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Abstract Tropical secondary forests (SF) play an important role in the global carbon cycle as a major
terrestrial carbon sink. Here, we use high‐resolution TerraClass data set for tracking land use activities in
the Brazilian Amazon from 2004–2014 to detect spatial patterns and carbon sequestration dynamics of
secondary forests (SF). By integrating satellite lidar and radar observations, we found the SF area in the
Brazilian Amazon increased from approximately 22 Mha (106 ha) in 2004 to 28 Mha in 2014. However, the
expansion in area was also accompanied by a dynamic land use activity that resulted in about 50% recycling
of SF area annually from frequent clearing and abandonment. Consequently, the average age of SF
remained less than 10 years (age ~8.2 with one standard deviation of 3.2 spatially) over the period of the
study. Estimation of changes of carbon stocks shows that SF accumulates approximately 8.5 Mg ha−1 year−1

aboveground biomass during the first 10 years after clearing and abandonment, 4.5 Mg ha−1 year−1 for the
next 10 years followed by a more gradual increase of 3 Mg ha−1 year−1 from 20 to 30 years with much
slower rate thereafter. The effective carbon uptake of SF in Brazilian Amazon was negligible
(0.06 ± 0.03 PgC year−1) during this period, but the interannual variability was significantly larger
(±0.2 PgC year−1). If the SF areas were left to grow without further clearing for 100 years, it would absorb
about 0.14 PgC year−1 from the atmosphere, partially compensating the emissions from current rate of
deforestation in the Brazilian Amazon.

1. Introduction

Tropical forests contain more than a third of global terrestrial carbon pool (Edward T. A. Mitchard, 2018; S.
S. Saatchi, Harris, et al., 2011). Over the past four decades, these forests have experienced significant changes
from human activities in the form of large‐scale deforestation and forest degradation (e.g., logging and fire
disturbance) to support agriculture, livestock, and timber industries (Gibbs et al., 2007; Hecht, 2014;
Pearson et al., 2017). The estimates of carbon loss from deforestation and land‐use change over the last dec-
ade vary from 0.8 to 2.9 PgC year−1 (Harris et al., 2012; Pan et al., 2011; A. Tyukavina et al., 2015). From all
tropical countries, Brazil stands out as the country with largest stock of forest carbon (~23–30% of all
pan‐tropical countries) (S. S. Saatchi, Harris, et al., 2011) and the largest source of carbon emissions from
forest clearing (Hansen et al., 2013; Harris et al., 2012). Despite a signficant effort to reduce more than
70% of carbon emissions from gross deforestation over the past decade (Zarin et al., 2016), the Brazilian
Amazon remains the top contributor to total carbon emissions (A. Tyukavina et al., 2015) among tropical
countries, mainly due to extensive large‐scale logging activities and increased fire frequency from shifting
cultivation and clearing for grazing land (Aragão et al., 2014, 2018; Alexandra Tyukavina et al., 2017).

To combat these losses, there has been a major effort in restoring tropical forests through several initiatives
such as REDD+ and CBD (Convention on Biological Diversity) among others (Alexander et al., 2011; Sayer
et al., 2004). Restoration of secondary forests (SF) is a slow process that can partially offset the rapid loss of
carbon from forest clearing through fire (slash and burn) or degradation from timber extraction (Bongers
et al., 2015). In most tropical ecosystems, SF regeneration may occur in the absence of any policy incentives
through abandonment of actively managed lands (grazing and crop lands) due to socioeconomic drivers
such as the decline of commodity price, changes of globalized demands for food production, and migration
or urbanization (Hecht & Saatchi, 2007; Olschewski & Benítez, 2005; Rudel et al., 2004). Regardless of the
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cause of regeneration, secondary forests can be highly productive, having an average recovery rate of about
3.05 Mg ha−1 in the Netotropics, approximately 11–20 times the uptake rate of an old growth forest (Bongers
et al., 2015; Poorter et al., 2016). The rate of SF recovery and carbon accumulation, however, depends largely
on the history of the land use before abandonment and a suite of environmental factors such as the soil fer-
tility, climate, and the characteristics of regenerating landscape (Banks‐Leite et al., 2014; Brown &
Lugo, 1990; Johnson et al., 2001, 2001; Poorter et al., 2016; Uhl, 1987). Because of the extent of SF across tro-
pics, the natural regeneration of these forests is widely considered to be an effective low‐cost mechanism for
carbon sequestration (Chazdon et al., 2016), and SF are often reported as a significant contribution to the
global terrestrial carbon sinks (A. R. Houghton & Nassikas, 2018; Pan et al., 2011). Recent research suggests
that Neotropical SF take amedian time of 66 years to recover about 90% of the original forest carbon (Poorter
et al., 2016). Potentially, Neotropical secondary forests may become a large carbon sink, with one estimate of
8.5 PgC in the tropical Latin America over 40 years (Chazdon et al., 2016), where Brazil has the bulk of that
carbon sink potential (70%) (Chazdon et al., 2016).

