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Abstract: The GL (GLobal radiation) physical model was developed to compute global solar irradiance
at ground level from (VIS) visible channel imagery of geostationary satellites. Currently, its version
1.2 (GL1.2) runs at Brazilian Center for Weather Forecast and Climate Studies/National Institute
for Space Research (CPTEC/INPE) based on GOES-East VIS imagery. This study presents an
extensive validation of GL1.2 global solar irradiance estimates using ground-based measurements
from 409 stations belonging to the Brazilian National Institute of Meteorology (INMET) over Brazil
for the year 2016. The INMET reasonably dense network allows characterizing the spatial distribution
of GL1.2 data uncertainties. It is found that the GL1.2 estimates have a tendency to overestimate the
ground data, but the magnitude varies according to region. On a daily basis, the best performances
are observed for the Northeast, Southeast, and South regions, with a mean bias error (MBE) between
2.5 and 4.9 W m−2 (1.2% and 2.1%) and a root mean square error (RMSE) between 21.1 and 26.7 W m−2

(10.8% and 11.8%). However, larger differences occur in the North and Midwest regions, with MBE
between 12.7 and 23.5 W m−2 (5.9% and 11.7%) and RMSE between 27 and 33.4 W m−2 (12.7% and
16.7%). These errors are most likely due to the simplified assumptions adopted by the GL1.2 algorithm
for clear sky reflectance (Rmin) and aerosols as well as the uncertainty of the water vapor data. Further
improvements in determining these parameters are needed. Additionally, the results also indicate
that the GL1.2 operational product can help to improve the quality control of radiometric data
from a large network, such as INMET's. Overall, the GL1.2 data are suitable for use in various
regional applications.
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1. Introduction

Accurate estimates of global solar irradiance at the ground level are essential for a variety of
applications in meteorology, hydrology, agriculture, and renewable energy. Some examples are climate
and global energy budget monitoring [1,2], evapotranspiration and crop yield modeling [3–5], and the
need for expanding renewable energy sources, promoting investments in solar energy technologies [6,7].

The traditional way of solar radiation monitoring requires pyranometers installed at a
meteorological/radiometric network. However, data accuracy depends on instrument type as well
as on maintenance and calibration routines [8,9]. During the last decades, a considerable effort has
been engaged towards increasing the number of automatic weather stations throughout the extended
Brazilian territory. The main examples are the network of the Brazilian National Institute of Meteorology
(INMET, see http://www.inmet.gov.br) and the network of Data Collection Platforms managed by
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National Institute for Space Research (INPE, see http://sinda.crn.inpe.br/PCD/SITE/novo/site/index.php).
Stations operated by these governmental institutions have sensors for standard meteorological variables
(atmospheric pressure, air temperature and humidity, precipitation, wind speed, and direction) as
well as solar irradiance. It is worthwhile to note two additional radiometric networks: SONDA
(Brazilian Environmental Data Organization System, see www.sonda.ccst.inpe.br/) and Solar Radiation
Network (SolRad-Net, see https://solrad-net.gsfc.nasa.gov), with about 20 stations performing high
quality measurements. Nevertheless, long and continuous time series of solar irradiance measurements
are still scarce. A main reason for these shortcomings is the high cost of maintenance for long time
periods, especially in developing countries with large territorial dimensions, such as Brazil.

Nowadays, solar irradiance estimation based on geostationary satellite data is one of the more
effective and low cost options for monitoring extended regions, attaining long, continuous, and
geographically detailed spatial–temporal coverage. Since the 1970s, several models have been
developed (e.g., [10–15]). Models are currently classified into two main types: empirical and physical.
The first ones are simpler to implement, being based on statistical fitting between satellite information
(for instance reflectance and brightness temperature) and solar irradiance measured at the ground level
(e.g., [10,12]). The second ones describe relationships between these variables by applying physical
laws of radiative transfer in the atmosphere (e.g., [13,14]). These models require input information
about atmospheric structure, which can be provided by climatology or numerical model outputs.
Therefore, physical models ought to be able to tune proper parameterizations independently of ground
truth data. Besides, semi-empirical models include features of both previous approaches (e.g., [16–18]).
Reviews of satellite-based models can be found in Pinker et al. [19], Polo et al. [20], and Huang et al. [21].
Advances in algorithms and availability of long-term satellite data allowed the development of several
satellite-derived solar radiation databases with regional and global coverage. A detailed list of available
databases is presented by Vernay et al. [22] and Polo et al. [23].

There has been a continued effort of Brazilian researchers in providing accurate regional
satellite-based information about solar radiation. Two different physical models are currently used:
Brasil-SR [24] and GL [25]. The Brasil-SR model is an adaptation of the IGMK model [13]; it uses a
two-stream approximation to the radiative transfer equation, static auxiliary database and GOES VIS
radiances. Brasil-SR has been used to generate a Brazilian Atlas of Solar Energy, being useful as a
reference for renewable energy studies [26,27]. Since 1998, the GL (GLobal radiation) model has been
run at the Center for Weather Forecast and Climate Studies (CPTEC/INPE) generating solar irradiance
fields at daily and monthly time scales with about 4 km resolution. It uses GOES-East VIS imagery
covering South America and neighboring oceanic areas (see http://satelite.cptec.inpe.br/radiacao/).

