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Abstract. The widespread use of mobile devices allows gathering large amounts
of moving objects’ trajectories. However, just trajectories are often not enough
to enable movements understanding. On the other hand, users’ posts in social
media can be regarded as sparse and freely annotated movement traces, which
can also be collected via mobile devices. This paper proposes a method for
automatically fusing trajectories with social media users’ posts based on their
spatiotemporal compatibility. The results are trajectories annotated with posts
contents, that may help to explain movement goals, and relations with places
and events, among other information. The proposed method has been imple-
mented and evaluated in experiments with real GPS trajectories and tweets.

1. Introduction
The popularization of mobile devices equipped with positioning technologies (e.g. GPS
navigators, smartphones, tablets) has increased considerable in the recent years. This
growth has led to the gathering of large volumes of raw trajectories, i.e., time ordered
sequences of spatiotemporal positions of moving objects holding mobile devices. The
trajectories collected by using modern devices can have quite accurate spatiotemporal
coordinates (e.g., 3 to 30 meters), which are collected in such a rate (e.g., at each second)
that allows capturing many movement details. However, such purely spatiotemporal data
lacks information (e.g., in the form of textual data) to help understand the movements,
such as related places of interest, events, and goals.

Several works have been proposed for trajectories data processing
and mining [Spaccapietra et al. 2008, Alvares et al. 2007, Parent et al. 2013,
Pelekis and Theodoridis 2014], but spatiotemporal coordinates are not enough to
explain movements [Yan et al. 2013, Fileto et al. 2013], making trajectories annotation
crucial to realize their information analysis potential. Thus, many solutions have been
proposed for trajectories annotation. Nevertheless, these methods have limitations on the
characteristics of the annotations produced and/or rely on human labor. The former prob-
lem limits the use of the generated annotations. The latter makes the methods unsuitable
for daily use with large quantities of trajectories, because annotating is a laborious task,
that can easily become tedious for people. On the other hand, the sparse spatiotemporal
data available in social media (e.g. Twiter, Facebook), have textual information (e.g.,
hashtags, comments) that can help describe and analyze trajectories. These data can be
regarded as sparse and freely annotated movement traces [Azmandian et al. 2012], and



are also frequently collected via mobile devices. Thus, they can be used to annotate
trajectories and analyse movements.

This paper proposes a method to annotate raw trajectories by fusing them with
social media users data (e.g. tweets, posts in Facebook). It uses as the matching cri-
teria the proximity of each trajectory (or trajectory segment) with sequences of social
media users’ posts. Our strategy is analogous to some of those that are common prac-
tice in many engineering areas to fuse data originated from different kinds of devices
[Castanedo et al. 2010]. The resulting trajectories annotated with textual contents of so-
cial media posts (hashtags, comments, etc.) can feed semantic enrichment, analysis, and
mining processes for extracting useful information of large quantities of spatiotemporal
data. In fact, some collections of sparse, geo-referenced, and timestamped textual con-
tents of social media users’ posts are already being proved useful to explain goals, places,
and events related to movements of people [Fileto et al. 2013, May and Fileto 2014]. The
method proposed in this paper aims to ally the virtues of vast collections of trajectories
(usually accurate, detailed) and social media posts (having rich textual contents). It has
been implemented in a prototype, and evaluated in experiments with real GPS trajectories
and tweets, both with geographic coordinates inside the city of Fortaleza Brazil.

The remaining of this paper is organized as follows. Section 2 discusses related
works. Section 3 defines some key concepts for understanding the proposal. Section 4
presents the proposed method. Section 5 describes some experiments and their results.
Finally, Section 6 concludes the paper, and provides a glimpse of our future work.

2. Related Works
One of the most accepted conceptual models for structuring trajectories is proposed by
[Spaccapietra et al. 2008]. According to this model trajectories can be segmented in stops
and moves, which are specializations of episodes (Definition 3). It introduces the possi-
bility of interpreting a subsequence of spatiotemporal points (stop or move) as an ag-
gregation with distinguishable characteristics. It abstracts irrelevant details, and allows
annotations to be associated with stops and moves instead of trajectory points.