The sequestration potential of SF is estimated through book‐keeping models (R. A. Houghton et al., 2015)
based on approximate data reported by tropical countries to the Food and Agricutural Organization
(FAO). However, these estimatesmay exaggerate the role of secondary forests for absorbing atmospheric car-
bon for two reasons: (1)Most tropical countries do not have reliable land usemonitoring systems in place and
have no data to report on the area of secondary forests, and (2) the reported data do not include the dynamic
land use activities of frequent reclearing and regeneration process (Pan et al., 2011). Therefore, considerable
uncertainty remains regarding the carbon uptake of SF across global forest ecosystems (Pugh et al., 2019).

In this study, we focus on the carbon sequestration of SF in the Brazilian Amazon because of their large spa-
tial extent and potential contribution to the global carbon balance. Recent studies and observations of the
Brazilian Amazon suggest that while SF has been highlighted for its great capacity for carbon sequestration,
there is little contribition from SF to the basin‐wide carbon sink because of frequent clearing (Davidson
et al., 2012). Similarly, the Brazilian national greenhouse gas emission model predicts that secondary
regrowth has a small impact on the carbon balance because of the short duration of regeneration before
reclearing of the land (Aguiar et al., 2012). Therefore, although the area of SF has increased by a factor of
5 over the period 1978–2002, the mean age of SF predicted from sequestration models remained less than
5 years over the 25‐year period (Neeff et al., 2006). However, with more than a decade long decline of defor-
estation in the Brazilian Amazon in this century (Souza et al., 2013; Alexandra Tyukavina et al., 2017), the
fate of SF could change.

Here, we use the spatial distribution of SF areas produced by the TerraClass program from 2004 to 2014 (de
Almeida et al., 2016), along with ground, lidar, and radar remote sensing data to quantify the spatial and
temporal dynamics of SF in the Brazilian Amazon and its carbon sequestration in the 21st Century. By focus-
ing on the age and carbon accumulation of SF through time series analysis, we show the year‐to‐year
changes of carbon uptake from regeneration and emissions from reclearing process and quantify, for the first
time, the contribution of SF carbon sequestration in the Brazilian Amazon for global carbon balance.

2. Materials and Methods
2.1. Materials
2.1.1. Maps of Deforestation and Secondary Forests
We used the deforestation and SF classification maps produced by the National Institute of Space Research
(INPE). The deforestation database from the PRODES (Projeto de Monitoramento do Desmatamento na
Amazônia Legal por Satélite) project (available at http://bit.ly/1QAp25M) records the time of old‐growth
forest clearing in the Brazilian Amazon from 1997 to 2016 at 30–60 m spatial resolutions and marks patches
of deforestation with at least 6.25 ha in size (Aguilar‐Amuchastegui et al., 2014; Hansen et al., 2013;
Alexandra Tyukavina et al., 2017). PRODES product does not account for repeated clearing activities at
the landscape; that is, for each pixel, the product only records the time of the first deforestation event.
This will, therefore, not allow detection of any regeneration once a forest area has been cleared, avoiding
any double counting problem.

To decouple deforestation of old‐growth forest from deforestation of secondary forests, we used SF classifi-
cation maps produced and continually updated by the TerraClass project over the Brazilian Amazon.

10.1029/2019GB006396Global Biogeochemical Cycles

YANG ET AL. 2 of 14

http://bit.ly/1QAp25M


TerraClass is a complementary project to the PRODES deforestation products that provides detailed infor-
mation about the land use and forest resurgence in areas cleared from deforestation (de Almeida
et al., 2016). The TerraClass products have a 30‐m spatial resolution and cover different time periods
(2004, 2008, 2010, 2012, and 2014), allowing for statistical analysis of changes of land use and the dynamics
of tropical SF areas.
2.1.2. ALOS PALSAR Data
The ALOS (Advance Land Observation Satellite, “DAICHI”) PALSAR (Phased Array L‐band Synthetic
Aperture Radar sensor) Fine‐Beam Dual‐polarization (FBD) image data with 25 m pixel size after terrain
correction and orthorectification were used as the key remote sensing observations to map and monitor for-
est aboveground biomass (AGB; in Mg ha−1) or carbon (AGC) of SF. L‐band Radar (~24 cm wavelength)
observations are sensitive to AGB in most forest types globally, where AGB does not exceed 100–
150 Mg/ha (Bouvet et al., 2018; E. T. A. Mitchard et al., 2009; S. Saatchi, Marlier, et al., 2011; Yu &
Saatchi, 2016). The ALOS PALSAR backscatter products are available globally from a joint project between
JAXA and Japan Resources Obervation System Organization over the global forested areas for the periods of
2007–2010, 2015, and 2016 at 25 m spatial resolution. We used ALOS PALSAR mosaic images acquired over
the Brazilian Amazon, at HH andHVwave polarizationmainly during the dry season when the variations in
soil moisture and other environmental conditions were relatively small (Rosenqvist et al., 2007; Shimada
et al., 2014). We aggregated the backscatter data to 100‐m spatial resolution using spatial averaging, in order
to reduce pixel level speckle noise and improve data quality.
2.1.3. GLAS Lidar Data
The spaceborne Geoscience Laser Altimeter System (GLAS) lidar waveformmeasurements were used in this
study as a complementary source for the quantification of forest aboveground biomass. The GLAS sensor
aboard the Ice, Cloud and land Elevation Satellite (ICESat) was the first spaceborne waveform sampling lidar
instrument to provide measurements of forest height and vertical structure. GLAS emitted short duration
laser pulses and recorded the echoes reflected from the Earth's surface (Abshire et al., 2005). Individual non-
contiguous samples have an effective resolution of approximately 0.25 ha (varying among lasers) with global
sampling (Abshire et al., 2005; Lefsky et al., 2005; Sun et al., 2008). For vegetated surfaces, the return echoes
or waveforms from GLAS lidar are the function of canopy vertical distribution of scattering elements (leaves
and branches) and ground elevation within the area illuminated by the laser (the footprint), thus reflecting
the canopy structure information (Lefsky et al., 2005; S. S. Saatchi, Harris, et al., 2011; Sun et al., 2008).