GL model version 1.0 (GL1.0) used Meteosat VIS imagery and was applied to Northeast Brazil [28].
Comparison using ground data from two stations over a three-month period showed MBE varying
between −6 and 7 W m−2 and a standard deviation of about 30 W m−2, for daily values. Successive
improvements lead to GL1.2 version and continuous use of GOES imagery. Ceballos et al. [25]
performed a validation against four-month ground data over 80 Brazilian stations equipped with Lycor
pyranometers. The authors reported daily mean errors generally within ±10 W m−2 with standard
deviations lower than 20 W m−2. The GL1.2 database has contributed to the validation of numerical
weather prediction models and data assimilation systems [29,30], to climatological and environmental
studies [31–33], to hydrological modeling [34], to potential evapotranspiration estimation [35] and, last
but not least, to solar resource assessment [36].

Although numerous, the INMET spatial density is inhomogeneous across the country (being even
lower in the Amazon region); nevertheless, the high data amount is a valuable source for validating
satellite-based estimates. This article presents a comprehensive evaluation of GL1.2 model performance
based on comparison with ground data from 409 INMET stations throughout Brazil for a complete
year (2016). It differs from previous efforts (e.g., [25,28]; for others go to the publication tab at
http://satelite.cptec.inpe.br/radiacao/) in several aspects, as the number of stations and the analysis
of spatial characteristics of model performance. The results contribute to a better understanding of
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GL1.2 accuracy, to assess its confidence and to identify physical aspects that should be improved. A
short overview of the model is presented in Section 2. Section 3 describes data and methods, while
Section 4 shows validation results. A brief discussion of the model error sources is provided in Section 5.
Conclusions and directions for future work are presented in Section 6.

2. GL Model Overview

The GL1.2 physical model (hereafter abbreviated to GL) can be applied to any geostationary
satellite providing images in the visible interval (VIS). The algorithm using GOES-East VIS imagery is
fully described in Ceballos et al. [25]; but a short overview is presented here in order to help further
analysis of results. The GL model runs operationally at CPTEC/INPE; the time series covers more than
20 years of daily mean solar irradiance fields with 0.04◦ resolution. Some results are illustrated at the
website http://satelite.cptec.inpe.br/radiacao/. The model was designed with a simplified but physically
consistent structure describing shortwave solar radiation transfer in the Earth–atmosphere system. It
splits solar spectrum in three intervals: ultraviolet (UV: 0.2−0.4 µm), visible (VIS: 0.4−0.7 µm), and
near-infrared (NIR: 0.7−3.0 µm) and considers the relevant radiative transfer processes in each interval.
Atmosphere is divided in two layers: troposphere (below 17 km) and stratosphere (above 17 km). The
basic model hypotheses are (i) within the UV interval, stratospheric ozone O3 has strong absorption
and attenuates direct solar beam; Rayleigh scattering in the stratosphere and O3 absorption in the
troposphere are neglected; (ii) within the VIS interval, the somewhat weak absorption of O3 Chappuis
band is accounted for in the stratosphere, but main tropospheric processes are considered conservative
(not absorptive) and limited to scattering; (iii) within the NIR interval, Rayleigh (air) and Mie (aerosol)
scattering are negligible, so that solar radiation is constrained to direct solar beam passing between
clouds, partially attenuated by water vapor (H2O) and carbon dioxide (CO2) absorption. Typical cloud
is highly absorbent and reflective, so that cloud transmittance is neglected. SBDART radiative transfer
code [37] was used to test and justify these statements.

Each pixel in GOES VIS images provides spectral radiance Lλ, allowing to define a reflectance
factor F and assess local planetary reflectance RpVIS as follows:

RpVIS =
πLλ
µo Sλ

=
F
µo

(1)

where Sλ is the spectral solar constant within satellite VIS band and µo is the cosine of the solar zenith
angle. This is the basic information used by GL to assess global irradiance at ground level. Given the
abovementioned hypotheses, UV−VIS irradiance at ground level (GUVVIS) is estimated as a simple
tropospheric radiation balance, which is expressed as

µo SoUVVIS T3(µo) = µo SoUVVIS
RpVIS

T3(µs)
+ AUVVIS + (1−RgVIS)GUVVIS (2)

where SoUVVIS is the solar constant within the UV−VIS interval, T3 refers to stratospheric O3

transmittance, AUVVIS is the absorbed UV−VIS irradiance in the troposphere, RgVIS is the typical
ground reflectance in the VIS interval, and µs is the satellite zenith angle. RpVIS is estimated following
Equation (1) but applies to the whole UV−VIS interval. Ozone transmittance follows parameterization
of Lacis and Hansen [38]. Note that Equation(2) assumes that cloud and ground reflectances have
constant values throughout the UV−VIS interval, as well as proposes a non-absorption troposphere.
Reflectances RpVIS and RgVIS appear as main parameters in Equation (2).

Near-infrared irradiance GNIR is defined as

GNIR =
µo (SoNIR − ∆S) (1 −C)

(1 −C RcNIRRgNIR)
(3)

http://satelite.cptec.inpe.br/radiacao/
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where SoNIR is the solar constant within the NIR interval, ∆S accounts for the absorption due to H2O
and CO2 so that the direct solar beam is partially attenuated, C is cloud cover and RgNIR and RcNIR are
ground and cloud base reflectances in the NIR interval, respectively. Here, essential parameters are
precipitable water (w2) and C cloud cover parameter.

