
Descriptive Modeling of the Web Mapping
Systems Users’ Behavior

Vinı́cius G. Braga1, Welder Oliveira1,
Vagner Sacramento1, Kleber V. Cardoso1

1Federal University of Goiás (UFG)
Institute of Informatics (INF)

Goiânia – Brazil

{viniciusgoncalves, kleber, vagner}@inf.ufg.br

welder.oliveira@gogeo.io

Abstract. Web mapping systems and Geographic Information Systems (GIS) in
general are widely used nowadays. However, there is a lack of models that
describe how users interact with this kind of application and the workload im-
posed on servers. These models are important for performance evaluation and
to direct the focus of the development to the points that will affect the most used
operations and the most users of the system. In this paper, we propose a de-
scriptive model of the web mapping systems users’ behavior. The model can be
used as a starting point for the creation of workload generators to make per-
formance evaluations in this kind of application. As a case study we created a
workload generator and we applied it in a web tile server. We show that adding
user features can significantly change the workload imposed on the server.

1. Introduction
Web mapping systems, such as Google Maps and Bing Maps, are increasingly becoming
part of people’s lives and are used for different purposes. Besides these, there are several
other applications that use Location Intelligence and Location Based Services in logistics,
Business Intelligence and CRM systems. They are developed using either commercial
(e.g. ArcGIS) or open source GIS platforms (e.g. PostGIS/GeoServer). A critical problem
in GIS applications development is to ensure performance and scalability as the number
of users and the data volume increase. The main factors that affect the performance of
a system are the design, the implementation and the workload to which the system is
subjected [Feitelson 2014]. The first two factors are well known by developers, but the
last one is sometimes neglected.

Usually, performance of systems are evaluated using stress benchmarks
[MAPLARGE 2014, OSGeo Wiki 2011], which are proper to help to detect bottlenecks
and to compare a system with others. However, to analyze the performance of a system
only using stress benchmarks is not a good choice. This kind of benchmark is very dif-
ferent from the workload of a system in production. They do not show the features of
the system that will be most used in production and do not give a clear idea of what to
priorize in the system’s development.

Knowledge of the real workload allows a better resources allocation and a better
cost-benefit in systems development. The developers can direct the improvement focus to

the points that will affect the most used operations and the most users. Without the correct
focus, a lot of effort can be applied to improve functionalities that will be underused and
vice versa. To know the workload is also important to investigate better caching strategies
[Romoser et al. 2012].

Despite the great importance of knowing the real workload, there is a lack of stud-
ies in the literature on GIS user behavior and their impact on the workload imposed on
servers. Some works try to simulate a real GIS workload and its effects on geographical
databases [Ray et al. 2011, Simion et al. 2012]. Some works use the history to the server
to improve the server cache strategies [Garcı́a et al. 2012, Quinn and Gahegan 2010]. Ro-
moser et al. (2012) created a workload characterization of the USGS EROS system, a sys-
tem that allows its users navigate and download images of the Earth. However, we did not
find any studies that characterize the typical user behavior and that model the workload
imposed to web mapping applications.

In this paper, we carry out an investigation about Google Maps users behavior and
we propose a descriptive model of the typical user behavior. The model describes several
user behavior aspects, such as the distribution of the intervals between actions, the zoom
levels frequency distribution, the distribution of session duration, and the frequency of
the most used operations. The model also describes how users pan on a map and how the
number of tile requests are intrinsically correlated with the screen resolution. In order to
evaluate the impact of the model in a real system, we have created a synthetic workload
and we compared it with a workload used by industry. The main contribution of this work
is the description of a model that can be used as a starting point to create a workload
generator to simulate real user behavior on web mapping applications.

This work is organized as follows. In Section 2, we present a brief description of
web mapping systems and we talk about related works. In Section 3, we describe how
the data were collected and analysed. In Section 4, we discuss results from data analysis
and we present a descriptive model, which characterizes the users in several aspects. In
Section 5, we show a case study with a workload generator based on the results of the data
analysis and applied it to a web tile server. In Section 6, we present the final comments
and we introduce some perspectives for future work.