We used the GLAS/ICESat L2 Global Land Surface Altimetry Data (GLAH14) product and filtered the origi-
nal data using a series of stringent quality controls and processing steps (Abshire et al., 2005; Mahoney
et al., 2014; Sun et al., 2008; Zwally et al., 2014). The first important step is the cloud filter. We selected the
GLAS laser pulses only when the quality flag for atmosphere (atm_char_flag) equals to 0 (clear sky).
Another issue of GLAS retrieval is signal saturation. Lidar waveforms captured by the GLAS instrument
may have pulse distortions when the received energy exceeds the linear dynamic range of GLAS detector.
This happens often in areas with flat and bright surfaces. Saturated return signals in forests may not accu-
rately preserve the shape of the scattering elements within canopy. In this study, we removed the saturated
GLAS shots by investigating the Saturation Correction Flag. To avoid the false detection of ground and the
mixture of signals from both canopy and ground, we also filtered all data with calculated slopes larger than
10°. For the slope calculation, we applied the independent slopemethod (ISM) by estimating the terrain slope
from the GLASwaveform (Mahoney et al., 2014) at each footprint location. The concept of ISM slope calcula-
tion relies solely on the GLAS data itself and calculates the ground slope based on the shape of last waveform
peak for each lidar shot. The same method has been applied successfully to our other studies related to the
Amazon basin (Yang et al., 2018). We estimated GLAS‐derived Lorey's Height (LH) as the basal area
weighted forest height, for broadleaf forests based on a calibration from ground plots distributed in the
Brazilian Amazon (Lefsky, 2010; Lefsky et al., 2005, 2007) for the GLAS observational period from 2003 to
2008.

2.2. Methods
2.2.1. Spatial and Temporal Analysis
We resampled all the raster data sets (TerraClass—30 m; PRODES—30 m/60 m; ALOS—25 m) to grid cells
of 100meters. For our analysis of TerraClass data, we combined three classes, secondary forest, dirty pasture,
and regeneration into one class—SF, as they all represent a form of secondary regeneration phase but with
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different trajectories of biomass accumulation and dynamics. We developed maps at 100‐m (1‐ha) with two
types of SF pixels: pure SF with 100% of coverage within the pixel and mixed SF with partial coverage of SF
from the original 30‐m pixel data. For each SF classification map at 100‐m spatial resolution, we also pro-
duced the accompanied SF fraction map, showing the fraction of SF found in each 100‐m pixel. For
PRODES product, we used the majority resampling for the aggregation from its original resolution (30–
60 m) to 100‐m, as the values in PRODES represent the date of deforestation.

The classified SF maps were further analyzed for SF spatial distribution. SF patches in each year with avail-
able TerraClass data were calculated using the texture feature of spatial connectivity. We defined an SF patch
as the combination of pixels, which are connected to each other. The connectivity only checks the immediate
neighbors of the central pixel at the horizontal and vertical directions. This analysis provides information on
the distribution of the SF patch size and the spatial extent of activities associated with forest clearing and
land abandonment.
2.2.2. Forest Biomass Models
Assuming that the GLAS‐estimated Lorey's Height (LH; in meter) at footprint level (~70 m in diameter) can
well represent the pixel‐level forest canopy at the 100‐m spatial resolution, we adopted a well‐studied allo-
metric relationship between aboveground biomass (AGB; in Mg ha−1) and LH for the tropical forests in
Amazonia that works well from 1‐ha to 1 km scale (S. S. Saatchi, Harris, et al., 2011):

AGB¼0:6011LH1:894; (1)

where the coefficients of the model were derived using ground plots distributed in different regions of
Amazonia, and the unit of AGB is the weight of aboveground biomass in Mg (106 grams) per hectare.
The above model assumes that the average wood density (WD) of trees within the plots was approximately
0.6 g cm−3. Although this average value may be suitable for SFs that are distributed in the southern and
eastern Amazonia (Ketterings et al., 2001), there will be some uncertainty due to WD variations across the
landscape when using equation 1 (S. Saatchi et al., 2015).

