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A PLANAR SOLUTION PROCEDURE FOR LINEAR DIOPHANTINE EQUATIONS 

Nei Yoshihiro Soma 

ITA/CTA - SEampos - SP - Brazil 

Horacio Hideki Yanasse 

INPE/MCT - SJCampos - SP - Brazil 

ABSTRACT  

In this paper we present a planar procedure for solving linear 

diophantine equations based on the calculation of the rank of the 

Mignosi's matrix. We also suggest a procedure for improving the bound 

on a linear diophantine problem of Frobenius. 

RESUMO 

Neste trabalho apresenta-se um procedimento planar de resolução 	de 

equações diofantinas lineares baseado no cãlculo do posto da matriz de 

Mignosi. Também sugere-se um procedimento para melhorar o limitante do 

problema de Frobenius em equacEes diofantinas lineares. 





1. INTRODUCTION  

The diophantine equations appeared with Diophantus 

2000 years ago and deal with the integer solution of the equation 

C(J) 
y A(J). X(J) 	= B 

J=1 

~e A(J), C(J) and B, are integers. 

Several interesting problems are derived from this 

general equation: 

a) the famous Fermat's last theorem - "Are there three natural 
N 

numbers such that the equation X(1)
N 	

X(2)
N 
 = 	i B 	s satisfied, 

N-2, Ne N?"; 

b) the Goodbach's conjecture - "Are there even numbers greater or 

equal to 4 that cannot be expressed as the sum of two prime 

numbers?". 

We analyse here the linear diophantine equation (LDE), 

that is, "is tfiere a natural N-tuple (X(1), X(2),..., X(N)) such that 

A(J) X(J) = B, A(J), Be H, J=1,2,...,N?". 	 (1) 
J=1 

This particular problem appears in a letter by 

Leibnitz to Bernoulli in 1669 and has been the focus of study of 

severa l famous mathematicians like Gauss, Cauchy, Silvester, Hardy, 

Ramanujan and others. 

rn practical settings, LDEs appear in several models 

in a great number of situations (see, for instance, Kluyver and 

Salkin, 1975), therefore, there is a great interest in solving this 

problem in an efficient manner. 

, 1 - 



-2- 

To solve this problem Gilmore and Gomory (1966) use a 

dynamic programming recursion that requires an 0(8) of memory 

requirements and an 0(NB) of computational time. Recently, Yanasse 

and Soma (1985) presented an algorithm for the unidimensional 

knapsack problem that has an improved performance as compared with 

the dynamic programming methods. 

In the present work we are interested solely whether 

equation (1) has or does not have a solution. The LDE is NP-complete 

(see Garey and Johnson, 1979), so a polynomial algorithm probably does 

not exist unless P=NP. 

To find a solution for (1) we present a pseudopolynomial 

algorithm that,in the worst case, the computational time is limited 

to 0(N(B-A(1))- y A(J)) and the memory requirements is 0(B-A(1)) 
J=1 

where it is assumed A(1)A(J) for ali J. This algorithm is based on 

observations made from the Mignosi's matrix (Mignosi, 1980), 

2. THE ALGORITHM 

We assume, without loss of generality, that our data 

is already sorted, that is, 0<A(1)<A(2)<...<A(N). We also assume that 

there is no A(J), J=1,2,...,N such that B/A(J)E H, otherwise the 

solution to (1) is trivial. Also, we can assume that M(1)+A(N) for, 

otherwise, we can reduce our problem to one with N-1 variables since 

X(N)=0. 

Mignosi (1908)stated that the number of solutions of 

a LDE is given by 
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1 	
Aet - u 

nB 	
B! 

a(1) a(2) 	a(B-1) o(B) 

-B+1 a(1) 	a(B-2) a(B-1) 

O 	-B+2 	a(B-3) a(B-2) 

O 	O 

	. 	-2 	a(1) 	a(2) 

O 	... 	O 	-1 	a(1) 

where a(t) = y A(j) if A(j) divides t , and 
jEJ 

J = {1,2,..., N}; and zero, otherwise. 

In fact, n B  is integer and will be different than zero 

if and only if the rank of M is B, where 

a(1) a(2) 	  a(B-1) a(B) 

A M = 

-B4,1   a(B-1) 

• • • 
• 

• • • 
O a(2) 

-1 	a(1) 

Our problem reduces to the determination of the rank 

of M. Here we propose to perform elementary column operations and try 

to make column B, the last column of matrix M, ali zero. 
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Notice that M has a very special structure. Ali elements 

above the main diagonal is nonnegative and each column has at most 

one negative element. By adding a nonnegative linear combination of 

the columns of M to column B, we can make it ali zero, with the 

exception perhaps of its first element, m; B , obtained after ali these 

operations. Only if mi B>0, the rank of M is B, otherwise rank(M) = 

B-t. 