Cloud cover estimation adopts an algorithm used by classical models as Heliosat 1 and 2 [12,15]
and IGMK [13], but with different interpretation, applied to reflectance as seen by satellite VIS channel,
as follows

C =
(RpVIS − Rmin)

(Rmax − Rmin)
(4)

where Rmin stands for a typical cloudless reflectance and Rmax is a convenient upper threshold.
Traditionally, other models use radiance (or reflectance) as the variable in Equation (4) to determine
a cloud index. Concerning the GL model, Equation (4) just estimates cloud cover itself, making
sense for only cumuliform fields, being bounded by values of zero for cloudless conditions and one
for overcast conditions. Using a cloud classification method, Ceballos et al. [25] found a threshold
Rmax = 0.46 for transition of brightness between cumuliform and stratiform cloud fields. As a matter
of fact, only cumulus-type sizes are compatible with partial cloudiness in a pixel scale [39], although
low brightness of cirrus cloud could induce an apparent partial cloud cover. Atmospheric situations
showing reflectance higher than Rmax are interpreted as maximum cloudiness (C = 1).

The GL model estimates the global irradiance at ground level associated to a VIS image as a
simple sum of UV−VIS and NIR irradiances,

GL = GUVVIS + GNIR (5)

and daily mean solar irradiance (in W m−2) arising from a sequence of images is given by

GLday =

∫
day GL(t) dt

86400
(6)

The GL algorithm exhibits three potential shortcomings: (i) it does not consider absorption by
atmospheric aerosol; (ii) cloud transmittance is assumed null in the NIR interval; (iii) it assumes water
vapor content as well as Rmin = RgVIS = 0.09 being constant throughout Brazil. Assumptions would
be physically sound when (i) aerosol exhibits low optical depth and single scattering albedo close
to unity; (ii) cloud field is predominantly composed by cumulus clouds; (iii) cloud conditions are
predominant. Anyway, note that assumed Rmin and w2 values are reasonably representative over large
areas of Brazil. The present work is useful for identifying and quantifying the shortcomings and the
overall performance of the GL model.

3. Data and Methods

3.1. GL Satellite Product

GOES-East imagery acquired and stored at the Satellite and Environmental System Division
(DSA/CPTEC) are routinely processed by the GL model for producing spatial fields of global solar
irradiance at ground level. The geographical coverage of the GL product is shown in Figure 1. GL
data for the entire year of 2016 was generated using GOES-13 satellite VIS imagery (spectral range
0.53–0.71 µm), positioned at 75◦W over the Equator. The specific scan adopted by GOES-13 for South
American region is described by Costa et al. [32]. The VIS imagery has a temporal sampling interval of
30 min and a spatial resolution of 1 km at nadir, which is resampled to a grid size of 0.04◦. The GL
output product is distributed in a regular grid of 1800 × 1800 pixels with 0.04◦ resolution, between
50◦S and 21.96◦N latitudes and 100◦ and 28.04◦W longitudes, in binary format. For a specific pixel, the
GL irradiance value is the average within the 3 × 3 grid box. The GL data are generated for different
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time intervals: instantaneous (for each image), daily (daytime integration), and monthly (average of
daily values). In this article, GL daily data were used.
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Figure 1. GL product domain and locations of all stations considered in this study: INMET stations are
plotted in gray, SolRad-Net stations in red, and SONDA stations in blue. Bold numbers indicate the
Brazilian regions (1=North; 2=Northeast; 3=Midwest; 4=Southeast; 5=South).

To illustrate the applicability of the GL data, seasonal maps of solar irradiance patterns for the
year 2016 are shown in Figure 2 (summer, DJF; autumn, MAM; winter, JJA; spring, SON). These maps
were constructed from GL daily irradiance estimates. As expected, Figure 2 reveals a remarkable
spatial–temporal variation of radiation levels, which in turn are modulated by cloudiness associated
with the various weather systems occurring throughout the year. For example, in summer the highest
values (280−300 W m−2, or 6.7−7.2 kWh m−2) were observed in the southwestern sector of the Northeast
region and in the extreme south of the country; which are areas with low cloud cover during this
season [40]. In contrast, the lowest values (200−260 W m−2 or 4.8−6.2 kWh m−2) occur in the northern
part of the Northeast and in a large part of the North region. This behavior is mainly caused by
the strong local convection as well as the cloudiness associated with the Intertropical Convergence
Zone (ITCZ). In winter, the spatial distribution exhibits a strong north–south gradient, with minimum
values occurring in the south region (120−140 W m−2 or 2.8−3.3 kWh m−2), while the maximums
(260−280 W m−2 or 6.2−6.7 kWh m−2) are found in the northeast of the Amazon region and northwest
part of the Northeast.
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Figure 2. Seasonal maps of daily mean global solar irradiance from the GL model for 2016.

3.2. Ground Data

To understand the quality of the GL estimates over Brazil, a reasonably large number of ground
stations is needed. The network of automatic weather stations operated by the INMET consists of
around 470 stations where the global solar irradiance at ground level (G) has been regularly recorded.
For this study, measurements of G for the year 2016 reported by the INMET surface stations are the
main source of ground data. The location of the INMET ground stations is presented in Figure 1. It can
be seen, on the one hand, that the ground stations are situated in areas with different land cover types
and climatic zones (from semi-arid to subtropical and tropical regimes). On the other hand, its spatial
distribution is not uniform and there is a low density of stations in important areas, such as over the
Amazon region.