The method proposed by [Alvares et al. 2007] aims to semantically enrich tra-
jectories by mining stops in places of interest (POI) of a given collection, and moves
between these stops. Their method allows the efficient calculation of stops and moves,
to build the conceptual representation trajectories proposed in [Spaccapietra et al. 2008].
This method, originally called SMoT (Stops and Moves of Trajectories), can also
be called IB-SMoT (Intersection-Based SMoT). CB-SMoT (Cluster-Based SMoT)
[Xiu-li and Wei-xiang 2009] is another method to mine stops and moves. It aggregates
spatiotemporal points of raw trajectories in subsequences that present similar character-
istics (e.g., around the same speed). CB-SMoT can identify stops by clustering adjacent
positions in which the moving object is stationary or moves slowly, regardless of where
they occur. Notwithstanding, IB-SMoT and CB-SMoT produce limited annotations. Both
label segments as stops or moves, and IB-SMoT associates each stop with the respective
POI of the given collection.

The annotation platform proposed in [Yan et al. 2013] progressively transforms
the raw trajectories into semantic trajectories. The trajectory segments are annotated with
concepts such as as home and work, or POIs. These annotations are based on prede-



termined hot spots, and produced by trajectory mining algorithms. They derive from
behavior found in trajectories and/or external data.

The DayTag annotation system [Rinzivillo et al. 2013] helps an individual to re-
construct her/his travel diary from the GPS trajectories collected by using a smartphone.
The user uploads his trajectories and interacts with the system to visualize and annotate
trajectories. It generates diaries a posteriori, instead of annotating trajectories during real
time on mobile devices, as done in works like [Doulamis et al. 2012, Broll et al. 2012].
These tools sometimes they infer basic information, such as the kind of transportation
means (motorized vehicle) or nearby places, by using spatiotemporal analysis or checking
the places that are close to the user’s location in available databases. However, these semi-
automatic annotation tools still demand a lot of user effort to confirm what is inferred, and
mainly to provide additional information for annotations (e.g., places and events of inter-
est, goals). Our work, on the other hand, proposes a totally automatic method that can be
applied to huge data volumes, without demanding additional user effort.

The movement mining algorithms presented in [Azmandian et al. 2012] use as
inputs another source of movement data: sequences of social posts. It examines the
movement patterns of Twitter users and cluster moving objects according to their spa-
tiotemporal these patterns. The results of this work show that it is possible to infer part
of the underlying transportation network from Tweets alone, and uncover interesting dif-
ferences between the behaviors exhibited by users across cities. [Gabrielli et al. 2013]
exploits mobility data mining techniques along with social network analysis methods to
aggregate similar trajectories, and point out hot spots of activities, and flows of people that
vary over time, according to the number of tweets sent from each place. They apply and
validate the proposed trajectory mining approaches to a large set of trajectories built from
geo-positioned tweets gathered in Barcelona during the Mobile World Congress 2012.

Other works dealing with social media posts to peoples activities and behavior
as they move in the geographic space include [Kisilevich et al. 2010, Cheng et al. 2011,
Yin et al. 2011, Zigkolis et al. 2011, Wakamiya et al. 2012]. However, none of these pro-
posals use the textual contents of social media posts to annotate trajectories or to help
explain movements.

3. Basic Definitions
This section first presents definitions related to trajectories, and social media users’ trails
(i.e., sequences of social media user’s posts). Then, it describes the problem of fusing
them to produce trajectories annotated with the textual contents of the posts. These sub-
jects are fundamental to understand the rest of the paper.

3.1. Trajectories

Raw trajectories are temporally ordered sequences of spatiotemporal positions occupied
by a moving object. In this work, we consider trajectories of small objects (e.g., people,
vehicles), whose positions are represented by spatiotemporal points.