2. Background and Related Work
Web mapping systems renderize the map in a set of fixed scales and divide it in images
of the same size, called tiles. The number of tiles grows exponentially as the zoom level
(scale) increases, following the 4zoom rule. Google Maps, for example, works with tiles
of 256x256 pixels. The number of tiles at zoom level 0 is 40, that is, just one tile. At
zoom level 1, it is 41, that is, 4 tiles and so on, as can be seen in Figure 1, which shows
the number of tiles increasing up to the zoom level 2. The highest zoom level that the
application permits is level 21, in which the map has a resolution of 256x256 x 421 pixels.
This model has become a standard for web maps. It allows users request only the images
related to the map part they want to see.

Despite the large use of web mapping systems, few research works seek to create
a real workload model to this kind of system. Romoser et al. (2012) analyzed the logs
of the USGS EROS system, a system that let users navigate and download images of
the Earth, seeking to study the workload imposed to this system. They investigated the

Figure 1. Tile pyramid with three levels.

accesses to the system and characterized them by user, by images and by requests. They
found the most requests came from a little set of users, as well as these requests are made
to a little set of popular scenes (specific places of the globe). Romoser et al. (2012) found
a pattern of access to images in big disasters dates, such as earthquakes and tsunamis.
These patterns were used to improve the cache and prefetching techniques, looking for
improvements on system performance.

Kang et al. (2001) created an algorithm to perform prefetching of the most prob-
able tiles to be requested based on the updated global access pattern. Furthermore, they
created an algorithm to substitute the tiles in cache based on the same probabilities. The
authors did not present any study of real data access on web GIS systems to prove the
effectiveness of their algorithms. Other authors have implemented a prefetching strategy
based on the history of previous accesses, identifying the most accessed areas and storing
them in cache [Kefaloukos et al. 2012, Garcı́a et al. 2012].

Ray et al. (2011) present Jackpine, a tool to benchmark spatial databases. The
authors modeled several common access scenarios to these databases to simulate a real
workload. Although they address several spatial database operations, the workload gener-
ator was created without taking into account several real GIS access aspects, such as think
time, that is the time users take to analyze the map and perform the next action. In a later
work [Simion et al. 2012], Jackpine was used to produce concurrent accesses to catego-
rize different microbenchmarks based on CPU and disk usage. However, the workloads
used by them were defined with no statistical analysis of real data, they used only good
sense and the authors’ experience in the industry. Whithout a statistical analysis there is
no way to say that their workloads are close enough to real GIS workloads.

Zhang et al. (2007) analyzed traces of heterogeneous applications to characterize
the workload imposed to the servers. They modeled the CPU usage statistically and cre-
ated strategies of anomaly detection and capacity planning. Cibulka D. (2013) developed
a study about the influence of the latitude, longitude and scale in the response time to re-
cover a tile in web mapping systems. The results showed that the response time is bigger
in regions with a greater density of objects, although he did not mention the cache effects.

3. Conceptualization and Methodology
Geographic Information Systems let users reference information with their locations on
a map and visualize them in different types of maps. GIS allow the overlay of different
georeferenced data layers that can be useful for many studies. An important use of this
technology is in the creation of web mapping systems. These systems are popular and so
simple to use that users do not need to have GIS knowledge to work on them.

Google Maps is one of the most popular web mapping systems of the world. Some
of its operations, such as zoom and pan, are common to any web mapping system. The
knowledge of the use of these operations can be useful in the characterization and mod-
eling of the typical workload imposed to this kind of system. The latest Google Maps
version, available for all users since February 2014, presents several useful information in
its URL. It is possible, for example, to extract the central coordinate, the zoom level, the
searches, routes, among other information. Google Maps changes the URL as a result of
user actions. For example, if user moves the map, the central coordinate value is changed.
This allows a reconstruction of the users’ actions from the set of URLs of a Google Maps’
navigation session. These points were crucial for the choice of this system in this work.

We have done a collect of a large set of accesses to Google Maps, collecting URLs
and other information. With these data we have made several analysis and we character-
ized the users on several aspects. This section presents basic concepts about Google Maps
and its URLs pattern and describes the collect and data analysis methodologies.