It is important to observe that only the signs of m ii , 

the elements of M, are sufficient to determine the rank of M. Consider 

matrix R with elemefits r. such that 

í 1 

	if 	m..>0 ij 

r.
1 
 .--40if 
J 

-1 	if 

M13..=0 

m..
ij

<0 

i 	=  

j =  

Then, 

Theorem 1: rank(M) = rank(R). 

.th 
Proof: To zero the j— element of column B of matrix M or R, we can 

add to it a positive multiple of column j-1 since matrix's M or 

matrix's R j-th element in cdumn j-1 is negative. Since each column 

of M or R has at most one negative element, after this elementary 

column operation, what was positive in column B of matrix M or R 
th 

remains positive (except for the j -- element), what becomes positive 

incolumn B of matrix M becomes positive in column B of matrix R, what 

remains zero in M, remains zero in R. So, rank(M)=B if and only if 

rank(R).B. Since rank(M)2-1 and rank(R)B-1 then rank(M) = rank(R). 

The proof of theorem 1 provide us with the following 

t 

observadOn: 
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Corollary 1.  If the first element of column B becomes positive after 

anyone of the elementary column operations in the process of zeroing 

a j-th element of column B of M (or R), then rank(M) = rank(R) = B. 

Theorem 1 also shows that when calculating the rank of 

M, any operation that preserves the sign can be performed. 

If we had to build matrix M with ali the a(t)'s greater 

than zero, this would require computing for each t, t=1,...,B 

whether A(j) divides t, j=1,...,N. For matrix R, although simpler, 

still we will have to check if A(j) divides t for at least one j, 

j=1,...N. In the proof of theorem 1 it became apparent that a simpler 

matrix can be considered for the rank's calculation. Consider matrix 

S taving elements s 

S.. 	= 
1J 

-1 

1 

O 

that 

for 	i=j+1 

for 	i=j-A(k)+1 

otherwise 

k=1,...,N 

1=1,... ,B. 

j =1,...,B. 

This matrix is, in general, sparse and it is related to R in the sense 

that only a few subset of the diagonais that are different than zero 

in R are present in S. 

We will prove that. 

Theorem 2:  rank(S) = rank(R). 



- 6 - 

Proof.  We know that rank(R) is B if and only if 

A(J) X(J) = B for some X(J)4 integer. Otherwise, rank(R) = 
J=1 

B-T. Also, rank(S)kB-1 and rank(R)rank(S). This latter inequality 

can be proved if we observe that in the process of zeroing the last 

column of S we add to it, linear positive combination of columns of 

S. The same combination can be used in R. Since the columns of R are 

lexicographically greater or equal to the columns of S, those 

elementary column operations preserve this ordering. 

Assume rank(R)=B. Then B = 	m A(J) for some m 
E+, 

J=1 J  

J=1,...,N. 

In S, we can add to column B, the following columns: 

if m1 k1, take column B-A(1)-1, column B-2A(1)-1,..., column 
B-m.1, A(1)-1; if m 2 1, take column B-m1 A(1)- A(2)-1,columnB-m 1A(1)- 

2A(2)-1,..., column B-m 1A(1)-m2A(2)-1;...; if mNk1, take column 

B-m 1A(1)-m2A(2)- 	mN_ 1A(N-1) - A(N)-1, column B-m 1A(1)-m 2A(2)- 

... -mN _ i  A(N-1)-2A(N) - 1; ..., column B-m iA(1)-m2A(2)-...-mN _ I A(N-1)- 

(9(1) A(N)-1. 

Since B = 	m A(J), the column B-m 1A(1)-m,A(2)-...- 
J=1 J  

(MN-1) A(N)-1 = A(N)-1. But this column has its first element 

A(N)-1 = 1. Since the last column 8 remains non-negative when we 

add ali these columns and the first element of column B becomes 

positive, the rank(S)=B and we are done. 

The planar procedure we suggest follows the steps that 

re performed to determine the rank of S. Consider the following 

example: 
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5x 1  + 7x 2  + 9x 3  = 32, x 1 ,x2,x3E N. 	 (2) 

Is there a solution to equation 2? 

Our procedure starts building a square grid of size B 

where diagonais in the positions corresponding to A(1), A(2),..., A(N) 

are drawn. Also, a guideline which is a secondary diagonal is drawn 

as shown is Figure 1. 

9 6 7 6 5 4 3 2 1 

Figure 1. 

We mark with a black dot the initial positions A(1),..., 

A(N). 