Definition 1. (Spatiotemporal Point). Position represented by the quadruple:
𝑝(𝑝_𝑖𝑑, 𝑥, 𝑦, 𝑡), where:

∙ 𝑝_𝑖𝑑 is a point identifier;



∙ (𝑥, 𝑦) is a pair of geographic coordinates; and
∙ 𝑡 is a time instant.

A mobile device that collects locations samples in the form of spatiotemporal
points within a certain time interval generates a raw trajectory.

Definition 2. (Raw Trajectory). Temporally ordered sequence of spa-
tiotemporal positions visited by a moving object, represented by the triple:
𝑅𝑎𝑤𝑇𝑟𝑎𝑗(𝑚𝑜_𝑖𝑑, 𝑡_𝑖𝑑, 𝑝_𝑠𝑒𝑞), where:

∙ 𝑚𝑜_𝑖𝑑 is the mobile object identifier;
∙ 𝑡_𝑖𝑑 is the trajectory identifier; and
∙ 𝑝_𝑠𝑒𝑞 is a temporally ordered sequence of spatiotemporal points (𝑝1, . . . , 𝑝𝑛), with

each 𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑛) of the form stated in Definition 1.

Figure 1. Raw Trajectory

A raw trajectory can be segmented in subsequences of spatiotemporal points sat-
isfying certain conditions. These subsequences are called episodes, as defined in the
following.

Definition 3. (Episode). Maximal subsequence of spatiotemporal points of a raw tra-
jectory that satisfies a given predicate. An episode is represented by the quadruple:
𝑒𝑝𝑖𝑠𝑜𝑑𝑒(𝑡_𝑖𝑑, 𝑒_𝑖𝑑, 𝑒_𝑡𝑦𝑝𝑒, 𝑝_𝑠𝑢𝑏𝑠𝑒𝑞), where:

∙ 𝑡_𝑖𝑑 is the trajectory identifier;
∙ 𝑒_𝑖𝑑 is the episode identifier;
∙ 𝑒_𝑡𝑦𝑝𝑒 is the episode type (e.g. 𝑆𝑡𝑜𝑝,𝑀𝑜𝑣𝑒); and
∙ 𝑝_𝑠𝑢𝑏𝑠𝑒𝑞 is a maximal subsequence of spatiotemporal points (𝑝𝑖, . . . , 𝑝𝑗) from

a raw trajectory 𝑅𝑎𝑤𝑇𝑟𝑎𝑗(𝑚𝑜_𝑖𝑑, 𝑡_𝑖𝑑, (𝑝1, . . . , 𝑝𝑛)) that satisfies the predicate
(𝑝𝑖, . . . , 𝑝𝑗) =⇒ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} (1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛).

Figure 2. Episode

Temporally ordered episodes of a trajectory, constitute another representation of
the movement, called a structured trajectory, as defined in the following.



Definition 4. (Structured Trajectory). Temporally ordered sequence of non nested
episodes. Each element of the sequence is represented by a pair: StrTraj(𝑠𝑡𝑖𝑑, 𝐸𝑖),
where:

∙ 𝑆𝑇𝑖𝑑 is the structured trajectory identifier; and
∙ 𝐸𝑖 is an episode.

Figure 3. Structured Trajectory

3.2. Movement Data collected on Social Media

A social media footprint is the record of an interaction between an user and a social media
(eg, Twitter, Facebook, Foursquare). When the user posts an associated information (eg,
space-time position, photo) is recorded in the respective media (eg, Twitter, Facebook)
and accessible via specific each media API. A temporally ordered sequence of footprints
is a trail.