Given the GLAS‐derived AGB estimates in 2007 and 2008 (overlapped period with ALOS), we extracted the
corresponding ALOS HV backscatter data (σ0) at the same locations for the SF region of TerraClass 2008,
coincident with GLAS footprints. We built a parametric model between GLAS‐derived AGB (in Mg ha−1)
and σ0 fromALOSPALSAR values (in dB) in the form of log‐quadratic function (E. T. A.Mitchard et al., 2009;
S. S. Saatchi, Harris, et al., 2011):

σ0¼exp aþ b*ln AGBð Þ þ c*ln AGBð Þ2� �
; (2)

where a, b, and c are the coefficients for the regression function. The fitting process of this regression
was only performed over pure SF pixels that have GLAS observations to improve the model accuracy.
Due to the saturation effect of Radar data (ALOS) in dense tropical forests, we set an upper threshold
(150 Mg/ha) for the AGB model in equation 2; that is, for any backscatter values producing an AGB
value larger than 150 Mg/ha according to equation 2, we set AGB to be 150 Mg/ha (Yu &
Saatchi, 2016). When biomass reaches 100 Mg/ha (Brown & Lugo, 1990; Wandelli & Fearnside, 2015),
radar signal saturation starts to introduce uncertainty in the estimation of biomass in older secondary
forests (>10 years). The setting of 150 Mg/ha as a hard threshold of AGB prediction also prevents
extreme values due to the exponential form in the model, when the noisy measurement is beyond the
model's pseudo‐linear range.

The total living carbon density (TCD; in Pg C) of SF was calculated by including the belowground biomass
using allometric equation relating to AGB (S. S. Saatchi, Harris, et al., 2011):

TCD¼0:49Fsf × AGBþ 0:489AGB0:89
� �

; (3)

where Fsf is the area fraction (ranging from 0 to 1) of SF in each 1‐ha pixel. Using the TerraClass maps in
2008 and 2010, we created both AGB and TCD maps. Note that we assumed the woody biomass has 49%
carbon on a weight/weight basis for all secondary forests (Hartmann et al., 2013). The second term of
equation 3 (BGB = 0.489AGB0.89) represents below‐ground biomass (BGB; in Mg ha−1). Methods for
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collecting belowground biomass data are laborious, time‐consuming,
and technically challenging to perform correctly. Instead, belowground
biomass was usually estimated from aboveground biomass using
regression equations developed from field data collected across multiple
biomes. A synthesis of data from available literature, along with
elimination of data collected using unclear or incorrect methods,
provided a universal equation for estimating forest belowground bio-
mass from ~200 field plots (Mokany et al., 2006; S. S. Saatchi, Harris,
et al., 2011).
2.2.3. Estimating Age of SF
The estimation of the SF age in our study was initialized by using
PRODES data. PRODES product recorded the year of the first deforesta-
tion event for each pixel starting from 1997, but it did not record the start-
ing date of forest regeneration or any subsequent deforestation on the land
once cleared. Therefore, using PRODES data alone could frequently lead

to overestimation of the SF age and thus an erroneous relationship between Age and AGB.

With the availability of ALOS‐PALSAR data only from 2007 to 2010, and the TerraClass data starting
from 2004, the confirmation of forest age is limited to just a few years. Using PRODES‐derived age
map in 2010 as the base map, we applied additional corrections by checking values in TerraClass and
ALOS HV backscatter and built a decision‐tree‐based (DTB) age quality assessment (QA) to determine
the approximate forest age (Table 1). We started the DTB age QA from an initial guess of forest age using
the PRODES‐derived data. Secondly, we used TerraClass maps whenever available to check if the age is
within reasonable classes (e.g., if a pixel defined by PRODES has an age of 1 or 2 years in 2010, the
TerraClass map of 2010 should mark it as SF, whereas the TerraClass 2008 should show as non‐SF).
Thirdly, we used the PALSAR HV backscatter as an additional check of disturbance. We defined the
observable disturbance as, during the period of ALOS observations, HV backscatter of current year being
lower than that of previous year by 20% or more. Once disturbance was found, and the forest age deter-
mined from previous steps should be incorrect.
2.2.4. Forest Growth Model
To study the relationship between forest age and AGB/Carbon, we selected the pure SF pixels based on the
TerraClass 2010 map. Applying the DTB age QA defined above, we obtained eight categories of age classes
from 1 to 8 years. The final forest age versus AGB/Carbon relationship was estimated using the median AGB
(in Mg ha−1) values for ages (in years) from 1 to 8 years, in the form of the nonlinear Chapman‐Richard
growth function (Orihuela‐Belmonte et al., 2013):