3.1. Google Maps

Google Maps is a popular map system and has a web and a mobile version. In this study,
we focused on the web version. This version updates the URL as a result of user actions
and the URLs have a lot of useful information that describe these actions. This allows the
user actions to be reconstructed from the set of URLs of a navigation session. The two
most basic information in the URLs are the geographic coordinate and the zoom level.
Below is an example of a URL with both this information highlighted in bold. The first
two numbers represent the latitude and longitude and the latter, with the “z”, is the zoom
level, which ranges from 0 to 21 on the road map.

• https://www.google.com/maps/@37.3075744,-95.4133961,4z

In addition to information about the coordinate and zoom level, it is possible to
extract information about searches, routes, StreetView visualization, among others. Due
to space restrictions, we will not present all the patterns, but all the cited information can
be easily extracted with the right regular expressions.

3.2. Data Collection Methodology

First, we contacted companies and public agencies that work with web mapping systems
and requested their systems access log. However, either they did not have this information
or were unable to provide it for security reasons. In view of this, we decided to develop
our own solution to collect data. We observed that the new Google Maps presents several
useful information in its URL that can be used to identify user behavior features.

We developed a Google Chrome extension to collect these URLs and other in-
formation. The extension collects the Google Maps URLs and some mouse movements

inside the page, all with its respective timestamps. Additionally, it collects the page res-
olution in pixels, which is equivalent to the width and height of the part of the map that
appears on the screen. The page resolution is collected for every user action, because the
page can be resized during the session. The extension was published on Chrome Web
Store and with about 120 users we have collected more than 60,000 URLs, together with
other access information.

We defined a user navigation session as the time the user spends on Google Maps.
This time starts when the user accesses the Google Maps page and ends when he finishes
his work, either by closing the tab/window or accessing another address in the same tab.
During a navigation session on Google Maps, the extension collects data on user actions.
Once the user logs out, the information is assembled and sent to a server.

3.3. Data Analysis Methodology
Initially, we analyzed the timestamps of each user action and from them we identified the
intervals between actions. To calculate them we created an algorithm that iterates on a
set of URLs from a user session and performs the subtraction Ti+1 − Ti, where Ti+1 and
Ti are the timestamps of URLi+1 and URLi, respectively. The intervals represent the
user think time, in other words, the time it takes to analyze the map and perform the next
action. Figure 2 shows the collection time of the timestamps and what we consider to be
a think time. The time T1 was collected at the end of User Action 1, the time T2 at the end
of User Action 2 and so on. To obtain the Interval 1, we just have to subtract T1 from T2.

Figure 2. Interval’s calculation.

Using the URLs we extracted some important information. First, we extracted the
zoom level on the road map, which is the default map. The zoom level ranges from 0 to
21, and a greater zoom level means a greater scale. With this information, we were able
to find the frequency of each zoom level, as shown in Figure 3(a). On the hybrid map (the
map with satellite images), the zoom level is replaced with a distance information. This
information varies a lot, and because of this, it were not used in the zoom level analysis.

We also analyzed the URLs in pairs to identify the action performed by the user.
For that, we developed an algorithm that iterates over each set of URLs, use the Algorithm
1 to identify the actions and create an ordered list with the actions of a navigation session.
Algorithm 1 analyzes two URLs in sequence and checks the change between URLi and
URLi+1 to define what kind of operation was performed by the user. The analysis of the
first URL of a navigation session is a special case, because this URL has no predecessor,
so the urlI parameter is passed with a NULL value and the operation is identified as
BEGIN type. To illustrate, suppose URLs 1 and 2 represent two sequential accesses of
the same user. As can be seen, there was a change in the zoom level, passing from 4z to
5z. This change is then recorded as a zoom operation.

1. www.google.com/maps/@37.0625,-95.677068,4z
2. www.google.com/maps/@37.0625,-95.677068,5z

In many cases the URL changes in more than one part. However, different changes
occur as a result of just one action. For example, let URLs 3 and 4 be two sequential
accesses of the same user. As is highlighted, the URL has changed both the zoom level
and central coordinate. Nevertheless, the action is recorded as a zoom, because the change
in the central coordinate was due to the zoom, which is directed by the mouse pointer
position when the mousewheel event occurs, not because of the pan. In Algorithm 1, one
can see that the evaluation of zoom level change (line 8) occurs before the evaluation of
the change of the central geographic coordinate (line 10), which means that the counting
is done correctly. During the search and route operations, the central coordinate and the
zoom level can also be changed. For this reason, Algorithm 1 evaluates changes in the
route and search at first, detecting the performed operation correctly.

