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Optimal noise in a stochastic model for local search
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We develop a prototypical stochastic model for a local search around a given home. The stochastic dynamic
model is motivated by experimental findings of the motion of a fruit fly around a given spot of food but will
generally describe the local search behavior. The local search consists of a sequence of two epochs. In the first
the searcher explores new space around the home, whereas it returns to the home during the second epoch. In
the proposed two-dimensional model both tasks are described by the same stochastic dynamics. The searcher
moves with constant speed and its angular dynamics is driven by a symmetric α-stable noise source. The latter
stands for the uncertainty to decide the new direction of motion. The main ingredient of the model is the nonlinear
interaction dynamics of the searcher with its home. In order to determine the new heading direction, the searcher
has to know the actual angles of its position to the home and of the heading vector. A bound state to the home
is realized by a permanent switch of a repulsive and attractive forcing of the heading direction from the position
direction corresponding to search and return epochs. Our investigation elucidates the analytic tractability of the
deterministic and stochastic dynamics. Noise transforms the conservative deterministic dynamics into a dissipative
one of the moments. The noise enables a faster finding of a target distinct from the home with optimal intensity.
This optimal situation is related to the noise-dependent relaxation time. It is uniquely defined for all α and
distinguishes between the stochastic dynamics before and after its value. For times large compared to this, we
derive the corresponding Smoluchowski equation and find diffusive spreading of the searcher in the space. We
report on the qualitative agreement with the experimentally observed spatial distribution, noisy oscillatory return
times, and spatial autocorrelation function of the fruit fly. However, as a result of its simplicity, the model aims
to reproduce the local search behavior of other units during their exploration of surrounding space and their
quasiperiodic return to a home.
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I. INTRODUCTION

In the present paper we propose a rather general but simple
model for a local search. In contrast to a global search, a local
search is known to be concerned with the neighborhood of a
given spot [1], called home. Such locally searching devices,
living objects, agents, etc., return permanently to the home. In
fact, they form a bound state with the home without real acting
attractive forces. The behavior of maintaining a reference
location and returning to it is called homing [2]. If the position
of the home and the angle towards the home are known, then
the method is called path integration [2–5].

The homing behavior might be based on idiothetic (internal)
or allothetic (external) cues [6]. An external cue might be,
for example, the position of the sun, odors, pheromones, or
regional landmarks, while idiothetic cues are based on some
internal storage mechanism [7,8].

Such homing behavior is also known from insects such as
ants, bees, and flies [5,9–12]. The home can be a nest or a
source of food.

Various objects perform homing in different ways. The ant
Cataglyphis builds a tortuous trajectory until a source of food
is found and then goes back home in a straight path, indicating
it has a rather accurate sense of the nest position [9–11].
In contrast, the fruit fly Drosophila melanogaster performs

idiothetic homing after a food source is found. The fly explores
the vicinity of the food, returns, and starts exploring again.
This oscillating behavior is believed to fulfill the purpose of
foraging, so the flies are then able to search for more food
while keeping track of already found sources [12]. In all the
mentioned examples of living objects, the trajectories always
appear stochastic.

Furthermore, a new age of exploration has started to
develop, from a technological point of view [13]. Explorer
robots are being projected for missions in the ocean [14–16]
and space [13,17]. Autonomous vehicles [16,18–20] will be
used for data collection and local searches. In the development
of a scientific understanding of these technologies and their
devices, research in this field relates in many cases successfully
to data and/or numeric models developed for animal navigation
[13]. Often such devices are inspired by research on biological
objects fulfilling different purposes, for example, a local
search as a permanent search and return process. A better
theoretic-mathematical understanding of local searches might
also explain the performance of self-navigating objects.

In this paper we introduce a class of minimal stochastic
models for local search that does not distinguish between
the search and the return. Both epochs will follow the same
law. The particular dynamic model and its simplicity will be
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justified by the allowance for an analytical tractability and
that the model reproduces qualitatively several experimental
findings. We use a Langevin equation that considers an active
Brownian particle with constant speed whose spatial motion is
two dimensional. The constant speed is common in a variety of
models [21,22] and also has been observed in [5]. The model
aims to mimic the motion of simple organisms; in particular,
we focus the discussion of the analytic and numeric results of
our model on findings for the fruit flies considered in [5].

We implement the local search around the home via a
nonlinear coupling term between the heading angle of the
particle and the angle formed by its current position and the
home. Both angles effectively interact in a sequence of an
escape and pursuit dynamics. To perform this dynamics, we
assume that the agent possesses an internal storage mechanism
for the current angles of the heading direction and of the
position towards the home. The resulting spatial motion allows
the particle to explore the vicinity of the home in order to find
new food sources and searchers will consecutively return to
the home.

In Sec. II we briefly introduce the model and then discuss
in Sec. III the deterministic trajectories, which turn out to be a
conservative system with an integral of motion. We continue
in Sec. IV the discussion with noise present. The noise will
be added to the angular dynamics. In many stochastic models
Gaussian white noise is applied. However, we model the noise
as a symmetricα-stable white-noise source which also includes
the case of a Gaussian noise with the particular choice α = 2.
Thus, we are able to include different turning statistics of the
heading angle including non-Gaussian white noise as it was
observed in the searching motion of fruit flies and for other
insects [23]. For a global search the Lévy flight hypothesis [1]
is popular. However, for a local search, step lengths distributed
according to a power law seems counterproductive. We do
not know about models for local searchers with corresponding
noise sources.

The noise serves as an uncertainty in the heading direction
for the active particle. This uncertainty might have its origin in
a limited capability to choose an exact direction of motion, due
to external influences or the mechanics of the brain. Another
source of randomness is the lack of information. Under the
circumstance where it is unclear what the optimal heading
direction is, the actual choice can become random. Those
uncertainties cause in our model a steady-state distribution
(Sec. IV B) of the particles centered at the home with exponen-
tially decaying probability density at large distances. In Sec. V
we discuss the local search characteristics and in particular
we find an optimal noise strength for discovering food. In
Sec. VI we generalize the model by allowing the coupling to
the home to be dependent on the distance to the home. Finally,
we summarize our findings in Sec. VII.

Several technical aspects concerning the α-stable noise have
been included in Appendixes A and B. They have been of im-
portance for the investigations on stochastic dynamics driven
by α-stable noise in the angular dynamics. In Appendix A
we give the foundation for the noise-dependent relaxation
time of the system. It serves as the characteristic time for
relaxation of angular asymmetry. For larger times, the system
is approximated by an overdamped description as elucidated
in Appendix B for various sources of α noise in the angular

FIG. 1. (a) Schematic representation of coordinates. The angle
θ (t ) defines the current heading direction pointing along the actual
velocity. The angle β(t ) is the direction of the vector from the home to
the agent positioned at �r (t ). For convenience, the home is situated at
the origin �rh = (0, 0). (b) Sketch of the interaction between position
and heading vectors. If the heading vector points outward from the
home as the position vector always does, the heading vector becomes
repelled from the position vector. In contrast, pointing homeward, the
heading vector is attracted by the position vector.

dynamics. Appendix C describes the deterministic dynamics
as a celestial mechanics with constant speed.

II. MODEL

We consider an active particle whose position vector is
given by �r (t ) = {x(t ), y(t )}. We model a particle with constant
speed v0,

�̇r = �v(t ) = v0

(
cos θ (t )

sin θ (t )

)
, (1)

where �̇r denotes the temporal derivative of the position vector
�r (t ) and θ (t ) is the heading angle of the particle, as depicted
in Fig. 1.

As we choose the home to be situated at the origin of
the Cartesian reference frame, the position vector �r (t ) points
always out of the home in the direction of the particle’s current
position. The corresponding angle β(t ) ∈ [0, 2π ) is given by

β(t ) = arctan
y(t )

x(t )
, (2)

as also sketched in Fig. 1. The time evolution of β is determined
by Eq. (1). For particles which arrive at times th at the home
�r (th) = �rh, the angle β(th) remains undefined. In these rare
cases we will agree that the angle β converges with the heading
direction, i.e., β(th) = θ (th) holds. This choice corresponds to
a particle that leaves the home in the radial direction. Notice
that during the passage of the home, the angle β jumps by π .