Two types of pyranometers are used by the INMET network for measuring G. Most stations
are equipped with CM6B pyranometers and few stations have CMP6 pyranometers (both Kipp and
Zonen instruments and compliant with ISO 9060 first class specification). Data are sampled every
minute and the hourly values (irradiations in kJ m−2) are accessible at the website www.inmet.gov.br.
INMET regional centers are responsible for maintaining the stations and the solar radiation sensors are
calibrated approximately every 24 months (Edmundo W. M. Lucas, INMET, personal communication).

As mentioned in Section 1, Brazil possesses two networks with high quality measurements of G
but with low density of stations: SolRad-Net and SONDA. These networks, recognized internationally
as reference, have some stations relatively close to INMET stations, making it possible to perform a
comparison between GL estimates and ground records obtained from the different networks. This

www.inmet.gov.br
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analysis helps to test the applicability of INMET data. For this purpose, we used level 1.5 data
(level 2.0 data were unavailable) from three SolRad-Net stations (distributed in the Amazon region)
and five SONDA stations (distributed throughout Brazil). The SolRad-Net stations are Alta Floresta,
Manaus_Embrapa, and Rio Branco and SONDA stations are Brasília, Natal, Palmas, Florianopólis,
and Petrolina. The last two stations are included in the Baseline Surface Radiation Network (BSRN).
Global solar irradiance at SolRad-Net and SONDA stations are measured using Kipp and Zonen CM
21 pyranometers (secondary standard). Pyranometric measurements have a sampling interval of 1-min
and 2-min for SONDA and SolRad-Net stations, respectively. Overall uncertainties of G measurements
should not exceed 5% [8,41]. Figure 1 shows the spatial distribution of all stations used in this study
and Table 1 shows basic information of the monitoring networks.

Table 1. Summary of the monitoring networks used in this study.

Network Number of Stations Temporal Resolution Website

INMET 409 60 min http://www.inmet.gov.br/
SONDA 5 1 min http://sonda.ccst.inpe.br/

SolRad-Net 3 1−2 min https://solrad-net.gsfc.nasa.gov/

3.3. Data Quality Control

According to Gueymard and Ruiz-Arias [42] there is no optimal or widely accepted quality control
algorithm for ground radiation measurements, leading each institution/research to implement its own
method, which effectively implies that some tests may be more stringent than others. Quality control
procedures were performed to promote better conditions for the validation, as follows.

Initially, the negative G measurements or those above the upper limit of solar irradiance adopted
by BSRN criterion for extremely rare values were removed [43]. Then, the daily average of the G
measurements was calculated only for days with at least 70% valid data during the diurnal cycle. Daily
datasets (both GL and ground) also were subjected to further quality tests. The daily values of GL and G
should lie between 30 and 400 W m−2. Otherwise, it is flagged as questionable data and removed from
the analysis. This approach allowed us to eliminate excessively high or low daily values. In addition,
another procedure was conducted to remove outliers in order to generate more robust statistical results.
Using the raw daily GL and G data, we found that the standard deviation of the difference was of the
order of 25 W m−2 (not shown here). Thus, days with largest differences (outside ± 3 SDD, 75 W m−2)
were removed. In the last procedure, visual inspections of annual evolution of the G daily values were
performed, excluding stations with atypical data. Finally, the monthly averages were computed only
when at least 21 valid daily values during a month were available. After quality checking, a total of
409 stations out of 473 were selected for the validation.

3.4. Performance Metrics and Analysis

The GL product was validated on a daily and monthly time scales through comparisons with
ground-based data. In order to quantify the performance of GL satellite estimates, different statistical
metrics were considered, like the mean bias error (MBE), the root mean square error (RMSE), and the
standard deviation of the difference (SDD), which are calculated as follows:

MBE =
1
N

N∑
i=1

(GLi −Gi) =
1
N

N∑
i=1

(Ei) (7)

RMSE =

√√√
1
N

N∑
i=1

(GLi −Gi)
2 (8)

http://www.inmet.gov.br/
http://sonda.ccst.inpe.br/
https://solrad-net.gsfc.nasa.gov/
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SDD =

√√√
1
N

N∑
i=1

(Ei −MBE)2 =
√

RMSE2 −MBE2 (9)

where GLi and Gi are, respectively, the satellite-derived and ground-based solar irradiance values and
N is the total number of data samples. Additionally, the percentage of MBE and RMSE metrics were
obtained by dividing them by the average of ground data. The MBE is a measure of systematic errors.
A positive (negative) MBE value indicates the model tendency to overestimate (underestimate) the
ground data; the RMSE is a measure of the overall variation between estimated and measured data,
with lower values indicating better model performance; and the SDD indicates the level of spread
of the differences around their mean value. The validation results are presented in terms of scatter
plots, histograms, maps, linear regression parameters (slope and intercept), and the coefficient of
determination (R2).

Initially, the GL estimates were compared with measurements taken at locations where there
are both INMET and SONDA (or SolRad-Net) ground stations. This analysis allows verification
of whether the model performance changes when compared to ground observations from different
monitoring networks. Then, considering the INMET network as the source of reference data, an
extensive comparison of GL data with ground observations from 409 stations was performed. Results
were exhibited for each Brazilian region (North, Northeast, Midwest, Southeast, and South). These
regional groups allow one to investigate the spatial variability of the accuracy of the GL product.
Although it is recognized that not all stations within a specific region exhibit similar solar radiation
patterns, this grouping was considered useful for the analysis. In addition, it is worthwhile to mention
that similar regional quality in G data could be expected since INMET’s regional districts are responsible
for station maintenance. It was also evaluated whether the GL data could help to identify stations
with suspicious records. GL satellite data were compared with ground measurements from those and
nearby stations (within a radius of 200 km). Comparisons between both datasets (satellite and ground)
were performed by selecting the satellite pixel closest to each station location.