Age¼A × ln 1þ αAGBβ� �
; (4)

where A, α, and β are the coefficients to fit for the nonlinear relationship. We also validated our growth
function using field‐measured estimates (Marín‐Spiotta et al., 2007; Poorter et al., 2016) for forest ages
of 10, 20, and 30. Combining equations 2, 3, and 4, we can generate the representative forest age map
directly from ALOS HV imagery acquired over the Brazilian Amazon. The ALOS PALSAR prediction of
forest age from AGB estimation ignores the variations in the growth pathways (Poorter et al., 2016) by
assuming an average growth trajectory. We acknowledge that the choice of the average growth trajectory
may introduce large uncertainty for determining forest age at the pixel level. However, the estimates of SF
age across the entire region will provide us with a mean history of forest biomass accumulations without
the the detailed knowledge of land use history, soil productivity, and climate conditions (Brown &
Lugo, 1990; Poorter et al., 2016). For any studies interested in accurate mapping of forest age at the land-
scape scales, models with explicit representation of other confounding factors must be considered
(Chazdon, 2003; Neeff & dos Santos, 2005; Wandelli & Fearnside, 2015). The main methodology used in
this study for AGB and Age estimations was summarized in Figure 1.
2.2.5. Uncertainty in Biomass Estimation
The errors associated with the pixel‐level GLAS‐derived AGB model (σpix) have the following components
(Chen et al., 2015):

Table 1
Decision‐Tree Based (DTB) Age Quality Assessment (QA) to Estimate Forest
Age in 2010. Here, sf04, sf08, and sf10 are the SF Maps in 2004, 2008, and
2010; hv07, hv08, and hv09 are the ALOS HV Values in 2007, 2008, and
2009. “Y” Denotes the Pixel Classified as SF in TerraClass, and “N”
Denotes the Pixel Classified as non‐SF

sf04 sf08 sf10 hv07 hv08 hv09
PRODES
data (age)

Final
age

‐ N Y ‐ ‐ <hv08*0.8 ≥1 1
‐ N Y ‐ ‐ >hv08*0.8 >1 2
N Y Y ‐ ‐ >hv08*0.8 =3 3
N Y Y ‐ >hv07*0.8 >hv08*0.8 =4 4
N Y Y ‐ >hv07*0.8 >hv08*0.8 =5 5
N Y Y ‐ >hv07*0.8 >hv08*0.8 =6 6
Y Y Y ‐ >hv07*0.8 >hv08*0.8 =7 7
Y Y Y >hv07*0.8 >hv08*0.8 =8 8
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σ2pix¼σ2ε;pix þ σ2f ;pix þ σ2z;pix ; (5)

where σ2ε;pix is the residual variance from the regression model and often modeled as the relative contribu-

tion to predicted values so as to account for heteroscedasticity; σ2f ;pix is the error variance of predictions

associated with model parameters; and σ2z;pix is the error associated with measured lidar metrics.

According to the original paper using this model (S. S. Saatchi, Harris, et al., 2011), the residual error of
tropical forest could reach ~30% of AGB prediction. Because of the lack of plot‐level samples used in
the original paper and the associated error assessment of independent variable (Lefsky, 2010), we esti-
mated both variance terms σ2f ;pix and σ2z;pix as 16% of AGB prediction (Chen et al., 2015), and thus, the total

pixel‐level relative AGB prediction error could be ~38%. Our ALOS‐PALSAR AGB model (equation 2) was
developed based on the GLAS observations, suggesting that the new AGB model inherits the 38% relative
AGB error in the new σ2ε;pix term and enlarges the pixel‐level AGB prediction errors. Applying equation 5 to

the inversion form of equation 2, we can approximate the propagated error of our AGB estimation.

Uncertainty calculation of regional mean AGB needs to consider the covariance of estimated errors. When
different sources of errors are assumed independent, the error variance of regional mean can be expressed as

σ2¼ 1
N2 ∑

N

i¼1
∑
N

j¼1
cov σε;i; σε;j
� � !

þ 1
N2 ∑

N

i¼1
∑
N

j¼1
cov σf ;i; σf ;j
� � !

þ 1
N2 ∑

N

i¼1
∑
N

j¼1
cov σz;i; σz;j
� � !

; (6)

where the three independent covariance terms are sources of errors related to prediction residuals, model
parameters, and input variables (Chen et al., 2016). If the number of pixels is sufficiently large (e.g., our
study of SF contains more than 10 million pixels), the regional uncertainty is dominated by the second

term, σ2f (Chen et al., 2016), which can be approximated using the first‐order Taylor expansion (Ståhl

et al., 2010),

σ2f¼ ∑
m

p¼1
∑
m

q¼1
gpcov φp;φq

� �
gq

� �
; (7)

where p and q are indices of estimated model parameter covariance matrix, cov(φp,φq), along two

dimensions; gp¼
1
N

∑
N

i¼1

∂f
∂φp

is the mean of first derivative of prediction with respect to the allometric

model (equation 2) parameter φp; similarly, gq is the mean of the first derivative of prediction with

respect to parameter φq; and m is the total number of parameters in the allometric model (m = 3 in
the case of equation 2). Since the error associated with input variable is often assumed independent