Definition 5. (Social Media Footprint). Social media system record of an iteration
performed by a user, represented by the quintuple: SMF(𝑀𝑂𝑖𝑑, 𝑆𝑀𝐹𝑖𝑑, 𝑆𝑚𝑖𝑑, 𝑃, 𝑐),
where:

∙ 𝑀𝑂𝑖𝑑 is the mobile object identifier;
∙ 𝑆𝑀𝐹𝑖𝑑 is the footprint identifier;
∙ 𝑆𝑀𝑖𝑑 is the social media identifier (e.g., Twitter, Facebook);
∙ 𝑃 is a reference to a spatiotemporal point (Definition 1);
∙ 𝑐 are the contents of the footprints (e.g., tags, pictures, texts).

Figure 4. Social Media Footprint

Definition 6. (Social Media Trail). Temporally ordered social media footprints se-
quence, generated by the same user. Each element of this sequence is represented by
the pair: SMT(𝑆𝑀𝑇𝑖𝑑, 𝑆𝑀𝐹 ), where:

∙ 𝑆𝑀𝑇𝑖𝑑 is the social media trail identifier; and
∙ 𝑆𝑀𝐹 is a reference to a social media footprint (Definition 5).



Figure 5. Social Media Trail

Both raw trajectories and social media trails refer to sequences of spatiotemporal
positions. However, trajectories usually have better spatiotemporal accuracy than trails.
Raw trajectory points are usually sampled at short and fixed intervals (e.g., every second,
every 10 meters). On the other hand, social media posts are asynchronous (the user de-
cides when to post) and usually sparse, but they have associated textual contents, that may
serve as annotations to help understand movements.

The problem considered in this paper is the fusion of (portions of) trajectories with
(portions of) trails, based on spatiotemporal proximity, to produce trajectories annotated
with trails contents. Its inputs are a set of raw trajectories and a set of social media trails.
Its outputs are pairs of the form ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩, where 𝑡𝑟𝑎𝑗 is a moving object’s trajectory
or a continuous subsequence of its points, and 𝑡𝑟𝑎𝑖𝑙 is a sequence of social media user’s
footprints (posts). Each returned pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ must have trajectory points and trail
footprints that are close in space and time, as illustrated in the upper portion of Figure 7.

4. Proposed Method for Fusing Trajectories with Trails
The proposed method efficiently determines the best matching pairs ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ from a
large dataset of trajectories and trails, by using a spatiotemporal distance function that
allows ranking the matchings, among those that satisfy at least the minimum matching
criteria. Figure 6 presents an overview of the proposed method. It is a process with three
phases: trajectories preprocessing, trajectories compression, and fusion of trajectories
with trails. The preprocessing phase can clean and structure raw trajectories in a sequence
of episodes, for example. The compression stage compresses the structured trajectories
in a representation that can be analyzed more efficiently than the mere aggregation of the
trajectory points in episodes. The fusing phase calculates the global matching coefficient
for pairs ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ that may be related and selects the best ones. This method is flexible
in the sense that it allows different algorithms for performing specific tasks in each phase,
according to the dataset and application peculiarities. The main focus of this paper is the
fusion phase, that is divided in four steps, described in the following subsections.

4.1. Select Candidate Pairs

Comparing every pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ is not viable for large datasets, due to the amount of
time needed for doing so. Thus, we consider a temporal window [𝑡𝑖, 𝑡𝑓 ] around each tra-
jectory and trails, where 𝑡𝑖 is the initial instant of the trajectory trail less a threshold, and
𝑡𝑓 is the final instant of the trajectory or trail plus the same threshold. Using these tempo-
ral windows it is possible to efficiently select only the pairs ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ that temporally
overlap. It is also possible to use spatio-temporal windows and joins based on their in-
tersections processed with efficient spatiotemporal data access methods to determine the
candidate matching pairs. The matching based on enclosing windows is expected to gen-
erate a relatively small set of pairs ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩, compared to the Cartesian product of the
trajectories and trails datasets. These pairs are then evaluated in mored detail to calculate



Figure 6. General process of the proposed method

first the local matching coefficients between trajectory episodes and trail footprints, and
then the global matching coefficients of the respective ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ pairs.

