaning of each strategy, e.g., recency or gen-
erality, is defined as usual [10].

Moreover, the usem can explicitly determine the
flow strategy which is either ali-rules (breadth-first
search) or first-rule (depth-first search).

The lisp-like syntax of the language at this levei
including the explanation facilities is the following:

heuristic-level
rbase-deciaration 1
rbase-statement 1
rbase-guery
interpret 1
explanation

rbase-declaration:=
(Decl-rbase identifier • • idenüfier)

rbase-statement ::=
(Tell-rbase ide nüfier context • • • context) 1
(Tell-rbase identifier identifier) 1
(Remove-rbase idenüfier • • • idenüfier) 1
(Remove-context identifier identifier • • identifier)
(Remove-rule identifier idenüfier • • • identifier) 1
(Rule-order idengifier identifier • • ideniifier) 1
(Context-order idenüfier identifier • • • identifier)

rbase-query 	::=

(Ask-rbase identifier) 1
(Ask-context identifier identifier) 1
(Ask-rule identifier identifier)

anterpret
(Execute identifier idenüfier) 1
(Execute identifier idenüfier goal) 1
(Execute identifier idenüfier flow-strategy goal)
(Execute ideniifier identifier goal

flow-strategy conflici-strategy)

flow-strategy 	::=
ali-rules 1
first-rule

conflict-strategy ::=
context-filter
recency-filter 1
rule-filter

contai
(identifier rule • • • rule) 1
(mie • ride)

goal
(condition-part)

ride 	 • •—
(identifier variables condition-pari action-part) I
identifier

variables
(identifier • • identifier) 1 O

condition-part ::=
condition • • • condition

condition
identifier : kbase-rule-quest
kbase-rule-quest

action-part 	--- ..—

action • • • action

achon
identifier : kbase-definition restriclion 1
identifier : kbase-definition I
kbase-definiiion restriclion 1
kbase-definilion 1
(to-lisp lisp-ezpression) 1
(activate identifier • • - identifier) 1
(deactivate identifier • • • identifier)

restriction
(to-context identifier • • • identifier)

explanation 	• •— ..—

(Explain how identifier) 1
(Expiam n when identifier)
(ExplaM why identifier) 1
(Expiam n history)

kbase-rule-quest and kbase-definition coincide with
the language of Ask and Tell primitives as described
in section 3.1, respectively.

4 The Implementation

The system, described above, has been implemented
in Kyoto Common Lisp (KCL), a complete implemen-
tation of the standard Common Lisp [16], together
with an object-oriented extension called Common OR-
BIT [8]. The use of a.n object-oriented programming
paradigm increases the modularity of the system and
makes it easy to modify. In the earlier version of
this system, the interface had been developed using
KYACC-KLEX [19], an interface between KCL and
the compiler generator YACC and LEX. Due to Lhe
portability difficulty of YACC and LEX we have re-
placed this part by a deterministic syntax a.nalyzer
that we have implemented directly in KCL.

To facilitate the interconnection between the dif-

ferent methods a single data abstraction hos been
adopted. This data abstraction consists of a set of
Direcied Graphs. Directed graphs subsumes several of
the most commonly used data structures and is also
suitable to be used in an interactive system due to
their inherent graphical character. The system Grasp,
a graph manipulation package, has been adopted as
the programming tool implementing this data abstrac-
tion. The base of ali inference procedures implemented
into the system is the unification function. A special
unification package has been implemented in Common
Lisp. The adopted algorithm is the almost linear al-
gorithm of Martelli and Montanari [12].

One crucial requirement to use the system for devei-
oping a knowledge-based system for real applications
is that the run time must be considerably fast. This
consideration concerns mainly the efficiency of the sys-
tem. In order to achieve this goal a compiler able to
generate "fast" binary codes must be used. Presently,
we are developing a "faster" version of the system us-
ing Lucid Cornmon Lisp for SUN-Workstations and, in
particular, we replace Common ORBIT by the flavor
system which is part of Lucid Common Lisp.

5 conclusion

We have given an overview of the MANTRA system, a
shell for hybrid knowledge representation. The system
is put of the hybrid systems research trend. lis main
contribution is the introduction of user-controllable in-
teractions between three different knowledge represen-
tation formalismo.

One of many important enhancements to be
achieved concerns Lhe user interface. An intelligent,
graphical user interface would aid the knowledge en-
gineer in building knowledge bases. She/he could de-
sign the knowledge base, using such a user interface, in
a visual, easier, and more perspicuous form. We are
implementing a cooperative graphical user interface
for MANTRA based ou X-Windows. A graph editor
which can be used to visualize, for instance, hierar-
chies or terminologies would aid the user for represent-
ing expert's knowledge by mea.ns of frames or semantic
networks. The other possible interactions among the
modules are also being implemented. The theoretical
studies of these interactions have shown that Lhe al-
gorithms being implemented are sound and complete
according to four-valued semantics. The rule inter-
preter, in the heuristic levei, is also being extended to
be capable of performing backward chaining.