4. Results

4.1. Comparing GL with Two Ground-Based Reference Networks

The SONDA and SolRad-Net networks are internationally well known and provide high quality
measurements for a limited number of stations over Brazil. These networks have records of solar
irradiance from sensors with higher accuracy than those of the INMET network. Thus, it is convenient
to compare the GL data with the three available ground-based datasets. The analysis aims to investigate
if the accuracy of the model changes as a function of the ground reference network. In order to perform
a proper comparison, locations that have stations of different networks and that are relatively close
to each other were selected. The overall statistics are presented in Table 2. The distance between
stations is given in the last column. Results show a predominance of positive MBE values, with higher
MBE values for stations located in the North region. The exceptions, that are negative MBE values,
occur at coastal stations (Florianópolis and Natal). Comparisons between GL/INMET and GL/SONDA
(or SolRad-Net) do not seem to change the overall model performance. The results suggest that, at
least in principle, INMET solar irradiance data have sufficient accuracy, thus, they will be used as
ground reference in this study. However, it is probable that some INMET stations may have lower
quality data due to the well-known problems related to maintenance and calibration of the sensors,
especially because of the large number of stations.

4.2. Monthly Evaluation

The number of stations used in this study allows assessment of the overall accuracy of the GL
product for each region of Brazil. Results for the monthly values of measured and estimated global
solar irradiance as well as the linear regression parameters between them are presented in Figure 3. It is
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evident that the GL data are symmetrically distributed around the 1:1 line (black line), especially for the
Southeast and South regions, where the coefficient of determination is substantially high (ranging from
0.90 to 0.97). Most points are located above the diagonal line for the North and Midwest, indicating that
the satellite-based estimates tend to overestimate the ground observations. For the Northeast region,
there is a slightly higher dispersion of the datasets than that found in the other regions. However,
the coefficients of determination for these three regions exhibited similar and reasonably high values
(varying from 0.78 to 0.81), indicating a good agreement between the estimates and the observations.
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Figure 3. Scatter plots between GL model estimated and measured monthly mean solar irradiance for
the five Brazilian regions, during 2016. The black line represents the 1:1 ratio and the red line represents
the linear regression. The slope and intercept uncertainties are given.
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Table 2. Summary statistics of the comparison between daily mean solar irradiance from the GL model
data against INMET ground data and high quality SONDA or SolRad-Net ground data. The distance
between stations is also shown.

Station Name Network MBE SDD Distance

W m−2 % W m−2 km

Florianópolis INMET −2.8 −1.6 22.0
10SONDA/BSRN 4.0 2.2 22.4

Petrolina
INMET - - -

42SONDA/BSRN 0.0 0.0 16.5

Natal
INMET 4.9 2.1 17.9

4SONDA −2.0 −0.8 15.6

Brasília
INMET 3.0 1.4 20.0

30SONDA 5.8 2.6 18.8

Palmas
INMET 32.8 15.7 19.6

8SONDA 25.6 11.3 19.2

Alta Floresta
INMET 22.9 11.0 23.0

24SolRad-Net 18.0 8.1 20.2

Manaus
INMET 16.8 9.0 19.7

24SolRad-Net 17.1 9.5 22.4

Rio Branco
INMET 16.2 8.1 25.7

32SolRad-Net 8.2 4.0 21.7

Table 3 reports the statistical summary for the GL product evaluation at a monthly time scale.
Results clearly show that the GL model overestimates the G measurements, but the magnitude of bias
varies between regions. The best model performance was observed for south region, with average
MBE of only 3.1 W m−2 (corresponding to 1.6%), RMSE of 8.8 W m−2, and SDD of 8.2 W m−2. In the
Southeast region, the model shows a very similar MBE of 3.6 W m−2 (1.7%) and a slightly higher RMSE
of 12.5 W m−2 (6%). GL data agree relatively well with measurements for Northeast region, showing a
moderate MBE of 5.8 W m−2 (2.5%), RMSE of 16.6 W m−2 (7.2%), and the largest SDD (15.6 W m−2). By
contrast, satellite data clearly overestimate the measured data in the Midwest and North regions, with
the largest MBE values of 13.6 and 25.3 W m−2 and RMSE of 18.3 and 28.9 W m−2, respectively. The
main error sources of the GL model will be discussed in Section 5.

Table 3. Summary statistics of the comparison between GL satellite-derived and INMET ground data,
on a monthly basis, over each Brazilian region.

Region Mean MBE RMSE SDD R2 Valid
Months

W m−2 W m−2 % W m−2 % W m−2

North 201.1 25.3 12.6 28.9 14.3 13.9 0.78 506
Northeast 230.2 5.8 2.5 16.6 7.2 15.6 0.81 1184
Midwest 214.1 13.6 6.3 18.3 8.5 12.3 0.81 731
Southeast 208.6 3.6 1.7 12.5 6.0 12.0 0.90 1079

South 194.3 3.1 1.6 8.8 4.5 8.2 0.97 725

A detailed comparison between different validation studies is a delicate task, especially due
to the diversity of the datasets (satellite and ground measurements) and atmospheric conditions.
However, a quantitative comparison (in terms of statistical metrics) allows a view of the performances
obtained by various models. The results presented here reveal that the GL offers similar or better
performance than the other models. Marie-Joseph et al. [44] validated the Heliosat-2 method using
ground data from four stations in French Guiana and found MBE (RMSE) values between 18 and 23 W
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m−2 (31 and 35 W m−2). Ma and Pinker [45] compared UMD-SRB model data (version DX v3.3.3) with
ground observations from 26 BSRN stations. The authors reported a MBE of -0.7 W m−2 and a SDD of
12.9 W m−2. Comparing the CMSAF SARAH dataset to ground measurements at 15 BSRN stations,
Müller et al. [46] reported a mean MBE of 1.3 W m−2 and SDD of 7.3 W m−2.