3. www.google.com/maps/@37.0625,-95.677068,4z
4. www.google.com/maps/@38.2971386,-65.7063659,5z

As shown above, search and route operation are recorded when a change occurs in
the URL part that refers to them. For example, let URLs 5, 6 and 7 be sequential accesses
of the same user. When the user searches for drugstore, the URL 5 changes to include
the search information, as can be seen in bold in URL 6. This change causes the action
to be accounted as a search operation. If the user performs a pan, the URL will continue
with the search information, as can be seen in URL 7. However, as there was no change in
the search part, the verification in line 4 of Algorithm 1 will return false and the operation
will be correctly recorded as a pan.

5. .../maps/@37.0625,-95.677068,4z
6. .../maps/search/drugstore/@37.0625,-95.677068,4z/...
7. .../maps/search/drugstore/@40.2194479,-80.7356618,4z

Algorithm 1 Checks what changed between URLi (urlI) and URLi+1 (urlIP lus1) and
identifies the operation based on this change.
Input: urlI and urlIP lus1
Output: The operation the user carried out.

1: operation;
2: if urlI = NULL then
3: operation← new Operation(Type.BEGIN);
4: else if searchChanged(urlI, urlIP lus1) then
5: operation← new Operation(Type.SEARCH);
6: else if routeChanged(urlI, urlIP lus1) then
7: operation← new Operation(Type.ROUTE);
8: else if zoomChanged(urlI, urlIP lus1) then
9: operation← new Operation(Type.ZOOM);

10: else if coordinateChanged(urlI, urlIP lus1) then
11: operation← new Operation(Type.PAN);
12: else
13: operation← new Operation(Type.ANOTHER);
14: end if
15: return operation;

By using a coordinate and a zoom level it is possible to calculate the pixel and
the corresponding tile on the map, as can be seen in the example of Google Maps API
[Google Maps API 2014]. We implemented this algorithm to identify the tiles visualized
on the users’ screen. Each URL of the road map has the central coordinate and zoom
level of the visualized map. With both these information, we calculated the central pixel
position and using the page resolution we found the Bounding Box of the user screen.

We also collected the mouse positions during drag movements so that we could
compute the pans sizes, but due to inertia effect on map, this information could not be
used with confidence. Hence, we used the central geographic coordinate and the zoom
level information of the road map’s URLs to make this calculation. In every identified
pan operation we computed the size of the central pixel coordinate movement using the
Google Maps algorithm [Google Maps API 2014]. The distance the central pixel moves
is the same distance that all map moves, which means the computed information is the
pan size.

4. Descriptive Modeling

In this section, we present the results of the data analysis. All the results reveal some
important user behavior characteristic, which can be used to create models and workload
generators that are closer to the normal user behavior. The value of this kind of tool to
systems development is described very well in Dror G. Feitelson’s book [Feitelson 2014].

Figure 3(a) shows a histogram with the frequency of use of each zoom level. As
can be seen, some zoom levels are used more than others and there is a greater concen-
tration aroud zoom levels 15, 16 and 17. Zoom level 17 is the most widely used because
Google Maps redirects the map automatically to this level as a result of a specific search
at city level and zoom 17 allows a good navigation with a high level of details. Zoom
levels greater than 17 are very close to the Earth and make the navigation difficult, which
explains its low use. Very small zoom levels have a low level of details and do not bring
value to most searches, that are for information and places at city level. Zoom levels closer
to, but lower than, zoom 17 have a good level of details too and allow a good navigation,
which explains their high use. A similar behavior was found by Garcia et al. (2012) when
they analyzed traces of map servers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

%
 o

f T
ot

al

Zoom Level

(a) Histogram of the use of zoom levels.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Pan Zoom Route Search

%
 o

f T
ot

al

(b) Frequency of pan, zoom, route and search
operations.