The semantic soundness is mandatory for one of
the application of MANTRA which is to design an

environment for mathematical knowledge representa-
tion suitable for Computer Algebra Systems [6] [5] [7].
Considering the fact that mathematical domains of
computation are inherently modular and that there
are inter-relationships among the domains computer
algebra is seen , ia this environment, as another sort
of knowledge that is called mathematical knowledge.
The proposed representation of mathematical domains
of computation is based ou the notion of abstract com-
putational structures. In this way we make use of
ali knowledge representation formalismo ia order to
represent mathematical domains, e.g. the assertional
module to represent the laws of an abstract domain,
the frame module to represent the terminologies of a
domain and the semantic network module for repre-
senting the whole hierarchy.

This application to symbolic computation ia Math-
ematics is an on-going project where one repre-
sents and manipulate highly non-trivial knowledge.
MANTRA is proving itself to be very well suited to
such an elaborated application. The shell concept
ou which MANTRA is based enables also to use it
to develop expert systems. Another possible appli-
cation lies ia teaching Knowledge Representations to
students since it encompasses several cooperating for-
malisms.

Due to space limitation some features of MANTRA
have been only barely described or even overlooked.
Among them are for instance: searching algorithms
and the theoretical background. They are more thor-
oughly described in [2] [3]. For the same reason we
have limited the number of examples of applications.
This is particuIarly true for the heuristic levei.

.Acknowledgements

We owe thanks to Anita Lulay and Karsten Homann
for implementing the parser and the heuristic levei of
MANTRA. Thanks are also due to the referees of the
paper for their comments.

References

[1] N.D. Belnap, A Useful Four-Valued Logic, ia
"Modern Uses of Multiple-Valued Logic", ed. G.
Epstein and J.M. Dunn, Boston: Reide], 1977,
pp. 8 - 37.

[2] G. Bittencourt, An Architecture for Hybrid
Knowledge Representation, Ph.D. Dissertation,
University of Karlsruhe, Department of Com-
puter Science, 1990.

[3] G. Bittencourt, The Integration of Terminolog-
ical and Logical Knowledge Representation Lan-
guages, in Z.W Ras et ai (Eds.) Proceedings of
Fifth International Symposium on Methodologies
for Intelligent Systems, October 25 - 27, 1990,
Knoxville USA, North-Holland.

[4] R.J. Brachman, V.P. Gilbert, H.J. Levesque, An
Essential Hybrid Reasoning System: Knowledge
and Symbol Levei Accounts of KRYPTON, Pro-
ceeding of IJCAI 9, 1985.

[5] J. Calmet, I.A. Tjandra, An AI Environment for
Computer Algebra, in J. Johnson (Ed.), Proceed-
ings of International Conference on Artificial In-
telligence ia Mathematics, Glasgow, pp. 73 - 82,
1991.

[6] J. Calmet, I.A. Tjandra and G. Bittencourt, A
Framework for Representing Algebraic Knowl-
edge Using a Hybrid Knowledge Representation
System, Proceeding of The Fourth International
Symposium ou Knowledge Engineering, 1990.

[7] J. Calmet, I.A. Tjandra, An Expert System for
Correctness of Symbolic Computation, to be pub-
lished in Proceedings of the World Congress on
Expert System, Orlando USA, December 16 - 18,
1991, Pergamon Press.

[8] K. De Smedt, Object-Oriented Programming ira
FLAVORS and Comnion ORBIT. In "R. Haw-
ley (Editors), Artificial Intelligence Programming
Environments", Ellis Horwood Limited, pp. 157-
176, 1987.

[9] D.W. Etherington, Reasoning with Incomplete
Information: Investigations of Nonmonotonic
Reasoning., Ph.D. Dissertation, University of
British Columbia„Vencouver, BC, 1986. Com-
puter Science,

[10] A. Barr, E.A. Feigenbaum, The Handbook of Ar-
tificial Intelligence, William Kaufmann, 1982.

[11] A.M. Frisch, Knowledge Retrieval as Special-
ized Inference, Report No. 214, University of
Rochester, Department of Computer Science,
1987.

[12] A. Martelli, U. Montanari, An Efficient Unifica-
tion Algorithm. ACM Transactions on Program-
ming Languages and Systems, Vol. 4, No. 2, pp.
258-282, April 1982.

[13] J. McCarthy, Epistemological Problems of Ar-
tificial Intelligence, in R.J. Brachman, 11.3.
Levesque (Eds.) "Reading ia Knowledge Repre-
sentation" , Morgan Kaufmann, 1985.

[14] P.F. Patel-Schneider, A Decidable Firsi-Order
Logic for Knowledge Representation, Proceeding
of IJCAI 9, pp.455 — 458, 1985.

[15] P.F. Patel-Schneider, A four-Valued Semantics
for Prame-Based Description Languages, Pro-
ceeding of AAAI-86, pp. 344 — 348, 1986.

[16] G.L. Steele Jr., Common LISP. Digital Press,
Burlington, 1984.

[17] R.H. Thomason, J.F. Horty, D.S. Touretzky,
A Calculus for Inheritance ia Monotonic Se-
mantic Nets, Technical Report CMU-CS-86-138,
Camegie-Mellon University, Department of Com-
puter Science, 1986.

[18] T. Winograd, Franie Representation and lhe
Deckrative/Procedural Controversy, in R.J.
Brachman, H.J. Levesque (Eds.) "Reading in
Knowledge Representation", Morgan Kaufmann,
1985.

[19] J.R. Vigouroux, KYACC-KLEX, The Integration
of LEX-YACC into Kyoto Common Lisp. Per-
sonal Communication, 1988.