The search and return dynamics of the active particle is
encoded in the evolution of the heading angle θ ∈ [0, 2π ). The
evolution of the heading direction contains the actual decision
process of the searcher by selecting the future direction of
its velocity. We assume that the heading evolves in time
according to

θ̇ = κ sin(θ − β ) + σ

v0
ξ (t ). (3)

While Eq. (1) is simply the mechanics of the motion with
constant speed, Eq. (3) expresses the searcher’s wish (i)
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to explore new space around the home and (ii) to return
sequentially towards the home. It is the process for which the
searcher needs the knowledge of the two angles β(t ) and θ (t ).
With the help of both, the searcher performs path integration.

The first term on the right-hand side (rhs), the deterministic
term, can be motivated by an effective escape and pursuit
dynamics, as it was also discussed in [24]. For a positive
value of κ , the heading angle escapes the unstable outward
direction θ (t ) = β(t ) and pursues the homeward direction
θ (t ) = β(t ) + π , which is to be stable. Such behavior is
schematically indicated in Fig. 1(b). If the projection of the
heading onto the position vector is positive, the heading
becomes repelled from the position vector. In contrast, in the
case in which the projection of the heading vector is negative or
it is antiparallel to the position vector, the heading is attracted
by the homeward direction.

The second term on the rhs of Eq. (3) ξ (t ) will be a sym-
metric α-stable white-noise source. It serves as an uncertainty
in the heading direction, caused by a decision process, by
a limited knowledge of the heading direction or by external
influences. We also point out that lack of information is a noise
source. Lack of information can imply that a decision whether
to turn left or right or move straight forward is a random
choice, as it is unclear what would be the “right” choice. The
noise strength is σ . The α-stable white noise with α < 2 in
the angular dynamics yields a continuous description for a
run-and-tumble-like motion with a fast tumbling epoch [25],
as it was also found and reported in an experimental study [5].
In the case of α = 2, increments of the angle are uncorrelated
in time and with Gaussian support.

The equations of motion (1) and (3) take in polar coordinates
r (t ) =

√
x2(t ) + y2(t ) and β(t ) given by (2) an especially

simple form

ṙ = v0 cos(θ − β ) (4)

for the radial velocity and

β̇ = v0

r
sin(θ − β ) (5)

for the tangential velocity. Although the distance r (t ) and
the position angle β(t ) are stochastic values, their respective
equations of motion do not contain noise sources, as the
Cartesian velocities also do not contain noise sources. Despite
the stochastic character, the speed of the particle is always
constant, i.e., ṙ2 + (rβ̇ )2 = v2

0 .
Defining now the angle z(t ) ∈ (−π, π ] as the difference of

the heading and the position angle, i.e., z(t ) = θ (t ) − β(t ), we
derive

ṙ = v0 cos(z), (6)

β̇ = v0

r
sin(z), (7)

and consequently

ż = θ̇ − β̇ =
(
κ − v0

r

)
sin(z) + σ

v0
ξ (t ). (8)

These three equations are the stochastic nonlinear dynamics
of the local searcher in polar coordinates. One immediately
notices that the β(t ) dynamics (7) separates from the stochastic

motion on the (r, z) plane. The solutions of (6) and (8)
determine, after insertion in (7) and its integration, the further
behavior of the angle β(t ).

We also point out that in Eq. (8) a length scale rc has emerged
for the first time in the description. It reads

rc = v0/κ (9)

and defines the relative angular speed between the position
vector and the heading vector. In the noise-free setting (σ = 0)
both vectors rotate always either clockwise or counterclock-
wise. However, for distances smaller rc the heading rotates
slower than the position vector. Otherwise the heading is faster.
The search and return motion will be an oscillatory sequence
around rc defined by the interplay of the two vectors.

III. DETERMINISTIC MODEL

We will now discuss the deterministic motion of our
searcher. Without noise the time evolution (8) of the angle
z becomes

ż =
(
κ − v0

r

)
sin(z). (10)

Equations (6), (7), and (10) define the dynamics of our
deterministic searcher and have to be supplemented by initial
conditions r0 = r (t = 0), z0 = z(t = 0), and β0 = β(t = 0).

A. Fixed points and separatrices

The simplest solution in the (r, z) plane is stationary fixed
points at z0 = ±π/2 and r0 = rc, with ṙ = ż = 0. These
fixed points are of the center type and have purely imaginary
eigenvalues λ. In detail, these eigenvalues are equal for both
centers λ = ±iκ , with κ being the coupling strength from
Eq. (3). The value κ yields also the circulating frequency of the
β(t ) dynamics in the (x, y) plane. It is dependent on the initial
sign of z0 either clockwise or counterclockwise. This solution
corresponds to a circular trajectory in the (x, y) plane with
radius r0. The initial heading is perpendicular to the position
vector and it remains so further on.

The second class of trivial solutions belongs to states
z = 0, π . Since z(t ) is periodic in 2π , the latter state is
also equivalent to z = −π . States with z(t ) = 0 define the
radially unbounded case. At arbitrary distances r the particle
moves radially away since θ (t ) = β(t ). In the noise-free
situation solutions with z = 0 never change since ż = 0. So
the trajectories become straight lines and the distance to the
home grows unbounded. The particles escape with velocity v0

to infinity

r (t ) = v0t + r0,

β(t ) = β0,

z(t ) = 0.

(11)

Deterministically, the state z = 0 can be approached only if
either z0 = 0 or z0 = π . In the latter case the particle started
with z = π at r0 > 0 will radially approach the home z = π

and pass it while the angle z jumps to z = 0, as the position an-
gle jumps β = β0 + π and then moves away along with z = 0.

The distance r = 0 possesses the meaning of a repelling
boundary. It can be approached by z = π . The state at (r =
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FIG. 2. (a) Sample trajectories in the (r, z) plane according to Eq. (13). The color bar corresponds to the initial starting angle z0 and thus
colored trajectories belong also to different values of X(z0). (b) Minimal and maximal distances dependent on the initial angle z0 for r0 = rc.
The parameters are v0 = 1 and κ = 1.

0, z = π ) is immediately left and the angle z flips to z = 0. This
dynamic behavior is in agreement with the trajectories running
near this boundary which are unable to attach to the boundary.
Oppositely, the z(t ) dynamics becomes unlimited fast near r =
0 as it follows from (10) due to the item proportional to 1/r

on the rhs. In consequence, the state r = 0 plays the role of
an extended saddle point with an incoming separatrix at z = π

and an outgoing one along z = 0. This is also confirmed by
the fact that the two lines play the role of a separatrix. Thus,
both lines divide the (r, z) space into two half planes on which
either a clockwise or an anticlockwise periodic motion takes
place. Both sets of solutions never merge.

B. Oscillatory (r, z) dynamics

Other solutions correspond to bounded trajectories in the
(r, z) space and possess a maximal and a minimal distance
from the home. The motion becomes a repetitive change of
attraction and repulsion towards the home-pointing direction
that defines an oscillatory motion in the (r, z) plane.

Figure 2 presents the flow diagram of the (r, z) dynamics.
It is obtained when eliminating the time dependence by
differentiating the angle z with respect to the position r as

dz

dr
= ż

ṙ
= −

(
1

r
− 1

rc

)
tan(z). (12)

Since distance r and angle z can be factorized in the differential
equation (12), we can integrate and find parametrically z(r ).
With the initial conditions r0 and z0, we can formally write the
angle dependent on the position as

sin[z(r )] exp

(
− r

rc

)
r = X(z0, r0) = sin(z0) exp

(
− r0

rc

)
r0

= const. (13)

This expression defines the formal solution z(r ). The parameter
X is an integral of motion for the (r, z) dynamics. Therefore,
the (r, z) dynamics is conservative. The value of X depends on
the initial coordinates only. In particular, the sign of the initial
angle also fixes the sign of z(t ) during the motion.

In the (r, z) plane, the solutions are periodic, so we can
choose the initial condition r0 = v0/κ = rc, as every trajectory
at least crosses r = rc. Hence, the integral of motion becomes

a function of z0, only, i.e., X = X(z0). This angle z0 can
be restricted to z0 ∈ [−π/2, π/2]. The motion along z0 = 0
corresponds to X = 0. The fixed points have z0 = ±π/2 with
the X value according to (13).