4.2. Evaluate Matchings of Episodes with Footprints
Consider a candidate pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ such that 𝑡𝑟𝑎𝑗 is a time ordered sequence of
episodes 𝑒1, . . . , 𝑒𝑛 of a moving object’s structured trajectory, and 𝑡𝑟𝑎𝑖𝑙 is a time ordered
sequence of footprints (posts) 𝑓1, . . . , 𝑓𝑚 of a social media user’s trail (𝑚,𝑛 ≥ 1). The
Temporal Matching Coefficient (TMC), given by Equation 1, measures the temporal
compatibility between episode 𝑒𝑖 and footprint 𝑓𝑗 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚).

𝑇𝑀𝐶(𝑒𝑖, 𝑓𝑗) =

⎧⎨⎩ 0 if (𝑓𝑗.𝑡 ∈ 𝑒𝑖.𝑡)
|∆𝑡(𝑒𝑖.𝑡, 𝑓𝑗.𝑡)| if (|∆𝑡(𝑒𝑖.𝑡, 𝑓𝑗.𝑡)|) ≤ 𝜏𝑡

∞ otherwise.
(1)

TMC is 0 if the time stamp 𝑓𝑗.𝑡 of the footprint 𝑓𝑗 is inside the time span of
episode 𝑒𝑖. Otherwise, TMC is the time difference between the trajectory and the trail,
if this difference is less or equal an predetermined time threshold 𝜏𝑡. If this difference is
greater than 𝜏𝑡 then TMC is set to infinity. This coefficient guaranties that the footprint is
temporally close to the trajectory episode that it may be associated to. It is crucial in the
proposed method, because its goal is to associate episodes with social media posts that
occur around the same time, and the time stamps are usually reliable in both data sources.

The Spatial Matching Coefficient (SMC) of Equation 2 employs a distance met-
ric of the Minkowsky family (𝐿𝑝) to measure the spatial compatibility between a trajectory
episode 𝑒𝑖 and a trail footprint 𝑓𝑗 .



𝑆𝑀𝐶𝑘(𝑒𝑖, 𝑓𝑗) = 𝑘

√︁
|(𝑒𝑖.𝑥− 𝑓𝑗.𝑥)|𝑘 + |(𝑒𝑖.𝑦 − 𝑓𝑗.𝑦)|𝑘 (2)

Variations of Equations 1 and 2 could use, for example, the 𝑙𝑜𝑔 of 𝛿𝑡 and 𝐿𝑝,
respectively, instead of the bare distances. It can help to adjust the measurement scales in
a more suitable manner to capture the temporal and/or spatial compatibilities for certain
datasets and application domains.

Finally, the Local Matching Coefficient (LMC) between trajectory episode 𝑒𝑖
and trail footprint 𝑓𝑗 is calculated as stated by Equation 3, which simply sums the values
𝑇𝑀𝐶(𝑒𝑖, 𝑓𝑗) with 𝑆𝑀𝐶(𝑒𝑖, 𝑓𝑗), calculated by using Equations 1 and 2, respectively.

𝐿𝑀𝐶(𝑒𝑖, 𝑓𝑗) = 𝑇𝑀𝐶(𝑒𝑖, 𝑓𝑗) + 𝑆𝑀𝐶(𝑒𝑖, 𝑓𝑗) (3)

4.3. Evaluate Matchings of Trajectories with Trails

The Global Matching Coefficient (GMC) of a pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ is calculated by us-
ing the LMC between each spatiotemporally close episode and footprint of 𝑡𝑟𝑎𝑗
and 𝑡𝑟𝑎𝑖𝑙, respectively. In this work, we use Dynamic Time Warping (DTW)
[Rakthanmanon et al. 2013] for doing this task. DTW is an efficient algorithm to cal-
culate the proximity between two temporal sequences, by computing optimal matchings
between their component points. The sequences are warped non-linearly in the time di-
mension to determine a measure of their similarity, independent of certain non-linear vari-
ations in the time dimension. Although DTW measures a distance-like quantity between
two given sequences, it does not guarantee the triangular inequality property.