Figure 1. Flow chart summarizing the methodology proposed in this study estimating secondary‐forest biomass and age. In the chart, the blue rectangular boxes
denote input data, the black rounded boxes are proposed models and data processing, and the green rectangular boxes refer to output products.
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of samples, and the residual variance has spatial autocorrelation only within a limited distance, σ2f can

explain more than 99% of the error variance for regional estimates over large areas (Chen et al., 2016;
Xu et al., 2017). Therefore, even assuming a highly uncertain pixel‐level error of ~100% relative to AGB
predictions, the regional uncertainty of AGB can still be approximated using equation 7 (Cooke
et al., 2016). To avoid numerical errors due to the exponential forms used in the model, we
generated multiple sets of model parameters using Monte Carlo simulations based on covariance

Figure 2. The statistics of secondary forest (SF) in 2004, 2008, 2010, 2012, and 2014. (a) Overview of secondary forest classification map in 2010 (aggregated at
1 km spatial resolution) with zoom‐in boxes showing the fraction of SF in different regions; (b) Total number of 1‐ha pixels for mixed SF and pure SF for each
TerraClass‐derived SF map; (c) Total subpixel SF areas present in all pure and in all mixed cells.

Figure 3. Frequency distribution of SF patches. (a) Number of patches changing with patch size (in terms of number of
1‐ha pixels); (b) Associated total area (in hectare) of patches changing with patch size. Different curves correspond to
available TerraClass maps in 2004, 2008, 2010, 2012, and 2014.
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matrix of parameters and calculated AGB uncertainty from these
repeated realizations. We further calculated the regional uncertainty
of carbon by adding an additional source of uncertainty from BGB for-
mulation (equation 3) and applied a nominal 20% relative error due to
the lack of plot‐level data.

The uncertainty of forest growth model (equation 4) can theoretically
apply the same uncertainty calculation (equation 5) and propagate errors
from AGB modeling. However, the lack of statistical power due to the
small sample size in this study could create a large number of type‐II
errors (Draper & Smith, 1998) and, as a result, making the error assess-
ment of forest age meaningless. Therefore, forest age numbers are
reported as nominal values based on limited samples, representing the
mean relationship between AGB and Age.

3. Results and Discussion
3.1. Spatial Distribution of SF Area

We estimated the areal coverage of SF over the entire Brazilian Amazon using the TerraClass data. At the
100‐m spatial resolution, we found a large fraction of pure SF pixels (12.46 Mha in 2014) in the Eastern
Amazon (states of Pará and Maranhão) and a relatively high portion of mixed SF pixels (3.74 Mha in
2014) in the South within states of Rondônia and Mato Grosso. These are regions with frequent land clear-
ing, slash and burn, and small scale land use activities, which together capture a large portion of SF areas
(Figure 2a). The mixed SF class has a comparable number of pixels (Figure 2b) to the pure PF pixels but con-
tributes 20%–30% of the total SF area across the Brazilian Amazon (Figure 2c). Therefore, the contribution
from mixed SF pixels cannot simply be ignored when reporting the national statistics, and the layer Fsf,
representing the fraction of SF in each pixel, was kept in the calculation of total carbon density numbers
(equation 3).

3.2. Temporal Dynamics of SF Area

The total area of SF in Brazilian Amazon increased by more than 25% from 22 to 28 Mha during the decade
from 2004 to 2014 or about 75% from 2002 (16.1 Mha) using earlier Pre‐TerraClass estimates (Neeff
et al., 2006) (Figure 2c). The increase in the SF area coincides with the reduction in deforestation by more
than 50% during this period (Boucher & Chi, 2018).

In addition to the area of SF across the Brazilian Amazon, we also
explored the SF patch size dynamics using the five (2004, 2008, 2010,
2012, and 2014) TerraClass distribution maps. By defining the patch size
as the area of a continguous SF through connected pixels, we explored
the frequency distribution of SF patches changing with patch size.
Results show that small patches less than 10 ha are the most abundent.
The number of patches for each patch size varies year‐to‐year, particularly
for small patches (<10 ha) (Figure 3a). A much higher number of small
patches were found in 2012 compared to other years, possibly due to the
use of high‐resolution ancillary data to compensate the loss of Landsat 5
data. In 2014, we found quite a few small SF patches connected to form
relatively large SF patches, significantly changing the distribution of patch
sizes from 2012 to 2014. Since small SF patches are more often seen in the
Brazilian Amazon (Figure 3a), we also compared the SF coverage (in ha)
changing with patch size for different years (Figure 3b). The SF coverage
shows a more dynamic distribution of SF areas of different patch sizes,
indicating the contributions of small and large patches to the total area
of SF are comparable.