Figure 2(a) shows solutions of (13) in the (r, z) plane, with
the parameters v0 = 1, κ = 1, and r0 = rc. The initial angle z0

is varied corresponding to the color bar. As already outlined,
there is no trajectory which crosses the separatrices z = 0 or
z = ±π ; in fact, the angle z(t ) is bounded when considering a
specific trajectory. This means that the angular momentum

L = r2β̇ = v0r sin(z) = v0 exp

(
r

rc

)
X(z0) (14)

along a trajectory never changes its sign. It follows that in
the deterministic model the particles either move with z > 0
in a clockwise manner or with z < 0 in a counterclockwise
fashion around the home in the Cartesian coordinate system.
The upper and lower half planes in Fig. 2(a) correspond to
particles starting with either z0 > 0 or z0 < 0, respectively.

Trajectories in the (r, z) plane approach the maximal rmax

and minimal rmin distances (perihelion and aphelion) if dr/dz

vanishes. To formulate a criterion for these positions and
following Eq. (12) we set z = ±π/2 in Eq. (13) and obtain
for both distances

rmax,min exp

(
− κ

v0
rmax,min

)
= |X(z0)|. (15)

The extremal distances dependent on the initial angle z0 for
r0 = rc are plotted in Fig. 2(b) for the parameters v0 = 1 and
κ = 1. At the extremal distances the radial velocity ṙ vanishes.
This can be seen when considering the kinetic energy of the
constant speed particle, given by Ekin = (ẋ2 + ẏ2)/2 = v2

0/2.
In polar coordinates the energy reads Ekin = (ṙ2 + r2β̇2)/2.
We express the energy as

Ekin = 1
2 ṙ2 + 1

2v2
0 sin2[z(r )] = 1

2v2
0 (16)

through (7). For the radial velocity it follows that

ṙ2 = v2
0{1 − sin2[z(r )]}. (17)

At rmax,min the radial velocity vanishes ṙ (r = rmax,min) = 0.
Those are turning points; the motion away from the home
turns to motion towards the home and vice versa. The cor-
responding tangential velocity is maximal β̇(r = rmax,min) =
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FIG. 3. (a) Period of one cycle dependent on the initial angle z0. The solid line corresponds to Eq. (18). Symbols are from simulations of
Eqs. (1) and (3) with vanishing noise (σ = 0). (b) Value of the apsidal precession of the orbit during one revolution as a line corresponding to
Eq. (20). Symbols are from simulations of Eqs. (1) and (3) with vanishing noise.

±v0. At r = rc the radial velocity is maximal, as 0 = dṙ/dr =
v0 sin(z) tan(z)(1/r − 1/rc ) is solved by rc. The maximal
radial velocity is given by ṙ (r = rc ) = ±v0

√
1 − sin2(z0),

under the condition that we set r0 = v0/κ . The tangential
velocity is therefore given by β̇(r = rc ) = v0 sin(z0).

C. Period length and shift of the position angle

As the (r, z) dynamics is periodic, we can determine a
period length. The period T of one cycle can be calculated
from Eq. (17). The angle can be eliminated using Eq. (13) and
we find for the period the expression

T (z0) = 2

v0

∫ rmax

rmin

dr
1√

1 − (
X(z0 )

r

)2
exp

(
2r
rc

) . (18)

Figure 3 presents as a solid line the numerical evaluation of
the periods dependent on the absolute value of the angle |z0|
according to Eq. (18). Simulation results of the deterministic
version of Eqs. (1) and (3) are shown with pluses. The
value decays monotonically for growing z0 performing smaller
excursions starting with the escaping trajectory for z0 until it
moves along the circular orbit at the stationary center |z0| =
π/2.

Up to now, we have considered only the reduced (r, z)
dynamics. As our particles are moving in the (x, y) plane, we
determine now the value of the position angle β dependent on
the distance r . Using the equation for the tangential velocity (5)
and Eq. (13), we write the differential for the angle β dependent
on the radial position r as dβ/dr and integrate formally with
initial distance r0 and angle β0:

β(r ) = β0 +
∫ r

r0

dr

r

1√(
r

X(z0 )

)2
exp

(− 2 r
rc

) − 1
. (19)

After one cycle the trajectory has moved through the maximal
and the minimal distance rmax,min, reaches again r0, and has
accumulated an angular shift �β of

�β(z0) = −2π + 2
∫ rmax

rmin

dr

r

1√(
r

X(z0 )

)2
exp

(− 2 r
rc

) − 1
.

(20)

Values of the shift at the extremal elongations dependent on
the initial angle difference z0 are presented in Fig. 3. The shift
according to Eq. (20) is shown as a line, while the pluses
correspond to the deterministic case of the system according
to Eqs. (1) and (3).

D. Dynamics in the (x, y) plane

The motion in the (x, y) space is reminiscent of the apsidal
precession of the planetary motion, where the aphelion and
perihelion shift during one revolution around the center of
gravity. We elaborate on this analogy in Appendix C. The
shape of the trajectories is reminiscent of Lissajous curves,
or rose curves, and the motion is in general quasiperiodic. An
interesting value is the time Tros needed for the precession to
rotate more than 2π , meaning that a rosette has completely
formed. One can estimate this time after determining the
number of leaves K (z0) necessary for the completion of the
rosette. It reads K (z0) = 2π/�β(z0). Therefore, it becomes

Tros(z0) = 2π

�β(z0)
T (z0), (21)

with expressions from (18) and (20).
Finally, we can express the bounded trajectories in the

(x(r ), y(r )) plane through the parameter r ,

x(r ) =
{
rc cos(β ), z0 = ±π/2, r0 = rc ∀β ∈ [0, 2π )

r cos[β(r ) + l�β] otherwise,

(22)

y(r ) =
{
rc sin(β ), z0 = ±π/2, r0 = rc ∀β ∈ [0, 2π )

r sin[β(r ) + l�β] otherwise,

(23)

where β(r ) is due to (20), with r ∈ [rmin, rmax], and the positive
number of revolutions around the home l ∈ N+. The first case is
the circular trajectory. If the home (xh, yh) is not situated at the
origin of the coordinate system one can shift x ′(r ) = x(r ) − xh

and y ′(r ) = y(r ) − yh.
Figure 4 shows sample trajectories according to Eqs. (22)

and (23), with r0 = rc, v0 = 1, and κ = 1. The location of the
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FIG. 4. Sample trajectories in the (x, y ) plane. The green dot marks the home. The particles for all trajectories start at the minimal distance
from the home x0 = 0, y0 = rmin(z0), and the trajectories are plotted until the maximal distance is reached the fourth time. Shown are three
different initial z0. From left to right, z0 = π/2.2, z0 = π/4, and z0 = π/8. The arrows indicate the direction of motion. The inverse motion is
also possible. The parameters are v0 = 1, κ = 1, and r0 = 1.

home is marked with a green dot. The pictures correspond to
three different initial angles z0, i.e., z0 = π/2.2 [Fig. 4(a)],
z0 = π/4 [Fig. 4(b)], and z0 = π/8 [Fig. 4(c)]. The initial
position in the (x, y) plane is chosen as x0 = 0 and y0 =
rmin(t0). The arrows indicate the direction of motion for these
specific initial conditions. While for z0 = π/2.2 the trajectory
is almost circular, it becomes more and more stretched the
smaller z0 becomes, the maximal distance increases, and the
minimal distance gets closer to zero.

IV. STOCHASTIC MODEL

We will now return to the system with noise. The equations
of motion are given by (6)–(8). Compared to the deterministic
case, one has now two more parameters: (i) the parameter α

for the noise type and (ii) the parameter σ , the noise strength.
It will be of importance that the noise acts only on the θ (t )
dynamics, and the respective z(t ) dynamics, of the motion and
that the radial dynamics is perpendicular to the z dynamics.
The speed of the particle is always constant.

At first one finds that an unbounded motion becomes
unlikely in the stochastic system. Trajectories remain with
high probability at finite distances from the home. Therefore,
generally the noise stabilizes the motion of the searcher.