Starting from the first black dot from the top left, we 

draw a horizontal une that crosses the guideline at A (see Figure 1). 

From- A, we draw a vertical Une that crosses the diagonal lines at 



15 

8 

B, C and D, respectively. From B, C, O we draw horizontal lines 

that cross the vertical scale at 10, 12 and 14 for this particular 

example. Se, these positions are marked with black dots too and they 

indicate values - for which equation 1 has a solution when the right 

iland-side equals that value. Notice that what we do is analog to an 
elementary column operation in S. 

We proceed to the immediately next black dot and 

perform these same operations. This is schematized in Figure 2. 

— T1 —Ir —I —T—T— 	 1 
16 15 14 13 12 11 10 9 13 7 6 5 4 3 2 

( El )32 

Figure 2. 

After a few iterations, we arrive at the position 
shown in Figure 3 indicating in this example that the equation 2 has a 
feasible solution. 
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Figure 3. 

As can be seen from the previous example, the problem 

was reduced to one in the plane. We only need to work with a grid 

of size B, draw diagonais corresponding to A(1), A(2),...,A(N) and 

mark dots conveniently, according to some specified rules. Observe 

that these operations can be done for any linear diophantine equation 

of the form (1), which is quite interesting. 

3. OBSERVATIONS 

The procedure just presented is of 0(N(B-A(1 ) - yA(J)) 
J=1 

as indicated in Yanasse and Soma (1985). The fact that in this case 

we are not carrying an objective function does not modify the 

performance of the algorithm. There are some variations that can be 

suggested at this point, for instance, making black dots in this 

horizontal scale in correspondence with the black dots in the vertical 

scale. A black dot in the vertical scale means that there is a solution 
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for the linear diophantine equation with that right-hand-side. A 

black dot in the horizontal scale means that there is a solution 

to the linear diophantine equation from the black dot point to B. 

Hence, when one draws the vertical line from a point in the 

guideline and one hits a black dot in the horizontal scale, one can 

stop immediately. In Figure 4 we illustrate what we would achieve 

with this variation. 

Figure 4. 

Notice that if by any chance the number of black dots 

in the vertical scale reaches IB/2 - A(1)/2 j + 1 then we can stop. 
The linear diophantine equation 1 has solution. This can be seen by 

symmetry. Observe that in the horizontal scale we will have also 

I B/2 - A(1)/2 I + 1 black dots which implies that at least one 

vertical une drawn from a point P on the guideline obtained by a 

horizontal line from a black dot ir, the vertical scale will hit one 

of the horizontal black dots. 



It may be worth using a sufficient test based on 

Mèndelsohn, t970, to check whether (1) has a solution. Consider the 

equation 

Ax 	Dy = 8. 	 (3) 

If the greatest common divisor of A and D, GCD (A,D), is equal to 1 

and (A-1) (0-1) 5 B+1, then (3) has at least one non-zero natural 

solution. 

á 
Let M

IJ  = GCD(A(I), A(J)). If there exists at least 

one pair of indices 1 and J, I, Je{1,...,N}, 19 J such that 

(A(I)-MIJ
MI J 

) (A(J)-M IJ ) 
divides B and B 	M

IJ 
then 	A(I)X(I)+A(J)X(J). 

B has at least one nonzero natural solution (by Mendelsohn, 1970), 

hence, I A(J) X(J) = B has a solution. One strategy in applying 
J.1 

this test would be to choose the pairs (I, J) in such a way that 

A(I).A(J) is non-decreasing. 

Lt is convenient to observe that if MIJ does not divide 

B then A(I)X(F)+A(J)X(J)=8 has no solution. In the case the previous 

sufficient test is not satisfied, either one of the following cases 

must occur: 

a) for ali pair (I,J), I,Jc{1,...,N}, I9L J, M IJ  does not divide B; or 

b) there is a pair (IA), L, Je{1,...,N}, I9LJ where M IJ  divides B 

and (A(I)-M 1 ) (A(J)-MIJ )/mij  > 

Ln case (a), the LDE has no solution with only two variables different 

than zero. This suggests that we should consider at least three 

variables at a time in trying to determine whether (1) has a solution. 

Thrs approach is not explored further in this present work. 
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In case (b), it appears that a pseudopolynomial 

algorithm which is polynomial in B might perform well since B is not 

relatively large compared with some coefficients of equation (1). 

Concerning the Mendelsohn bound, in the next section 

we explore the planar procedure in an attempt to find a stronger 

bound on a linear diophantine problem of Frobenius. 