The dynamics of SF coverage show that almost half of the existing SF
regions changed to other land cover types, and a similar size of forest

Table 2
Dynamics of SF Coverage From 2004 to 2014. Gray Cells Show the Total
Area of SF in Each Year, Orange Cells Represent the Loss in Coverage
From Year A (in Light Green) to Year B (in Light Orange), and Green
Cells Denote the New SF Region Gained in Year A (in Light Green),
Which Did Not Exist in Year B (in Light Orange)

Area (Mha)

Loss (Mha)

2004 2008 2010 2012 2014

Gain (Mha) 2004 21.89 11.32 10.49 10.45 9.57

2008 9.23 19.80 4.60 8.36 7.75

2010 11.34 7.54 22.74 9.44 8.60

2012 15.82 15.82 13.96 27.25 11.67

2014 14.81 15.08 12.99 11.55 27.13

Figure 4. Plot of GLAS‐Lidar derived AGB versus ALOS‐PALSAR HV
backscatter. The solid black line is the mean HV backscatter changing
with different AGB ranges (binned for each 10 mg/ha); the shaded area
shows one standard deviation of HV backscatter for samples within each
AGB bin; and the red line is the fitted model following the form in
equation 2. The R2 value shows the goodness of fit between the fitted line
and training samples.
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clearing was transformed to SF on a year‐to‐year basis (Table 2). Although the total area of SF in Brazilian
Amazon remains relatively stable through time (varying from 22 to 28 Mha over 10 years), the year‐to‐year
changes suggested frequent clearing of SF areas as part of the land use activities.

3.3. Secondary Forest Biomass

Using GLAS data as the proxy for AGB, we investigated the relationship between AGB and ALOS HV for
GLAS samples in 2007 and 2008 that have simultaneous ALOS observations (Figure 4) and translated the
backscatter values to AGB by inverting equation 2,

AGB¼exp 6:52 − 2:83
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ0 − 11:83

p� �
; (8)

where σ0is the ALOS PALSAR backscatter data at HV polarization normalized by incidence angle and
converted to dB from power (σ0 = 10 × log10[Power]). This parametric model provided us mean
AGB estimates over SF regions of Brazilian Amazon from 2007 to 2010. Results show that the mean SF
AGB had small but meaningful year‐to‐year variations from the maximum value of
48.7 ± 0.79 Mg ha−1 in 2008 to a minimum value of 43.4 ± 0.44 Mg ha−1 in 2010 (Figure 5a).
Considering the frequent recycling of SF areas with clearing, our results suggest the net biomass variation
in the SF of Brazilian Amazon was small or negligible. Nevertheless, the interannual variability of bio-
mass density can be significant for a few pixels in SF.

Taking both the mixed and pure SF pixels into account based on the SF fractions, we estimated the total
carbon in SF for the observational period of ALOS (2007 to 2010) using equation 3. The total carbon stock
in SF contributed a small fraction (1.4%) to the total carbon pool (~54 PgC) in the entire Brazilian

Figure 5. Annual variation of AGB and carbon stock from 2007 to 2010. (a) AGB variations, and (b) total carbon variations. (c) The carbon loss and gain
between 2008 and 2010, calculated using SF area loss and gain from Table 2. We used the 2008 SF map to calculate the carbon stock of 2007 and 2008 and the
2010 SF map to calculate the carbon stock of 2009 and 2010. The white boxes thus represent the carbon stock calculation based on the next year's SF maps
(e.g., carbon stock of 2007 was calculated using SF of 2008), and the gray boxes represent the carbon stock calcultation using the current year's SF map. The error
bar in the figure stands for 95% confidence interval (~2 standard errors) of each mean estimate of AGB or total carbon.

Figure 6. Analysis of mixed SF contribution. (a) Histograms of mixed SF pixels in 2008 and 2010 (pure SF pixels are
excluded); (b) annual variations of carbon stock from 2007 to 2010 separating pure and mixed SF pixels. The
calculations of total carbon follow the same method used in Figure 5b.
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Amazon (S. S. Saatchi, Harris, et al., 2011). Checking the maximum variation of this carbon pool, we
found a significant change from 0.67 ± 0.02 PgC in 2007 to 0.80 ± 0.02 PgC sin 2009 (Figure 5b), translat-
ing to an annual carbon sink of 0.06 ± 0.03 PgC year−1 in which the increase was mainly due to the
change of SF spatial area, as the mean AGB of SF at pixel level had almost no change (Figure 5a).
However, the SF spatial areas calculated from TerraClass have their own uncertainties but not evaluated
comprehensively. The estimated total carbon of SF in 2010 was in fact lower than the estimation in 2009,
probably impacted by the 2010 drought in Amazonia (Lewis et al., 2011; Xu et al., 2011). The seemingly
small interannual variability of SF carbon was balanced by the large fractions of gain and loss of SF areas
each year. If gain and loss effects were plotted separately, we found a much larger carbon dynamics of
around ±0.2 PgC year−1 (Figure 5c) in the SF of Brazilian Amazon.