A. Stochastic dynamics

Only the noise type controls jumps of the heading angle.
This behavior is illustrated in Fig. 5. We show sample trajecto-
ries in the (x, y) plane for two different noise sources: Gaussian
white noise α = 2.0 [Fig. 5(a)] and α = 0.5 [Fig. 5(b)].
The noise strength is chosen such that the influence of the
deterministic part of the time evolution of the heading (3) is
still recognizable, σα = 0.01. The particle starts at the home,
marked as a green dot at (x, y) = (0, 0), and a time frame of
�t = 50 is shown. While the trajectory in Fig. 5(a) is wiggling,
due to many small noise-induced changes in the direction of
motion, the trajectory in Fig. 5(b) with small α = 0.5 is rather
smooth, corresponding to almost no change in the deterministic
heading and with one clear sudden jump at (x, y) = (4, 2).

Increasing the noise strength suppresses the deterministic
influence on the trajectories, as can be seen in Fig. 6. The
noise strength σα = 0.5 was changed compared with Fig. 5.
The particles again started at the home (x, y) = (0, 0) and
moved for the same time interval �t = 50. The deterministic
part of the motion is no longer visible and also the trajectory
on the right (α = 0.5) appears to be confined to a smaller
region of space. While the trajectory seems to be confined to a
small region, we show in Sec. IV B that the overall probability
density function to find a particle at a specific point (x, y) is
independent of the noise type α and the noise strength σ .

FIG. 5. Sample trajectories with low noise strength σα = 0.01 in the (x, y ) plane. The green dot marks the home. The particle starts at (0,0)
and moves for �t = 50 (red dot). The parameters are v0 = 1, κ = 1, and (a) α = 2 and (b) α = 0.5.
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FIG. 6. Sample trajectories with high noise σα = 0.5 in the (x, y ) plane. The particle starts at (0,0) (green dot) and moves for �t = 50 (red
dot). The parameters are v0 = 1, κ = 1, and (a) α = 2 and (b) α = 0.5.

B. Spatial distribution

One measure to characterize the spatial extension of the
search is the marginal density of the distance from the home.
Here we will look for its asymptotic stationary expression as
the result of solving the corresponding Fokker-Planck equation
(FPE). To find this marginal density we inspect the probability
density function (PDF) of the stochastic dynamics under
consideration. It is the transition PDF P (r, z, β, t |r0, z0, β0, t0)
that determines the density in three-dimensional space (r, z, β )
at time t , if started with the initial conditions r0, z0, and β0 at t0.
Likewise in the deterministic case, we immediately realize that
the stochastic β dynamics separates from the two other vari-
ables (r, z). It holds that P (r, z, β, t ) = P (r, z, t )P (β, t |r, z),
where we have omitted the initial conditions for simplicity,
meaning that the (r, z) dynamics is independent of the β

dynamics. Therefore, to get the marginal spatial density, we
may restrict consideration to the PDF P (r, z, t |r0, z0, t0) for
finding a particle at distance r and having the angle z at time t

if started at time t0 at distance r0 with z0.
Being interested in the asymptotic stationary limit when

initial conditions are forgotten, we omit here and further on
the initial conditions and use the notation of the PDF. Given
Eqs. (6) and (10), we can write down the corresponding Fokker-
Planck equation [26,27]

∂

∂t
P (r, z, t ) =

[
− v0

∂

∂r
cos(z) + ∂

∂z

(v0

r
− κ

)
sin(z)

+
(

σ

v0

)α
∂α

∂|z|α
]
P (r, z, t ). (24)

We assume a steady state P (r, z, t → ∞) = P0(r, z), with
∂P0(r, z, t )/∂t = 0, and make a separation ansatz

P0(r, z) = P0(r|z)P0(z). (25)

Since the noise spreads the probability homogeneously around
the angular dynamics and as no effective force repels the noisy
shifts, no direction z is preferred. Therefore, we assume that
z(t ) becomes equidistributed after the relaxation time τ from
Eq. (33) and we set P0(z) = 1/2π . Further on, it turns out
that this homogenization in the angular dynamics results also
in an asymptotic spatial distribution independent of z, i.e.,
P0(r|z) → P0(r ). Afterward, we find for the latter radial PDF

the equation

0 =
[
− ∂

∂r
+ 1

r
− 1

rc

]
v0 cos(z)P0(r ), (26)

with rc from Eq. (9). The PDF no longer depends on the angle
z, so we can drop the cosine function and integrate; the radial
PDF is given by

P0(r ) = r

r2
c

exp

(
− r

rc

)
. (27)

Including the angle z, we get

P0(r, z) = r

2πr2
c

exp

(
− r

rc

)
. (28)

Surprisingly, the spatial distribution, and therefore the proba-
bility to find a particle at a specific distance from the home,
depends neither on the noise type nor on the noise strength.
The reason behind this is that the noise acts perpendicular
to the motion of particles. The distribution (27) is even valid
and holds true for σ = 0 if the system is initially distributed
according to (27). The spatial distribution P0 has a maximum at
r = rc = v0/κ . Increasing the coupling strength κ and keeping
the speed v0 fixed shifts the maximum closer to the home and
the peak becomes more pronounced. The stronger the coupling
towards the home, the closer to the home the maximum is
situated. Increasing the speed v0 leads to a growth of the
distance between home and maximum and it broadens the
spatial distribution P0(r ).

Returning to Cartesian coordinates, the PDF reads

P0(x, y) = 1

2πr2
c

exp

(
− 1

rc

√
x2 + y2

)
. (29)

This PDF has maximal probability density to find the particle
at the home (0,0). We mention that the stationary PDF of the
angle β is also uniform at all distances.

Figure 7 shows the stationary radial PDF P0 from (27) as
a line in comparison with simulation results of Eqs. (1) and
(3), with the position angle defined by (2). The simulations
confirm that indeed the radial PDF is independent of noise type
α and noise strength σ . We underline that the stationary spatial
density qualitatively agrees with the experimental findings for
the observed residence probability of a fruit fly as reported in
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FIG. 7. Stationary radial PDF P0(r ). The symbols are from
simulations of Eqs. (1) and (3), with (2), and the black line corresponds
to Eq. (27).

[5]. Taking the speed v0 = 10 mm/s from [5] and judging from
Fig. S4 in [5], we consider κ = 0.5 s−1 to be a realistic value
for a fly.

C. Relaxation time τ

In order to investigate how the stationary radial PDF is
approached, it is useful to consider the integral of motion
X(z0, r0) from (13) together with the distance r as a variable,
as shown in Fig. 8. Deterministic trajectories with initial condi-
tions (r (t = 0) = r0, z(t = 0) = z0) become straight lines in
the (r,X) space, as X is a constant, i.e., Ẋ = 0. Deterministic
trajectories with different initial conditions z0 and r0 = rc are
shown in the (r,X) space in Fig. 8 as color coded straight lines.
The colors correspond to the respective trajectories of Fig. 2.

The envelope equals the unnormalized spatial distribution
(27). The transformation from the (r, z) plane to the (r,X)
plane does not preserve the direction of motion towards and
away from the home; both happen on the same line.

In the noise-driven system the value of X loses the mean-
ing of an integral of motion. It becomes stochastic and, in
consequence, time dependent. The noise allows for a vertical
motion in Fig. 8. The black trajectories in Figs. 8(a) and 8(b)
show the previous trajectories of Fig. 5 with low noise intensity
σα = 0.01 and Figs. 8(c) and 8(d) show the trajectories of
Fig. 6 with σα = 0.5. In Figs. 8(e) and 8(f) we show as a black
line sample trajectories for σα = 4.0. In Figs. 8(a), 8(c), and

FIG. 8. (a) and (b) Trajectories of Fig. 5 with σα = 0.01 in the (r, X) plane. (c) and (d) Trajectories of Fig. 6 with σα = 0.5 in the (r,X). (e)
and (f) Sample trajectories with high noise strength σα = 4.0. The total trajectory length is t = 50, corresponding to (a) and (b) t = 0.5τ , (c)
and (d) t = 25τ , and (e) and (f) t = 200τ , with τ the relaxation time from (33). Color coded straight horizontal lines are various deterministic
paths with constant X(z0, r0 = rc ) values. Colors correspond to the deterministic motion in the (r, z) plane of Fig. 2. The parameters are v0 = 1,
κ = 1, and (a), (c), and (e) α = 2 and (b), (d), and (f) α = 0.5.
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FIG. 9. (a) Symbols show the normalized ensemble average of X obtained from simulation of (1) and (3), with v0 = 1, κ = 1, σα = 0.01
(τ = 100), and initial X(t = 0) = X(z0). The black line shows exponential decay according to (32). (b) Mean-square displacement 〈r2〉 from
simulations of particles started at (x0, y0) = (rc, 1) as at this distance the deterministic influence vanishes, with rc = 1, as v0 = 1 and κ = 1 for
two different values of α, each drawn for three different values of σα . The dashed line corresponds to Eq. (36). The dash-dotted line corresponds
to ballistic growth proportional to t2. The plotted time frame is well below when the steady-state spatial distribution is reached.