Figure 3. Evaluation of use of zoom levels and of the frequency of the four most
widely used operations (b).

We made a comparison between the frequency of the most common operations
performed on Google Maps. We considered the four most common operations: pan,
zoom, search and route. Figure 3(b) shows the frequency of each one. Each stage of the
route was treated as a route operation, since it entails spending resources on the server.
As expected, pan and zoom occur with a higher frequency and a workload generator must
take these frequencies into account.

However, it is not enough just to know that pans and zooms are the most frequently
performed operations. We have to know how these operation are carried out, as well as,
how users normally pan and zoom on a map. In view of this, we decided to conduct
other analyzes. Figure 4(a) shows a histogram of the pans sizes, in pixels. The negative
values represent the pans to the left and to the top on the x and y-axes, respectively, and the
positive values to the right (x-axis) and to the bottom (y-axis). The number of pans are the
same in both axes. As can be seen, most pans are small and, in general, users tend to make
larger moves on the y-axis. This might be due to the widescreen format, which provides
less information on the y-axis and results in a need for larger moves in this direction. As
the widescreen format is currently the most used [StatCounter Global Stats 2014], most
users move the map in this way. Figure 4(b) shows the average of the moves on the x and
y-axes per zoom level and illustrates more clearly that the moves on y-axis are larger.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

−1500 −1000 −500 0 500 1000 1500

%
 o

f T
ot

al

Pixels

X
Y

(a) Histogram of the pans size, in pixels.

 80
 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

2z 3z 4z 5z 6z 7z 8z 9z 10z
11z
12z
13z
14z
15z
16z
17z
18z
19z
20z
21z

P
an

’s
 M

ea
n

in
 P

ix
el

s

Zoom Level

X
Y

(b) Average size of pans, in pixels, per zoom
level.

Figure 4. Evaluation of pan operation.

Pans and zooms were analyzed in terms of number of tiles requested by each
operation and the results are shown below. Figure 5(a) shows a histogram of the num-
ber of tiles requested per pan operation. In most cases, the number of tiles is zero and
this happens because of the large number of small pans that just show parts of the tiles
that were already loaded and did not appear on the screen. Owing to the screen res-
olutions, that support at least three tiles on each axis, no pan generates a requisition
of just 1 or 2 tiles. Currently, the most widely used screen resolution are 1366x768
[StatCounter Global Stats 2014], which allows a visualization of 6 tiles on the x-axis.
This might explain the large number of pans that request 6 tiles, since the largest pans are
made on the y-axis.

Figure 5(b) shows the histogram of the tiles requested per zoom operation. In this
case, the number of tiles is directly proportional to the screen resolution. As can be seen,
the top most number of tiles requested are 18, 24 and 28 and this can be justified by the
fact that the most commonly used screen resolution is 1366x768. Depending on how tiles

are arranged, this resolution can fit 6 or 7 tiles on the x-axis and 3 or 4 tiles on the y-axis.
If we multiply these values, we have the values 18, 24, 28 and 21, which is one of the
highest values too. Frequencies of 40 and 45 tiles requested are greater than 21 and this
is because that values are equivalent to the number of tiles requested on the second most
widely used resolution, 1920x1080. In this resolution, the clients can request 32, 36, 40
or 45 tiles per zoom.

 0

 5

 10

 15

 20

 25

 30

0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 42 45 48 66

%
 o

f T
ot

al

Number of Tiles

(a) Histogram of the number of tiles requested per
pan operation.

 0

 5

 10

 15

 20

 25

 30

14 15 16 18 20 21 24 25 28 30 32 35 36 40 42 45 48 55 60 66

%
 o

f T
ot

al

Number of Tiles

(b) Histogram of the number of tiles requested
per zoom operation.

Figure 5. Number of tiles requested per pan (a) and per zoom (b) operation.