The spatial distribution of MBE for monthly mean solar irradiance estimates at each station is
shown in Figure 4. It is noticed that there is a clear east–west gradient of MBE values. Most stations
with MBE values above 10 W m−2 are located in the North, Midwest, and north part of the Northeast.
On the other hand, stations with MBE values less than 10 W m−2 are mainly observed in the South,
Southeast, and east part of the Northeast. Figure 5 allows a better evaluation of the model accuracy on
the monthly scale. This figure compares two statistical measures (MBE and RMSE), station by station,
and includes lines that represent the relationship between the MBE and RMSE measures assuming
the SDD to be null (solid black line) and 10, 15, and 20 (dashed black lines). Results show that a
large number of stations (52.6%) have MBE values between ±10 W m−2. Within this range, typical
RMSE and SDD values were only 9.4 and 7.8 W m−2, respectively. An asymmetric distribution is
observed, with a large fraction of stations showing positive MBE values. However, relatively larger
errors (absolute MBE values above 30 W m−2) are seen in a small number of stations, less than 10%.
Regarding the SDD, there is clearly a predominance for values below 15 W m−2 (95.4%), indicating
that the uncertainties associated with the model seem to produce more systematic than random errors.
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Figure 4. Spatial distribution of MBE for monthly mean irradiance between the GL model and ground
data at INMET stations during 2016.

From Figure 5, some outliers in the datasets (around 3% of the stations) can be seen. Although
outliers are not statistically representative, it is convenient to understand whether the reasons for
these discrepancies are associated with the model or ground-based measurements. Figure 6 shows
the monthly variation of MBE for two stations with anomalous behavior (red lines): Carira (10◦24′ S,
37◦44′W, located in the Northeast) and Presidente Prudente (22◦6′ S, 51◦24′W, located in the Southeast).
Additionally, the figure includes the mean MBE value calculated using ground data from available
stations within a radius of 200 km around the station (blue lines), surrounded by ±1 standard deviation
(shaded region). There are remarkable differences between measured and estimated values throughout
the year. For Carira station, a large underestimation is evidenced (MBE of −63 W m−2), while the
opposite, large overestimation, is found for the Presidente Prudente station (MBE of 56.6 W m−2).
However, the neighboring stations exhibit a good agreement between GL and ground data, with MBE
of −3.5 and 8.8 W m−2, respectively. These results would suggest that:

(1) the systematic errors observed at both stations are mainly caused by measurement problems
(e.g., improper maintenance or calibration);

(2) the quality control procedures used did not exclude all erroneous and/or suspicious data. Thus,
it is convenient to evaluate the use of more rigorous procedures;
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(3) on a monthly basis, GL estimates exhibit satisfactory accuracy, as can be seen in most stations;
(4) the GL database can be useful in identifying the stations with questionable data; critical

information to those responsible for the management of the stations. Similar studies conducted by
other researchers [47,48] have also demonstrated the applicability of satellite-based databases to detect
stations with potential measurement problems.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 22 
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Figure 5. Scatter plot of monthly RMSE versus MBE values. The lines represent the relationship
between RMSE and MBE, computed assuming different SDD values (solid, SDD = 0; dashed, SDD = 10,
15, and 20).
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Figure 6. Temporal evolution of monthly MBE for two selected INMET stations during 2016 (red lines).
The blue line is the monthly mean MBE value calculated considering ground data from surrounding
stations (within 200 km radius), and the shaded region shows ± 1 standard deviation.

4.3. Daily Evaluation

Focusing on evaluation of the GL performances on a daily basis, 107,712 samples of daily mean
values during 2016 were considered. Density scatter plots comparing GL satellite-derived and measured
data for each region of Brazil are shown in Figure 7. Colors represent the number of data pairs within a
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given range of solar irradiance values, while the black and red lines represent 1:1 relationship and linear
fit, respectively. Summary statistics are presented in Table 4. It can be seen that the larger densities are
distributed around the diagonal, especially for the South, Southeast, and Northeast regions (Figure 7),
and the linear regression lines are close to 1:1 relationship (within 5%). For these regions, the GL
model exhibits very good performance, with MBE values range from 2.5 to 4.9 W m−2, RMSE from
21.1 to 26.7 W m−2, and R2 from 0.81 to 0.95. For the other two regions, on the other hand, an evident
overestimation of the ground data is found, with the MBE values ranging from 12.7 to 23.5 W m−2,
RMSE 27−33.4 W m−2, and slightly lower R2 (0.86−0.87).
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In general terms, these results are consistent with previous studies. Ma and Pinker [45] validated
the UMD-SRB model, finding a MBE of 1.6 W m−2 and SDD of 33.2 W m−2. Xia et al. [49] compared the
GSIP product estimates against daily ground measurements from two stations in San Antonio (Texas),
and reported a mean MBE of 2.7 W m−2 and a large RMSE of 74 W m−2. Riihelä et al. [50] validated the
SARAH data using ground observations performed at 17 stations in India. They pointed out that the
SARAH overestimates the ground truth, with a MBE of 21.9 W m−2 and RMSE of 33.6 W m−2. In the
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validation study of CMSAF satellite-based radiation products on Europe conducted by Urraca et al. [51],
a MBE (RMSE) of 0.7 W m−2 (17.6 W m−2) and of 4.5 W m−2 (18.1 W m−2) was found for the SARAH-JRC
and CMSAF operational products, respectively. Finally, Porfirio et al. [52] performed a preliminary
validation study of three satellite operational products over Brazil (GL, GSIP, and CMSAF) using
ground data from 209 stations. They showed that the GL agrees better with the ground measurements,
with a mean MBE of 2.6 Wm−2 and RMSE of 23.3 Wm−2, while the GSIP (MBE = −11.8 Wm−2 and
RMSE = 35.3 W m−2) and CMSAF (MBE = 13.6 W m−2 and RMSE = 25.2 W m−2) products reveal
larger deviations.