In this work 𝐺𝑀𝐶(𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙) is the DTW proximity between 𝑡𝑟𝑎𝑗 and 𝑡𝑟𝑎𝑖𝑙,
i.e., the optimal sum of

∑︀
𝑒𝑖∈𝑡𝑟𝑎𝑗 𝐿𝑀𝐶(𝑒𝑖, 𝑓𝑗) between episodes of a trajectory and trail

footprints. DTW has two binding possibilities to an episode and a footprint, regarding
annotation purposes. These cases are: (i) bind an episode with 1 or more footprints of
a trail (B1+); or (ii) bind more than one episode of a trajectory with the same footprint
(B+1). In case B1+ we annotate the episode with all footprints binded to it, and in case
B+1 we annotate the episode with the closest footprint. These binding cases are illustrated
in the figure 7.

4.4. Select the Top Ranked Matchings

After computing the GMC between ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ pairs, these pairs are regarded as edges of
a bipartite graph 𝐵𝐺(𝑉,𝐸) where 𝑉 = 𝑇𝑟𝑎𝑖𝑙𝑠𝑆𝑒𝑡∪𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠𝑆𝑒𝑡, and the weight of
each edge ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ is the value 𝐺𝑀𝐶(𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙). Then, a greedy algorithm that or-
ders the edges in descending order of their weights, and takes the edge (pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩)
with the lowest weight (value 𝐺𝑀𝐶(𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙)) to annotate episodes of the trajectory
𝑡𝑟𝑎𝑗 with the textual information associated to the footprints of 𝑡𝑟𝑎𝑖𝑙.

5. Experiments

We have implemented the method proposed in this work as a prototype. The implemen-
tation of this prototype was done in Java version 1.7.0. The database management system



Figure 7. Illustration of the binding cases for a pair ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩.

Postgres1 version 9.1.3 and its spatial extension PostGIS2 version 2.1 were used to hold
trajectory and social media data. They provide support to efficiently access and process
this data, with operators such as CONTAINS, OVERLAPS, and proximity joins that use
these operators on geometric representations of spatiotemporal data indexed with GIST3.

The proposed method needs two datasets as its inputs: a trajectories dataset and
a trails dataset, that must be spatially and temporally compatible (i.e., contain data of
the same geographic area, preferably collected during the same time period). However,
finding compatible datasets has not been a trivial task. Currently, we only have access
to trajectory databases that were collected a few years ago, while social media APIs only
allow collecting data of recent posts, or even those occurring at real time. Thus, we are
doing efforts in parallel to collect trajectories and posts that are compatible in space and
time. In fact, we are pursuing work with volunteers to collect some subsets of trajectories
connected to specific sequences of social media users’ posts, to serve as ground truth to
evaluate the quality of our method. Meanwhile, we have done preliminary experiments to
evaluate our method with partially compatible datasets, such as collections of trajectories
and social media data of the same geographic area, but not the same year. Then, in the
experiments done so far, we consider datasets with temporal compatibilities such as the
same days of the year, months or seasons, but in different years.

The Dataset of Raw Trajectories (DRT) was collected by using GPS on taxis mov-
ing in the metropolitan region of Fortaleza, during the period between July 3 2012 and
October 20 2012. For this experiment we selected 10 taxis drivers, and segmented the
data in such a way that each trajectory corresponds to a taxi ride for a passenger, generat-
ing a total of 8,253 trajectories. The Dataset of Social Media Trails (DSMT) contains the
posts of 11,974 Twitter users, who sent tweets from the metropolitan region of Fortaleza
between July 3 2014 and October 15 2014, making a total of 339,713 footprints.