So far, we have discused how users perform zoom and pan operations, but there
is other important information which is when and for how long. Figure 6(a) shows the
PDF of the intervals between user actions and Table 1 displays the mean and some impor-
tant percentiles of these intervals. Although there are long intervals, some longer than 1
minute, they are not representative. As can be seen in Table 1, more than 95% of the inter-
vals are shorter than 15 seconds. This information is very important to simulate the think
time of the users and it was employed in our case study, outlined in Section 5. Figure 6(b)
shows the CDF of the durations of the sessions. We made two analyzes: one directly with
the collected data (Normal) and another where we only took account of sessions where
there was no interval between actions greater than 1 minute (1 Min Interval’s Cut). We
carried out this second analysis to remove sessions in which the user leaves Google Maps
open and starts to do other things. Although this kind of session has a long duration, it
does not have an engaged user and there are no requests for long periods. Sessions with
intervals shorter than one minute are smaller in average, but have more engaged users that
are responsible for the most load on the servers.

Mean 25th Percentil 50th Percentil (Median) 75th Percentil 95th Percentil
4297 ms 1302 ms 2320 ms 4608 ms 14347.1 ms

Table 1. Mean and percentiles of the intervals between user actions.

All the operations shown here are common to any web mapping system. Although
the distributions might be different in other systems, the characteristics are common and
the model can be extended to any web mapping system. This model can be used as a
starting point to create a workload generator and simulate basic real user features, such as
pans and zooms operations, the think time, among others.

5. Case Study With goGeo
Stress benchmarks are good to compare the performance between systems and to under-
stand their behavior in stress situations. However, they do not give a clear idea of how

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

%
 d

o
T

ot
al

Segundos

(a) Histogram of the intervals between actions.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 200 400 600 800 1000 1200

%
 o

f T
ot

al

Seconds

Normal
1 Min Interval’s Cut

(b) CDF of the user sessions durations.

Figure 6. Evaluation of the intervals (a) and of the sessions durations (b).

real users will interact with the system. Without the right workload developers of a system
cannot know how many real users the system can support. For this reason, there is a need
to know the real workload. Since the real workload is unknown until the system goes into
production, use a synthetic workload closer to the real is the best option. In Session 4,
we described some characteristics of the behavior of web mapping systems users and we
argued about the importance of knowing these characteristics to create workload genera-
tors. For this session, we used one of that characteristics, the intervals between actions,
to create a workload closer to the real and to compare it with a stress workload. Adding
the intervals, we have a workload that simulates the users’ think time and that gives us a
better idea of how frequently users send requests to the server.

We used the goGeo’s3 infrastructure and its web tile server to execute the tests. All
tests were done with the same machines and using a 151.3 MB database of over 500,000
companies in Brazil. The set of requested tiles covers the entire Brazilian territory. The
server cache was disabled to avoid interfering in the results, so that all requests require a
new tile rendering. Each test ran for a period of 10 minutes and we measured the response
times of each request to compare the results of the workloads.

First, we executed a stress workload based on the MapLarge performance tests
[MAPLARGE 2014]. We set 25 external clients to send requests for random tiles as
quickly as possible, without intervals between subsequent calls. We computed the aver-
age response time of this workload, which was 105 ms. After that, we executed some
workloads with the users’ think time, starting with 25 clients and increasing this number
until it reached a similar average response time of the stress workload. We used an em-
pirical distribution, based on the distribution shown in Figure 6(a), to simulate the users’
think time. With 800 clients the average response time was even smaller (71 ms), but
with 1,000 clients it was greater (158 ms). This means that, with a similar average re-
sponse time, the system can support a number of clients between 800 and 1,000 when the
intervals are taken into account.

The difference between the stress workload and the user based workload was not
just in the number of clients. When we added the intervals we observed a significant
increase in the autocorrelation of the response times. Figure 7 shows the autocorrelation

3www.gogeo.io

function (ACF) of the workloads4. As can be seen, there is a reasonable difference be-
tween them. While the stress workload shows autocorrelation until a time lag of 6×101,
the user based workload reach a lag of 2.5×102 and 1.8×103 for 800 and 1,000 clients,
repectively. A workload that achieves an average response time similar to the stress work-
load would reach a time lag between these last two values. This means that, although the
average response times are the same, the time lag of the user based workload is about one
order of magnitude greater than the lag of the stress workload. In this case, the higher lag
in response times is related to a higher lag in the users’ requests, once the set of called
tiles are the same in all the tests.