Table 4. Summary statistics of the comparison between GL satellite-derived and INMET ground data,
on a daily basis, over each Brazilian region.

Region Mean MBE RMSE SDD R2 Valid
Days

W m−2 W m−2 % W m−2 % W m−2

North 199.7 23.5 11.7 33.4 16.7 23.7 0.86 12,889
Northeast 228.8 4.9 2.1 26.7 11.6 24.9 0.81 31,074
Midwest 213.1 12.7 5.9 27.0 12.7 23.9 0.87 18,429
Southeast 206.9 3.6 1.7 24.4 11.8 24.1 0.90 27,396

South 195.2 2.5 1.2 21.1 10.8 20.9 0.95 17,924

Additional analyses to provide further information on the reliability of the GL daily mean data
are presented. Figure 8 shows histograms for four statistical parameters. MBE and RMSE values
are grouped in 5 W m−2 size bins and for R2 in 0.05 size bins. The MBE distribution indicates that
differences between the model and observations are within ±10 W m−2 in the vast majority of stations
(approximately 70%), only accounting for less than 5% when assuming a typical daily mean irradiance
of 210 W m−2. Figure 8 reveals that GL estimates produce a SDD (RMSE) of less than 25 W m−2 in 99%
(78%) of the stations. The mean values were 21 and 25.9 W m−2 for the SDD and RMSE parameters,
respectively. Still, the R2 values are high and with an average value of 0.90. These results confirm that
the GL satellite product yields good performance over a large part of the Brazilian territory, for both
daily and monthly time scales.
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Figure 8. Histograms for four statistical parameters: (a) R2, (b) MBE, and (c) SDD and RMSE.

5. Discussion

As shown in Sections 4.2 and 4.3, the GL model exhibits good agreement overall with ground truth,
but there is a spatial variation of the errors. In this context, some of the limitations and error sources
in the model are discussed. It was mentioned in Section 2 that the GL makes use of simplifications
for three relevant parameters for solar radiation modelling: water vapor and clear sky reflectance,
with no spatial–temporal variations, as well as not properly modeling the aerosols; which leads to
uncertainties. To better understand the potential impacts of the abovementioned simplifications, the
seasonal cycle of w2, AOD, and Rmin (year 2016) are illustrated (Figure 9) and briefly discussed here.
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The NCEP FNL Operational GLobal Analysis (ds083.2) data, available at 1◦ × 1◦ horizontal
resolution, were used to construct the w2 fields. It can be observed that there is a notable seasonal
variation over Brazil (Figure 9, upper panel); lower values occur in the extreme south during
winter−spring (2−2.5 g cm−2) and semi-arid Northeast (2.5−3 g cm−2), while the largest values are
seen in the Amazon region during summer−autumn (5−6 g cm−2). It is easy to note that the inaccurate
determination of w2 can cause overestimation (underestimation) of G measurements when the adopted
value of w2 is smaller (larger) than the real value. Differences in w2 of ±2 g cm−2 may lead to deviation
of up to ±10 W m−2 in the daily mean irradiance for clear sky days.

With respect to aerosol, Figure 9 (middle panel) highlights areas where the AOD values are
greater than the background aerosol loading (AOD < 0.2 at 0.55 µm). The seasonal AOD fields were
generated from the monthly Aqua MODIS AOD product at 0.55 µm (MYD08_M3), available on the
NASA website http://giovanni.gsfc.nasa.gov/giovanni/, with a 1◦ × 1◦ resolution. Note that there is
a high correspondence between the areas with AOD > 0.2 and the areas where GL product exhibits
the largest errors (see Figure 4). The results suggest that (1) at least part of the overestimation of the
GL model in these areas could be explained by the aerosol influence, and major impacts on solar
irradiance modeling should occur during the biomass burning season (August−October). Recent work
by Porfirio [53] showed that high AOD conditions (=1.0) may result in errors up to 50 W m−2 in the
daily mean irradiance; (2) on the other hand, the simple approach adopted by the GL algorithm for
aerosols does not seem to introduce significant errors over a large part of Brazil.