4. IMPROVING BOUNDS ON A LINEAR DIOPHANTINE PROBLEM OF FROBENIUS 

It is known that if the GCD (A(1),...,A(N)).1, then 

(1) has at a least one natural solution for suficiently large values 

of B(see, for instance, Grosswald, 1962). 

lhe problem of determining the smallest integer above 

which equation 1 has always a solution, or at least, getting non 

trivial estimates, appeared for the first time with Frobenius and 

has been the focus of attention of severa] researchers (e.g., 

Bateman, 1958; Brauer, 1942; Heap and Lynn, 1964; Johnson, 1966, Erdds 

and Graham, 1972). 

Let G(A(1),...,A(N)) be the smallest bound above which 

equation (1) has always at least one solution. Assume, without loss 

of generality, that GCD (A(1),...,A(N)).1. It is known that for 

A(1)X(1)+A(2)X(2).B, G(A(1), A(2)_A m(A(1), A(2)) = (A(1)-1)(A(2)-1)-1, 

as given by Mendelsohn, 1970; for A(1)X(1)+A(2)X(2)+ 	+A(N)X(N).B, 

G(A(1), 	 A(N)) = (A(1)-1) (A(N)-1)-1, as 

given by Brauer, 1942 or G(A(1), A(2),...,A(M) 
GEG'A'  

( (1),..., A(N)) 
--  

2A(N-1). 	 - A(N), as given by ErdOs and Graham, 1972, where 

x j means the greatest integer smaller or equal to x. 

We present next a procedure that might improve these 

bounds, in some cases. Let equation (1) with GCD(A(I), A(J)) = 1 
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for ali 1 and J, L, Jc{1,...,N}, IJ. Let LG(A(1),...,A(N),B) 

B-A(11 	B-2A(1) 	1 .  
I  

J.1 	
A(J) 	I. 	I 	2 

- 

Theorem 3.  If LG(A(1),...,A(N),B)k0 and B<A(1)A(2), then the IDE(1) 

has at least one solution. 

Proof.  Follows immediately from theorem 2 and the symmetry argument 

given in Section 3. 

Consider the following illustrative example: 

5X(1) + 7X(2) + 11X(3) + 13X(4) + 17X(5) = B 	 (4) 

where the GCD (A(I), A(J)) = 1, ILJ, I, Jc{1,2,3,4,5}. 

The best bound for this problem is 

G = (5-1) (7-1)-1=23, given by the Mendelsohn bound. But 

LG(5,7,11,13,17,22).1>0. Therefore, equation 4 has at least one 

solution for ali 1322. In fact, using theorem 3, we would get that 

LG(5,7,11,13,17,0k0 for L.15,16,..., 23, hence, equation 4 has at 

least one solution for all Bk15. Notice that, in this example for 

B=T4 we 'have also a solution but this could not be obtained by the 

result on theorem 3. 

In searching for an improved bound, we have to determine 

the lowest value L for which LG(A(1),...,A(N),B)k0 for B=L, L+1,..., 

Gmwhere 
GM1N 

 equals the minimum of the known bounds. This bound L 
may be smaller than the ones already known, as in the example shown. 

Unfortunately, it lis not true that if 

LG(A(1),...,A(N),M)k0 for some M, then LG(A(1),...,A(N),K)a 

for all Kt. Hence, a clever strategy has to be derived in order to 

determine the value of L. One possible way for doing this would be to 

keep the remaining of the division in each one of the terms in the 



- 14- 

expression of LG to compute the changes as we decrease B, from 

Gm -1 by the minimum of these remainings. 

The requirement that the GCD(A(1), A(J)) = 1, for all 

I, JE{I,...,N}, ILJ can be relaxed and the procedure adjusted 

accordingly with an increased calculation effort. 

5. FINAL COMMENTS 

We present here a planar solution procedure for solving 

linear diophantine equations. The procedure is an enumeration scheme 

and lias special features that may be explored further. For instance, 

at each elementary column operation in matrix S, we have to perform 

N additions (and comparisonsif we carry also a criterion). Since 

these operations are independent, this might suggest that they can be 

done in parallel in an adequate multiprocessor computer. We will have, 

hence, an improved factor of N in performance. In the case where a 

simple YES or NO answer is required, an 0(A(N))of memory requirements 

implementation can be easily made. Also, recall that if the A(J)'s 

are prime two by two, then B<(A(1)-1) (A(2)-1)-1 and the pseudopolynomial 

algorithm presented should perform quite well. 

Finally, the case of explicit bounds on the integer 

variables (e.g., 0-1 variables) can be handled by adequate 

modifications on the algorithm. 

In ti-lis case, the enumeration is nade accordingly 

with the tree schematized in Figure 5. 
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What differs here from other traditional enumeration methods is the 

order that the nodes are visited on this tree. 
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