8(e) the noise type corresponds to Gaussian white noise α = 2
and in Figs. 8(b), 8(d), and 8(f) to α = 0.5.

Three things should be noted when looking at the pictures.
(i) The different noise types act differently: While Gaussian
white noise causes rather continuous small vertical changes,
the noise with α = 0.5 acts mostly through sudden jumps,
as can be clearly seen in Figs. 8(a)–8(d). The trajectories for
α = 0.5 stay a rather long time with a specific deterministic
trajectory compared to the Gaussian noise case. (ii) The noise
strength influences the time needed for a vertical motion of
the particle, as can be seen following the pictures in a column.
With increasing noise strength, the particles are distributed
faster. (iii) In the radial direction, however, an increasing
noise strength slows down the motion of the particle, which
is particularly clearly visible in the Gaussian white-noise
column. Interestingly, the relaxation time τ is equal for the
two trajectories in each row, as we will show next, although
their behavior appears quite different.

The vertical motion, i.e., the motion in the X direction,
can be characterized by the time evolution of the normalized
ensemble average

〈X〉(t ) =
∫ ∞

0
dr

∫ π

−π

dz X(r, z)P (r, z, t |r0, z0, t0) (30)

conditioned to the initial values r0 and z0 at t0 with the
respective value 〈X〉(t0) = X0 = X(r0, z0) according to (13).
This evolution is governed by the linear differential equation

d

dt
〈X〉 = − 1

τ
〈X〉. (31)

A derivation of this equation based on the FPE multiplied by
X and integrated over r and z is given in the Appendix A. As
result of (31) we obtain

〈X(t )〉 = X0 exp

(
− t

τ

)
, (32)

with

τ =
(v0

σ

)α

. (33)

This timescale τ has the meaning of a relaxation time and
is originated by the noise; without noise, no relaxation takes
place since τ ∝ 1/σα → ∞. With noise, any initial state X0

is forgotten for t � τ , as can be seen in Fig. 9(a). For three
different values of α but with the same relaxation time τ , the
time-dependent averages 〈X(t )〉 obtained from simulation of
Eqs. (1) and (3) with (2) are plotted together with Eq. (32) as
a line. Hence, it is the time τ which is needed to vertically
redistribute a trajectory in Fig. 8. We also remark that τ is the
time after that a freely moving active particle with κ = 0 has
forgotten its initial heading direction [25].

Horizontal motion, the motion in the radial direction, in
Fig. 8 is also governed by the noise-dependent timescale τ

but by an effect acting oppositely as in case of the X. This
means that with increasing τ the particles spread slower in the
radial direction, while they spread faster in the X direction,
as was discussed above. We elucidate this effect by deriving
an overdamped description of the nonlinear (r, z) dynamics
in Appendix B. We call it an overdamped description as the
angle z is the fast variable and the dynamics of the distance r is
assumed to be slow. The equation which determines then, for
t � τ , the evolution of the marginal radial PDF P (r, t |r0, t0)
is a Smoluchowski equation; all dependences on the various α

values of the noise are expressed through the relaxation time
τ as defined in (33). It becomes

∂

∂t
P = Deff

∂

∂r

[
∂

∂r
P −

(
1

r
− κ

v0

)
P

]
, (34)

with the effective diffusion coefficient

Deff = v2
0τ

2
. (35)

The overdamped approximation is valid if the effective diffu-
sion coefficient remains finite. The expression (35) of the latter
coincides with results for freely moving active particles κ = 0
with angular driving by α-stable noise [25].

Note that the overdamped description is solved for the
steady state by our previous solution (27). We also un-
derline that the spatial relaxation proportional to the relax-
ation time, especially around r ≈ rc, follows the mean-square
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FIG. 10. (a) Distance r (t ) from the home dependent on time for two different noise types and two different noise strengths. (b) Corresponding
autocorrelation function of distances Cr,r (�t ). The values of α and σ are given in the graphs. The other parameters are v0 = 1 and κ = 1.

displacement (MSD)

〈r2〉 ∼ v2
0τ t. (36)

Figure 9(b) displays as symbols the MSD obtained from
simulations for particles started at (x(t = 0), y(t = 0)) =
(rc, 0) and as a dashed line Eq. (36), with the noise strength
and type as indicated in the figure. The displayed time frame
is small compared to the timescale for the establishment of
the steady state. With increasing noise strength, the simulation
results for MSD align with (36). This implies that with in-
creasing noise strength σ , the relaxation in the radial direction
slows down. We also show the MSD for a low noise strength
σα = 0.01. There the particle moves in the ballistic regime
and the MSD grows proportionally to v2

0 t
2, as indicated by the

dash-dotted line. The different dependence on the relaxation
time of the radial and vertical motions in the (r,X) plane will
be the key element for the existence of an optimal time for a
local search.

V. LOCAL SEARCH

The local search consists of a search and a return part. In
our model both tasks are described by the same stochastic
dynamics. We discuss now the return and afterward the search
part.

A. Sojourn time

Our searcher performs a quasiperiodic motion around the
home. Figure 10(a) shows the radial distance from the home
for four sample trajectories. In Fig. 10(b) the time-dependent
autocorrelation function of distances corresponding to the
trajectories in Fig. 10(a) is plotted. In the simulations, we
calculated

Crr (�t ) = lim
T →∞

1

T

∫ T

0
[r (t ) − 〈r〉][r (t + �t ) − 〈r〉]dt.

(37)

Further on we assumed stationarity and have set 〈r〉 = 2v0/κ

in agreement with (27). We underline the good qualitative
agreement of the presented results from simulations with the
findings for the fruit fly [5,12]. To compare Fig. 10(b) with
Fig. 6.B of [5] we consider v0 = 10 mm/s as given by [5] as a

realistic value. With this value, the lag in millimeters provided
in Fig. 6.B of [5] becomes a timescale if divided by the velocity.

Figure 11 shows the sojourn time distribution to a home
of the size rs = 0.1. The particles start at the home with
r (t = 0) = rs and the initial angles z0 are uniformly distributed
between z0 ∈ [0, π/2] and z0 ∈ [−π,−π/2]. Those initial
conditions correspond to being at the home and moving away
from the home in the steady state. Note that equidistribution of
z0 does not imply a uniform distribution of the X values. The
particle is considered to have returned to the home if it touches
the extended home for the first time, i.e., r (t > t0) = rs .

The parameters are chosen to be consistent with the previous
examples. Figure 11 shows a low noise intensity case σα =
0.01, while the inset on the right displays a rather high
noise intensity σα = 0.5. The left inset corresponds to the
deterministic case. The speed is v0 = 1 and the coupling to
the home κ = 1 is constant. The distribution of sojourn times
for the deterministic case can be seen in the left inset. Note
that particles start returning to the home after tp ≈ 9.5. The

FIG. 11. Return time to the home for three different noise types
and three noise strengths. The home is assumed to be extended.
Particles start at a distance r (t = 0) = 0.1 from the home and are
considered to have returned when the distance is r = 0.1 again. See
the text for a description of the insets. The other parameters are v0 = 1
and κ = 1.
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FIG. 12. Mean time 〈t〉 until a new spot (xt , yt ) at a given position in the (x, y ) plane is found dependent on the noise intensity with (a)
(xt = 1, yt = 0) and (b) (xt = 0.5, yt = 0).

particles which return first correspond to the initial condition
r0 = rs and z0 = π/2. All others initially take a longer period
of time. For t > tp the distribution sharply descends and takes
an exponential form.

In Fig. 11 sojourn time distributions are plotted for three
noise types. All three noise types display a sharp peak at
approximately tp ≈ 9.5. This time tp is the time a deterministic
particle with r0 = rs and z0 = π/2 needs to return to the home
r (t ) = rs . The shape of the peak is influenced by the noise
type: For the Gaussian noise α = 2 the peak is rather smooth
compared to the Cauchy noise α = 1 and even more so for
α = 0.5. For the lowest displayed noise the decay of the first
peak approximately resembles the exponential decay of the
deterministic particles.