1http://www.postgresql.org
2http://postgis.net
3http://gist.cs.berkeley.edu



5.1. Data Processing

In the Pre-processing Phase we deleted from the DRT all the trajectories that had less than
10 points, and assured that they were segmented by the taxis ride. These procedures re-
duced the number of trajectories of the DRT to 6,429. Then, we applied the algorithm CB-
SMoT [Bogorny et al. 2011] to generate the Database of Structured Trajectories (DST),
containing 13,167 stops in 4,962 trajectories. All the stops generated have their duration
equal or bigger than 15 seconds, average movement speed of 0.5 km/h, and maximum
instantaneous speed between two points of 1 km/h. The other 1,467 trajectories did not
meet these requisites to generate valid stops.

In the Trajectory Compression Phase, we computed the centroids of the stops
produced in the previous phase for each structured trajectory in DST. In the experiments
done so far we did not use the moves of these trajectories.

Finally, in the Fusion Phase we set the temporal threshold for the temporal window
to 5 minutes. It is important to denote that our trajectory dataset do not match the trail
dataset exactly in time, we disregard the the year of the trajectories data. In addition,
as these datasets do not have a matching segmentations, we allow matching to be done
between subsequences of trails and subsequences of trajectories. Therefore, the pairs
⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ do not have to match as a whole.

The average number of candidate trails to match each trajectory in the DST were
2 trails, after applying the temporal window. Thus, trails that are out of the temporal
window of each trajectory are not taken into account in the computation of the GMC.
Consequently, the fusing algorithm can run more efficiently by only considering time
compatible trails to match with each trajectory.

We used the distance metrics L1 and L2 to calculate the spatial compatibility co-
efficient (𝑆𝑀𝐶𝑘), i.e, we made experiments with 𝑘 = 1 and 𝑘 = 2 in Equation 2. We
built as an output of the Global Matching Coefficient (GMC) computation an Associative
Database (ADB) that is composed by a structured trajectory from DST, a trail id from
DSMT, a 𝐺𝑀𝐶1 value considering 𝑆𝑀𝐶1, and a 𝐺𝑀𝐶2 value considering 𝑆𝑀𝐶2.

5.2. Results

We verified that 87% of the greedy algorithm choices for binding pairs ⟨𝑡𝑟𝑎𝑗, 𝑡𝑟𝑎𝑖𝑙⟩ were
the same using either 𝑆𝑀𝐶1 or 𝑆𝑀𝐶2. The mean execution time for the method was 8
minutes, obtained in set of 20 executions with the same conditions. We computed 𝑆𝑀𝐶1

and 𝑆𝑀𝐶2 in each one of these executions.

The proposed method was able to annotate around 32% of the structured trajecto-
ries that had at least one stop, using either 𝐺𝑀𝐶1 or 𝐺𝑀𝐶2. The execution of the method
using 𝐺𝑀𝐶1 and 𝐺𝑀𝐶2 generated 1,621 annotated trajectories with at least one episode
annotated with the textual contents of a social media post.

6. Conclusion and Future Works
This paper proposes a method to fuse moving objects’ trajectories with social media users’
trails (sequences of posts). The proposed process adds the textual information of posts
contents to structured trajectories to produce annotated trajectories. This fusion is per-
formed in three phases: preprocessing, trajectory structuring, and data fusion. The last



phase relies on the spatiotemporal proximity of individual posts of a trail with trajectory
episodes. The main contributions of this proposal are: (i) for the best of our knowledge,
it the first one to annotate trajectories via fusion with social media posts; (ii) the proposed
method is totally automatic; and (iii) it is convenient and efficient enough to be used with
vast amounts of trajectories and social media data.

Future works include: (i) conduct further information fusing experiments with
other trajectories and social media data collections; (ii) extend the current version of the
method to also annotate moves; (iii) optimize the proposed method to run faster; (iv)
evaluate the quality of the annotated trajectories generated by different versions of the
proposed method, and schemes for tunning its parameters; and (v) employ the resulting
textually annotated trajectories to feed a variety of semantic enrichment, analysis, and
mining methods.
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