10−4

10−3

10−2

10−1

100

100 101 102 103

A
C

F

Lag

25 with no Intervals
800 with Intervals

1,000 with Intervals

Figure 7. Evaluation of the autocorrelation.

Although the user based workload generator implemented here does not have all
the characteristics of real users, it demonstrates what we want to show: adding real user
features can significantly change the workload imposed on the server.

6. Conclusion and Future Work
The use of geographic information systems has increased in recent years, but there is
still a lack of models for describing user behavior in this kind of application. The lack
of such models makes it difficult to carry out a performance analysis and to estimate the
capacity of new systems. Without a suitable workload, developers can end up by spending
too much effort on system features that are rarely used and vice versa. In this study, we
proposed a descriptive model of the behavior of web mapping applications users and we
implemented a workload generator taking into account one of the users characteristics,
the think time, to compare the results with the results of a stress benchmark. We showed
that adding user features can significantly change the workload imposed on the server.
In future work, we intend to improve the model to include the relationships between
user actions and improve the workload generator to make the load closer to the real.
Finally, we hope we have succeeded in drawing the academic community’s attention to
the importance of workload modeling for mapping and GIS applications in general.

References
Cibulka, D. (2013). Performance testing of web map services tn three dimensions–x, y,

scale. Slovak Journal of Civil Engineering.
4The ACF is presented with confidence bounds at a significance level of 0.05, shown as a straight line

parallel to the x-axis.

Feitelson, D. G. (2014). Workload modeling for computer systems performance evalua-
tion. http://www.cs.huji.ac.il/˜feit/wlmod/.

Garcı́a, R., de Castro, J. P., Verdú, E., Verdú, M. J., and Regueras, L. M. (2012). Web
Map Tile Services for Spatial Data Infrastructures: Management and Optimization.
Cartography - A Tool for Spatial Analysis.

Google Maps API (2014). Showing pixel and tile coordinates. https:
//developers.google.com/maps/documentation/javascript/
examples/map-coordinates. [Online; accessed 16-July-2014].

Kang, Y.-K., Kim, K.-C., and Kim, Y.-S. (2001). Probability-Based Tile Pre-fetching
and Cache Replacement Algorithms for Web Geographical Information Systems. In
Proceedings of the 5th East European Conference on Advances in Databases and In-
formation Systems.

Kefaloukos, P. K., Vaz Salles, M., and Zachariasen, M. (2012). TileHeat: A framework
for tile selection. In Proceedings of the 20th International Conference on Advances in
Geographic Information Systems.

MAPLARGE (2014). Map server performance. http://maplarge.com/
mapserverperformance. [Online; accessed 16-July-2014].

OSGeo Wiki (2011). Benchmarking 2011. http://wiki.osgeo.org/wiki/
Benchmarking_2011. [Último acesso: 31-Julho-2014].

Quinn, S. and Gahegan, M. (2010). A predictive model for frequently viewed tiles in a
web map. Transactions in GIS.

Ray, S., Simion, B., and Brown, A. D. (2011). Jackpine: A benchmark to evaluate spatial
database performance. In Data Engineering (ICDE), 2011 IEEE 27th International
Conference on.

Romoser, B., Fares, R., Janovics, P., Ruan, X., Qin, X., and Zong, Z. (2012). Global
workload characterization of a large scale satellite image distribution system. In Per-
formance Computing and Communications Conference (IPCCC), 2012 IEEE 31st In-
ternational.

Simion, B., Ray, S., and Brown, A. D. (2012). Surveying the Landscape: An In-depth
Analysis of Spatial Database Workloads. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems.

StatCounter Global Stats (2014). Top 10 Desktop Screen Resolutions on
July 2014 StatCounter Global Stats. http://gs.statcounter.com/
#desktop-resolution-ww-monthly-201407-201407-bar. [Online; ac-
cessed 16-July-2014].

Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., and Smirni, E. (2007). R-Capriccio:
A Capacity Planning and Anomaly Detection Tool for Enterprise Services with Live
Workloads. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference
on Middleware.