The behavior at the first peak can be understood by consid-
ering Fig. 8. Figures 8(a) and 8(b), corresponding to α = 0.5
and α = 2.0, display the sample trajectories in the (r,X) plane.
Here the noise types act very distinct on the motion of the
particles: While a Gaussian noise almost at every instant in
time causes a comparatively small change in the deterministic
trajectory X, the other extreme, the α = 0.5 case, rarely cause
a change, but if it causes a change, the change can be large.
This behavior causes in Fig. 11 an almost deterministic shape
of the first peak for α = 0.5 and the smearing out of the
peak for Gaussian white noise. Before the peak the different
noise distributions also cause distinct behavior. For Gaussian
noise basically no particle returns for times roughly t < 5,
while in the other cases some particles immediately return. As
Lévy noise with smaller α increases the probability of large
sudden changes, this different behavior can be understood. For
non-Gaussian noise the direction of motion of the particles
can suddenly jump by π and therefore allowing an immediate
return of the particle.

After the first peak several other peaks follow in all cases,
but with different intensity. In fact, already in the first peak a
second peak is visible. Those peaks correspond to multipliers
of ntp n ∈ N . Best visible are those peaks for α = 0.5 up to
roughly the correlation time τ .

A high noise intensity causes almost the same shape of the
time distribution for all noise types. Differences only remain
at small times t � tp, as can be seen in the inset on the right.
Both curves seem to decay in the same way and therefore only
a small time interval is shown.

B. Mean first hitting time

For insects an oscillatory motion around a given home is
often considered to be foraging; the question arises how fast a
particle in our model can discover a food source. We assume
our searcher has a sensing radius rsens. This sensing radius is
small compared to the length scale rc of our system; we choose
rsens = 0.1 � rc = 1. We expect the sensing radius to be small
compared to rc as otherwise not much new space can be
discovered. We perform simulations of particles starting close
to the home r (t = 0) = r0 = rsens, with uniformly distributed
heading directions and position angles, and determine the mean
first hitting time 〈t〉 until the food source is discovered. The
localized target or the new food source is placed at (xt , yt ) =
(1, 0) and at (xt , yt ) = (0.5, 0). Localized means that the target
is pointlike. We choose the first spot at a distance of rc, as
every deterministic bounded trajectory crosses this distance
and the spatial distribution (27) possesses maximal probability
there. As the second spot we choose a closer one to investigate
how the behavior of the mean first hitting time changes. The
searcher usually returns several times to the home until the food
source is discovered. Figure 12 shows the mean first hitting
time 〈t〉 for a given new food spot (xt , yt ) dependent on the
inverse relaxation time 1/τ . Since we have set v0 = 1, the
latter is, according to Eq. (33), proportional to the scaled noise
intensity σα .

In both pictures an optimal noise strength can be seen, at
which the mean first hitting time 〈t〉 is minimal. This optimal
time depends on the relaxation time τ but also on the distance
between the food source and the home. The optimal noise
strength depends on the distance where the target is situated
and decays with growing distance.

The nonmonotonic dependence of the hitting times can
be explained as resulting from two counteracting effects
originated by the noise. Considering a deterministic motion
σ = 0, not every searcher will hit the target as most of
the radial unbounded trajectories will miss it. For bounded
trajectories the mean time will be proportional to the period
length. We recall here that the sensing radius is small, so
even after the accumulated apsidal precession is larger than
2π the particle is likely not to have found the food source.
In the deterministic case the mean first hitting time diverges.
With low noise present the searcher can switch deterministic
trajectories. Now particles following a deterministic trajectory
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FIG. 13. Mean time 〈t〉 for a fixed noise intensity σα = 0.4
dependent on the spot distance d , with (xt = d, yt = 0).

that never hits the target or that takes extremely long to return
might arrive earlier through switching. This redistribution is
proportional to the timescale of the integral of motion X given
by (32). Correspondingly, the mean first hitting time decays
proportionally to τ from (33). The mean first hitting time is
always larger than the relaxation time τ .

The second counteracting process starts to act at a higher
noise. Now the deterministic motion can be practically ne-
glected and slow diffusive motion of the searcher dominates.
The timescale for diffusive motion is given by (B5) and (35).
Therefore, the time after which a certain distance �r has been
reached on average by this diffusion can be estimated as

tdiff = 〈�r2〉
4Deff

= σα

2v2+α
0

〈�r2〉. (38)

Thus, for high noise intensity the hitting time starts growing
proportionally to σα . Since the latter scales proportionally to
1/τ , we consolidated the second noise-induced effect govern-
ing the increasing hitting times.

In our numerical simulations Gaussian white noise always
performed slightly better than all other noise types (α < 2).
When changing the noise parameter α to lower values we
observed only a small increase of the mean time 〈t〉. So
different turning statistics seem not to significantly improve
the local search in our model, if 〈t〉 � τ .

This result is contrary to the result for freely moving
Daphnia [23] during a global search, where an optimal turn-
ing angle distribution for search was found. However, for
a searcher with an uncertainty of the exact position angle,
the turning angle distribution can significantly influence the
success of returning home [28].

Figure 13 shows the mean first hitting time for fixed noise
strength σα = 0.4 dependent on the spot distance d. As can be
seen, the times grow exponentially fast with the distance. We
point out that for each of the considered distances we observed
a nonmonotonic dependence of the mean hitting times on the
noise intensity σα .

We mentioned in Sec. IV B that we consider v0 = 10 mm/s
and κ = 0.5 s−1 and therefore rc = 20 mm as realistic values

for a fly. We mention here that for such values and a food
source at a spot distance d = 20 mm the optimal time becomes
〈t〉 = 160 s and with d = 40 mm the optimal time becomes
〈t〉 = 800 s.

VI. COUPLING DEPENDENT ON DISTANCE

In this section we generalize the model through replac-
ing the coupling parameter κ to the home by a distance-
dependent coupling κ (r ), with r =

√
x2 + y2, when consid-

ering Cartesian coordinates. By doing so, we cover a broader
class of spatial distributions and deterministic trajectories
and the model might describe also more complex motions
with preferred paths. It is straightforward to adjust the so far
determined properties: the deterministic trajectories (13), the
spatial distribution (27), and the relaxation time (33).

We introduce the time evolution of the direction of the
velocity �v,

θ̇ = κ (r ) sin(θ − β ) + σ

v0
ξ (t ), (39)

with coupling κ (r ). We require that the function κ (r ) has
no singularity for all distances including r = 0. This way
we ensure that at the origin (x, y) = (0, 0) the system in
Cartesian coordinates is well defined. In addition to ensuring
the existence of a steady state, the spatial density of searchers
will be normalizable. This will set another condition on κ (r ).

The time evolution of the angle z between the direction of
motion θ and the position of the home β is now given by

ż = −
(v0

r
− κ (r )

)
sin(z). (40)

It follows for the deterministic trajectories that

sin[z(r )] exp

(
−U (r )

v0

)
r = X = sin(z0) exp

(
−U (r0)

v0

)
r0

(41)

holds, wherein we have defined

U (r ) =
∫ r

dr ′κ (r ′). (42)

Again, a particle with an initial angle z0 = 0 or z0 = π

will move on a straight line. There also exist a minimal
and a maximal distance from the home, with sin(z) = ±1.
Previously, in Eq. (13) we could set r0 such that the integral of
motion X(z0) only depended on the initial angle z0. The value
of X(z0) represented a trajectory in the (r, z) plane, or in the
(r,X) plane in a unique way. Now this might no longer be true.
Now the variable X(r0, z0) might be dependent on the initial
position and the initial angle, if one wants to uniquely identify
a trajectory in the (r, z) plane and have z0 as a parameter. One
could, however, set the initial angle z0 = ±π/2 and then the
variable X(r0) would still be dependent on only one parameter
and be unique for the trajectories in the (r, z) plane, but we
choose the initial angle z0 to be a parameter. Figure 14 displays
such a case. Figure 14(a) shows the steady-state PDF. It is
obtained from (24) by replacing κ with κ (r ) and following the
same steps as in Sec. IV B,

P0(r, z) = cr exp

(
−U (r )

v0

)
, (43)
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FIG. 14. Example of distance-dependent coupling strength κ (r ). (a) Steady-state spatial distribution P0. (b) Corresponding deterministic
trajectories in the (r, z) plane, with initial condition r0, as indicated by dashed lines and initial angle z0 according to the color bar. (c) Sample
trajectory in the (x, y ) plane without noise corresponding to the blue separatrix in the (r, z) plane. (d) Trajectories in the (r,X) plane with the
initial condition r0, as indicated by dashed lines and initial angle z0 according to the color bar.

which again is independent of the noise. It reads in Cartesian
coordinates

P0(x, y) = c exp

(
−U (

√
x2 + y2)

v0

)
, (44)

with c the normalization constant. This sets the second condi-
tion on κ (r ) as we require the normalization to be possible.