Last but not least, the proper assessment of Rmin is a difficult task because it is strongly dependent
on local surface characteristics. To generate the Rmin fields, GOES-13 satellite VIS imagery at 15:00 UTC
were employed, assuming Rmin as the minimum reflectance value observed for a given pixel and
time period. Figure 9 (lower panel) shows the Rmin seasonal variations, including the spatial limits
of the main Brazilian biomes (Am, Amazon; Ca, Caatinga; Ce, Cerrado; Pt, Pantanal; AF, Atlantic
forest; Pp, Pampas). As expected, the seasonal variation of Rmin is high as well as between biomes; for
example; Rmin values range from 0.06 to 0.09 in the autumn and increase to 0.07−0.11 in the spring for
the Cerrado biome. It is worth noting that an overestimation of Rmin leads to an underestimation of
cloud cover C (Equation (4)), implying an overestimation of ground solar irradiance by the GL model,
and vice versa. It seems likely that some of the model errors on the Amazon region and surrounding
areas are due to the inaccurate Rmin values. Note that the Rmin values for these areas are typically less
than 0.06, which may lead to deviations of up to 10 W m−2. Ortega et al. [36] validated the GL data
against ground observations in Chile and reported that the model agrees fairly well with the ground
truth, but larger differences can be observed during the winter months. These authors pointed out
that the inaccurate Rmin value over areas with high reflectance (snow covered) may partially explain
those errors.

In summary, the results suggest that more accurate approaches for w2, aerosols, and Rmin are
needed to improve model performance, especially in the Amazon region and neighboring areas.
Ongoing studies are expected to address these issues. Nevertheless, overall the GL product yields
accurate solar irradiance estimates at the regional scale.

6. Conclusions

The GL1.2 physical model runs operationally at the CPTEC/INPE for estimating global solar
irradiance at the surface (with 4 km spatial resolution) over South America and adjacent oceans based
on GOES-East visible channel imagery. Although adopting some simplified assumptions, the model
has a solid physical basis and does not rely on empirical relationships. In this study, we validated
the GL1.2 estimates using a year (2016) of ground-based radiometric measurements from INMET’s
extensive network of automatic weather stations over Brazil (409 stations) as reference. The large
dataset allows us to better understand the spatial model performance.

Validation results show generally good agreement between satellite estimates and ground
observations, but the accuracy levels clearly changed for each region. The best performances are

http://giovanni.gsfc.nasa.gov/giovanni/
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seen for South, Southeast, and Northeast regions, with MBE 2.5−4.9 W m−2 (1.2%−2.1%) and RMSE
21.1−26.7 W m−2 (10.8%−11.8%), for daily data; and with MBE 3.1−5.8 W m−2 (1.6%−2.5%) and RMSE
8.8−16.6 W m−2 (4.5%−7.2%), for monthly data. These MBE values are lower than the typical uncertainty
of 5% expected for radiometric measurements, which demonstrates the quality of the GL data. The
largest errors occur in the Central-West and North regions, where the MBE and RMSE values increase
to 12.7−23.5 W m−2 (5.9%−11.7%) and 27−33.4 W m−2 (12.7%−16.7%) (daily); and to 13.6−25.3 W m−2

(6.3%−12.6%) and 18.3−28.9 W m−2 (8.5%−14.3%) (monthly), respectively. The standard deviations of
the difference are between 20.9−24.9 W m−2 (daily) and 8.2−15.6 W m−2 (monthly), for all regions. The
possible reasons for the shortcomings (discussed in Section 5) are the simplified approach for the clear
sky reflectance (Rmin) and aerosols as well as the uncertainty of the w2 input data. Improvements of
the original GL algorithm for these issues should be addressed in future versions. In addition, the use
of GOES-16 ABI multi-spectral data in improved GL versions will be highly relevant.

An additional analysis was carried out. High quality measurements from SONDA and SolRad-Net
stations located close to INMET stations were employed to investigate whether there is variation in the
model quality due to comparisons with ground records from different monitoring networks. These two
networks have a limited number of stations in Brazil. The intercomparison revealed similar statistical
errors of GL estimates for the different monitoring networks, highlighting the usefulness of the INMET
dataset for the regional satellite product validation. On the other hand, the findings show that GL
data can help to identify stations with suspicious records, which is especially valuable for network
management purposes with a high number of stations as well as for qualifying ground datasets.

In summary, this study demonstrates the accuracy and reliability of the GL satellite-derived solar
irradiance data (daily and monthly means) and shows that they can be useful for regional applications,
from climate to solar energy studies. Lastly, the GL dataset has the advantage of a long time series
(1998–2019) with high spatial resolution and temporal continuity.
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ABI Advanced Baseline Imager
AOD Aerosol optical depth
BSRN Baseline Surface Radiation Network
CMSAF Satellite Application Facility on Climate Monitoring
CPTEC Center for Weather Forecast and Climate Studies
DJF December–February
DSA Satellite and Environmental System Division
G Measured global solar irradiance
GL GLobal radiation model
GOES Geostationary Operational Environmental Satellite
GSIP GOES Surface and Insolation Product
INMET Brazilian National Institute of Meteorology
INPE National Institute for Space Research
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ITCZ Intertropical Convergence Zone
JJA June–August
MAM March–May
MBE Mean bias error
MODIS Moderate Resolution Imaging SpectroRadiometer
NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Prediction
NIR Near-infrared
R2 Coefficient of determination
RMSE Root mean square error
SARAH Solar surfAce RAdiation Heliosat
SBDART Santa Barbara DISORT Atmospheric Radiative Transfer model
SDD Standard deviation of the differences
SolRad-Net Solar Radiation Network
SON September–November
SONDA Environmental Data Organization System
SRB Surface Radiation Budget
UMD University of Maryland
UV Ultraviolet
VIS Visible
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