The noise still acts perpendicularly on the deterministic
trajectory X causing a switching and the ensemble average
〈X〉 still follows the exponential decay from Eq. (32), with the
same relaxation time as given before (33). The overdamped
dynamics for the radial transition PDF P (r, t |r0, t0),

∂

∂t
P = Deff

∂

∂r

[
∂

∂r
P −

(
1

r
− κ (r )

v0

)
P

]
, (45)

has (43) as an asymptotic steady PDF. As above, the radial
relaxation again slows down with increased noise strength.
Likewise in the situation with constant κ , only τ or Deff

expresses the influence of the various α values of the noise.
Figure 14 gives an example of a space-dependent coupling

κ (r ). We choose κ (r ) = r2 − 4r + 4 such that the steady-state
PDF exhibits two maxima. This can be seen in Fig. 14(a).
In Fig. 14(b), the deterministic trajectories are shown in the
(r, z) plane, with two spatial initial conditions r0,i (i = 0, 1)
as indicated by the two dashed lines and the initial angle
z0 according to the color bar. Due to the quadratic term in
the coupling, trajectories are significantly shorter than in the
initial model since the coupling to the home-pointing direction
increases with the distance from the home.

Extremal points of radial probability follow from dP0/dr =
0 for the considered coupling from

1 − r

v0
κ (r ) = 0. (46)

Solutions are easily found. The minimal probability is found
around r1 = 1 and the maximal one at the two distances r2,3 =
(3 ± √

5)/2, as shown in Fig. 14(a). In the (r, z) plane [see
Fig. 14(b)], these distances are connected with the fixed points
of the deterministic flow of trajectories located at angles z =
±π/2. The fixed points at r1 are of saddle type, whereas those at
the two other distances are centers. They always correspond to a
circular solution for the deterministic trajectories in the (x, y)
plane since at those points the angular and radial velocities
ż = 0 and ṙ = 0, respectively, vanish.

Small changes in the initial angle z0 around the circular
solutions in the (x, y) plane at the maxima r2,3 correspond
to trajectories in the (x, y) plane similar to Fig. 4(a). For
initial angles z0 close to 0 or ±π , trajectories in the (x, y)
plane will be comparable to Fig. 4(b), but shorter with faster
turnings. Between the two mentioned solutions, a separatrix
lies. Figure 4(c) is a trajectory in the (x, y) plane close to the
separatrix. This solution exists if the initial angle z0 = ±π/2
at the minimum is slightly changed. The resulting trajectory
in the (x, y) plane rotates two times around the home before
reaching the maximal distance twice. The noise facilitates
again switchings between trajectories.

If the steady-state PDF of the position can be experimentally
measured it can be fitted to our solution (44), thus determining
the coupling strength κ (r ) to the home. Having found a suitable
dependence, the relaxation time τ can be determined by the
ensemble or time average of the variable X through measuring
r (t ) and z(t ). Fitting experimental data thus allows one to
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determine the relaxation time τ and therefore the noise strength
σα of the model.

VII. CONCLUSION

We laid the foundation for a minimal stochastic model
for a local searcher which was motivated by experimental
observations of the stochastic oscillatory motion of insects
around a given home. The main ingredients of this minimal
model are the constant speed of the searcher and stochastic
angular variation, which only requires the knowledge of the
position angle and the heading direction, which allows the
particle to explore the vicinity of the given home. The specific
interaction with this home results in an exploration of the
neighborhood around the home and an attraction towards
it dependent on the mutual orientations of the position and
heading vectors.

The model was formulated with four parameters: κ defines
the strength of interaction with the home, v0 is the speed
of the searcher, and σ stands for the intensity of the noise.
Since the observed turning angle behavior in experiments such
as fruit flies can be of non-Gaussian statistics, we introduced
α-stable noise as the source of randomness. The corresponding
parameter 0 < α � 2 as the fourth parameter allows one to
vary the support of the noise source between special types of
noise as Gaussian, Lorentzian, etc.

The introduced model showed qualitative agreement with
the behavior of insects. The advantage of our model is the
analytical and simple numerical tractability. In consequence,
we were able to discuss typical behavior of the trajectories
and of characteristic times. For example, we found the char-
acteristic return times in the noise-free case and obtained an
apsidal precession of the oscillatory trajectories reminiscent
of celestial motion. The analysis of the models allowed us to
discuss in detail the deterministic properties and the effects
originating through the addition of different symmetric white-
noise sources.

The inclusion of noise has a stabilizing effect on the system
since unstable trajectories disappear. Generally, trajectories
start to randomize. This is manifested by the noise-dependent
relaxation time τ that is proportional to 1/σα . For larger times
the stochastic dynamics has forgotten its initial directions and
trajectories have spread over all possible orbits. This investi-
gation has concentrated on the relaxation of the deterministic
integral of motion X. Its first moment conditioned on initial
values has decayed at times larger τ .

At high noise the particles start to perform diffusive mo-
tion. Like every active stochastic particle, the corresponding
effective diffusion coefficient depends inversely proportionally
on σ . We derived for the nonlinear model the overdamped
Smoluchowski equation outgoing from the FPE for all α

values. It describes the stochastic dynamics on timescales
much larger than the noise-dependent time and τ . Except for
τ , the Smoluchowski equation is independent of the noise
characteristics.

We obtained analytically the steady-state spatial distribu-
tion P0 which appeared to be identical for all different kinds of
α-stable noise [see Eq. (27)]. In particular, it depends neither
on σ nor on α. Distances are exponentially distributed and

the width is determined by the ratio v0/κ , which is just a
characteristic length for the quasiperiodic excursions which
the stochastic trajectories perform.

We found in our model an optimal noise strength for finding
a new spot in the minimal average time 〈t〉. This optimal aver-
age time is distance dependent. The searcher finds on average
the new spot always faster with noise in the angular dynamics.
This is the result of the relaxation towards a probabilistic
population of all possible trajectories which determines the
greater success of the stochastic searcher. For lower noise this
process is governed by the noisy periodic motion and after the
relaxation time the stationary PDF is established. However, for
higher noise the relaxation is proceeded by diffusive search.
If an approximate distance of a spot to discover is given,
we expect a good choice that this length equals the length
scale rc of our system. We found in our model only an
insignificant dependence on the turning angle distribution,
expressed through the noise type. This result is in contrast to
results for a global search [23]. Other work shows, however,
that the probability to return to the home strongly depends on
the noise type if an uncertainty of the position angle exists [28].

Another advantage of our model is that we could generalize
the model to distance-dependent coupling κ (r ), thus allowing
us to express a large class of radial symmetric spatial steady-
state distributions [see Eq. (43)] and corresponding spatial
trajectories. All models of this class exhibit the timescale τ ,
so we expect the existence of an optimal noise strength for
the general model. The long-time behavior of systems with
distance-dependent coupling follows again a Smoluchowski
equation uniformly for all α’s.

We underline that our findings are applicable to a broad
class of stochastic searching units such as insects and au-
tonomous vehicles. Here we considered individual searchers.
The investigation concentrated on the interaction with the
given home and on temporal scales to find new food sources.
Further research on interacting searchers and their cooperative
behavior is needed.
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APPENDIX A: DERIVATION OF THE STOCHASTIC
X DYNAMICS

Here we derive the linear differential equation for the
averaged value of X as defined by

∫ ∞

0
dr

∫ π

−π

dz X(r, z)P (r, z, t |r0, z0, t0) (A1)

[compare Eq. (30)]. This characterizes the relaxation of the
stochastic X(r, z, t ) dynamics. It is dissipative in contrast to
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the deterministic behavior. To obtain the dynamics for the average conditioned to the initial values r0, z0 we multiply the FPE
(24) for the transition PDF P = P (r, z, t |r0, z0, t0) by X from (13) and integrate over r and z:∫ ∞

0
dr

∫ π

−π

dz X(r, z)
∂

∂t
P =

∫ ∞

0
dr

∫ π

−π

dz X(r, z)

[
−v0

∂

∂r
cos(z) + ∂

∂z

(v0

r
− κ

)
sin(z) +

(
σ

v0

)α
∂α

∂|z|α
]
P. (A2)

The first term on the rhs after partial integration over r together with the second term partially integrated over z results in an
expression which vanishes if X(r, z) is inserted,∫ ∞

0
dr

∫ π

−π

dz

[
v0 cos(z)P

∂

∂r
X −

(v0

r
− κ

)
sin(z)P

∂

∂z
X

]
= 0. (A3)

Thus we are left with

d

dt
〈X〉 =

(
σ

v0

)α ∫ ∞

0
dr

∫ π

−π

dz X
∂α

∂|z|α P (r, z, t |r0, z0, t0). (A4)

We express the PDF through its Fourier transform

P (r, z, t |r0, z0, t0) = (2π )−1
∫ ∞

−∞
dk exp(−ikz)P (r, k, t |r0, z0, t0).

Its introduction in (A4) and taking the angle z to be unwrapped yields

d

dt
〈X〉 = − 1

2π

(
σ

v0

)α ∫ ∞

0
dr

∫ ∞

−∞
dz

∫ ∞

−∞
dk exp(−ikz)X(r, z)|k|αP (r, k, t |r0, z0, t0).

Including the definition of X and performing the z integration leads to

d

dt
〈X〉 = −

(
σ

v0

)α 1

2π

∫ ∞

0
dr

∫ ∞

−∞
dk

1

2i
[δ(k − 1) − δ(k + 1)]r exp

(
− r

rc

)
|k|αP (r, k, t |r0, z0, t0), (A5)

with the δ functions originated by the sine function in X. Eventually, we have a look at the definition of the average (A1). Therein
we also perform the Fourier transform and take an unwrapped angle z which gives

〈X〉 = 1

2π

∫ ∞

0
dr

∫ ∞

−∞
dk

1

2i
[δ(k − 1) − δ(k + 1)]r exp

(
− r

rc

)
P (r, k, t |r0, z0, t0). (A6)

Comparing Eqs. (A5) and (A6) shows that after performing the k integration both equations are identical up to the factor in front
of (A5); therefore, it follows that

d

dt
〈X〉 = − 1

τ
〈X〉. (A7)

This equation is solved by (32) with 〈X〉(t0) = X0 = X(r0, z0) the initial value of 〈X〉.
One finds the same relaxation time also by using the time-dependent eigenfunction of the FPE (24). It is solved by

e1(r, z, t ) ∝ sin(z)r2 exp

(
−2

κ

v0
r − t

τ

)
, (A8)

with the eigenvalue λ1 = 1/τ . It describes the relaxation of the integral of motion X in the case in which α-stable noise is present
in the angular dynamics.

APPENDIX B: DERIVATION OF THE OVERDAMPED SMOLUCHOWSKI EQUATION

Following [29,30], which discussed an overdamped description of freely diffusing active particles with Gaussian white noise,
we define the Fourier components

Pn(r, t ) =
∫ π

−π

dz exp(inz)P (r, z, t ), n = 0,±1,±2, . . . . (B1)

For simplicity, we omit the initial states in the transition PDF P and in the components. Note that the zeroth component with
n = 0 equals the marginal spatial PDF P (r, t ), for which we want to derive an approximative equation as well as get the necessary
conditions for its validity.

We multiply the FPE (24) from the left with exp(inz) and integrate over z. We obtain a set of coupled partial differential
equations for the Fourier amplitudes

∂

∂t
Pn = −v0

2

∂

∂r
(Pn+1 + Pn−1) − n

2

(v0

r
− κ

)
(Pn+1 − Pn−1) +

(
σ

v0

)α

|n|αPn. (B2)
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Afterward, we eliminate the last term on the rhs by substituting Pn = exp(−|n|αt/τ )P ′
n, with τ from (33):

∂

∂t
P ′

n = −v0

2

∂

∂r

[
exp

(
−(|n + 1|α − |n|α )

t

τ

)
P ′

n+1 + exp

(
−(|n − 1|α − |n|α )

t

τ

)
P ′

n−1

]

−n

2

(v0

r
− κ

)[
exp

(
−(|n + 1|α − |n|α )

t

τ

)
P ′

n+1 − exp

(
−(|n − 1|α − |n|α )

t

τ

)
P ′

n−1

]
. (B3)

Considering the index n = 0, we note that for n = 0 the components P ′
0 and P0 converge and equate to the marginal distance

PDF P (r, t ).
We take another partial time derivative of P ′

0 in (B3). In the obtained relation we replace P ′
1(t ) using (B3) with n = 0 on the

left-hand side. This leads to an expression containing first and second derivatives of P ′
0 and terms with P ′

±2:

∂

∂t2
P ′

0 + 1

τ

∂

∂t
P ′

0 = v2
0

2

∂

∂r

[
∂

∂r
P ′

0 −
(

1

r
− κ

v0

)
P ′

0

]
+ v2

0

4
exp

(
−|2|α t

τ

)
∂

∂r

[
∂

∂r
(P ′

2 + P ′
−2)) +

(
1

r
− κ

v0

)
(P ′

2 − P ′
−2)

]
. (B4)

For t � τ the terms containing P±2 vanish and as was discussed in [29,30] the second time derivative containing a ballistic part
of the motion can be also neglected if the limit of v2

0τ for small τ remains finite. Therefore, we are left, under these conditions,
with the overdamped description

∂

∂t
P (r, t ) = Deff

∂

∂r

[
∂

∂r
P (r, t ) −

(
1

r
− κ

v0

)
P (r, t )

]
, (B5)

with the effective diffusion coefficient

Deff = v2
0τ

2
. (B6)

The resulting Smoluchowski equation determines the overdamped dynamics of the spatial transition PDF P (r, t |r0, t0) as used in
Sec. IV C. Since its validity is bounded to timescales t � τ , the initial angle z0 is forgotten and the PDF depends on z0, further
on. Small τ implies high noise or small velocities in agreement with (33).

APPENDIX C: MECHANICS OF THE SEARCHER

Here we elaborate some similarities of the deterministic
dynamics to the celestial mechanics. The motion of the particle
is reminiscent of the planetary motion around a central body
in an attracting potential. However, we first underline the main
differences. In our problem we always deal with constant speed
of the particle, which is another integral of motion in the
problem.

In consequence, the kinetic energy of the particle becomes
[compare Eq. (16)]

Ekin = 1

2

(
dr

dt

)2

+ v2
0 sin2(z) = 1

2
v2

0 . (C1)

After replacement of the sin(z) item by the constant integral
of motion X(r, z), the z(t ) variable disappears and the energy
reads

Ekin = 1

2

(
dr

dt

)2

+ 1

2
v2

0

(
X

r

)2

exp

(
2

r

rc

)
= 1

2
v2

0 . (C2)

This equation could be reinterpreted as describing the full
mechanical energy for a particle moving in a central force field
at distance r (t ) and with effective potential

Ueff (r ) = 1

2
v2

0

(
X

r

)2

exp

(
2

r

rc

)
. (C3)

The effective central force acting on the particle is

Feff (r ) = − ∂

∂r
Ueff (r ) =

(
X

r

)2(1

r
− 1

rc

)
exp

(
2

r

rc

)
.

(C4)

So the motion of the particle is conservative and it moves
through an effective central field, with the potential energy
given by (C3). This effective potential becomes infinity at r =
0 and if r → ∞. Hence, the particle performs only bounded
oscillatory motion with full energy v2

0/2. At the perihelion
and aphelion with rmax/min, respectively, the potential energy
is extremal Ueff = 1/2, as the radial velocity vanishes at those
distances. The force changes between attraction and repulsion
at r = rc, where the radial velocity of the particle is maximal.
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