The estimation of AGB and carbon stocks of SF in mixed pixels can be biased due to the use of
equation 3 and the mixture of vegetation types occupying these 1‐ha pixels. However, the magnitude
of this bias, if present, is difficult to quantify. To study the relative importance of the bias and the

impact of the mixed pixels on the total carbon stock change of SF,
we investigated the distribution of SF fractions during the period of
carbon estimations (by comparing the SF maps in 2008 and 2010).
Results show that SF fractions had little change from 2008 and 2010
(Figure 6a), indicating any potential biases caused by mixed SF should
be small in calculating the carbon fluxes. We also found that the con-
tribution of mixed SF pixels to total carbon never exceeded 30%
(Figure 6b), and the dynamics of total carbon from all SF pixels fol-
lowed the same pattern as of pure SF pixels that dominated (more than
70%) the SF areas.

3.4. Age‐AGB Growth Model of SF

Using equation 4, we converted AGB estimates to forest age. Applying the
proposed DTB age QA (Table 1), we show the average distribution of AGB
changing with age (Figure 7) across the Brazilian Amazon. Using the
median AGB values for ages from 1 to 8, we built the AGB‐Age model
(in the form of equation 4) for SF forests,

Age¼−37:55 ln 1 −
AGB
250

� �1:39
 !

; (9)

Due to the limited availability of multitemporal SF maps and a short per-
iod of ALOS observations, we only tested our model using numbers found
in literature for forests older than 8 years of age. Using data based on plot
measurements, we found the biomass of SF for ages 10, 20, and 30 years
(Marín‐Spiotta et al., 2007; Poorter et al., 2016) was mostly within one
standard error of our AGB‐Age model (Figure 8). Interestingly, for mean

Figure 7. Bar plots showing the relationship between forest age and carbon density (from age 1 to age 8). (a) PRODES SF
age map of 2010 without DTB age QA; and (b) SF age map of 2010 with the DTB age QA (see section 2.2.3). The error bar
in the figure stands for 95% confidence interval (~2 standard errors) of each mean estimate of AGB.

Figure 8. Forest age model showing the relationship between aboveground
biomass and age. We used the nonlinear Chapman‐Richard growth
function of age (Orihuela‐Belmonte et al., 2013) (black line). The
coefficients are a = −0.027 (−0.046 ~ −0.007), b = 0.721 (0.473 ~ 0.956).
Numbers in parenthesis show the ranges of 95% confidence intervals. The
red triangles are the independent field‐measured estimates (Marín‐Spiotta
et al., 2007; Poorter et al., 2016) for groups of trees at age 10, 20, and 30.
Dashed lines show the bounds of one standard error (thick) and 95%
confidence interval (thin). We also plotted another popular Age‐AGB
model from (Batterman et al., 2013) that fits our data (blue line).
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SF biomass at the plot level, Neeff and dos Santos (2005) reported lower values than our model for young
forests (age < 10 years). This may have resulted from scaling issues because we estimated biomass at 1‐ha
grid cells with the possible inclusion of other land‐cover types other than secondary forests. Furthermore,
the regeneration immediately after the detection of disturbance was included in our estimation from
ALOS data but may be absent in other studies. As SF grow older, the plot‐level biomass estimation
became comparable to other existing estimates.

Regardless of differences in the scale of SF area and biomass estimation, we found a potentially rapid accu-
mulation of forest biomass in SF comparable to other studies (Cassol et al., 2019; Poorter et al., 2016). Our
results show that on average, the forests sequestered about 8.5 Mg ha−1 year−1 during the first 10 years after
clearing and abandonment, slowing down to about 4.5 Mg ha−1 year−1 for the next 10 years, followed by a
much gradual growth of about 3 Mg ha−1 year−1 from the age of 20 to 30 years. These estimates are from
average models developed for this study without considering the regional differences and the impacts of soil,
climate, and the history of land use.

3.5. Mapping SF Age and Potential Carbon Sink

We estimated the forest age of SF using the AGB‐Age model combined with PRODES and TerraClass and
with a disturbance correction based on ALOS backscatter (Figure 9). The map shows large areas of young
SF (age ≤ 10 years) with the average age of 8.2 years with a standard deviation of 3.2 years, spatially distrib-
uted across the entire Brazilian Amazon. Our study predicts a mean SF age within the range of the previous
estimations from literature (Carreiras et al., 2017; Cassol et al., 2019; Neeff et al., 2006). However, our study is
based on spatial data covering a larger area of secondary forests not sampled in field surveys, and the average
age estimate is not old enough to suggest less deforestation or reclearing in SF areas. From the time series
analysis and the age maps, we predict that the recycling time of SF in the Brazilian Amazon has been
approximately 5 to 10 years. If the 2010 extent of SF (28 Mha) was left to regenerate following the carbon
uptake trajectory predicted in this study (Figure 8), the potential SF carbon sink for the region would be
about 0.14 PgC year−1 over the first 10 years, comparable to the average annual emission quantities from fire
or deforestation over the entire Amazon basin (Yang et al., 2018) and significantly larger than the maximum
changes of total carbon (Figure 5b) observed in our study.

Figure 9. SF age map in 2010 estimated using ALOS backscatter data and AGB‐Age model (see SECTION 2.2.4).
Zoomed‐in images show regions with both old SF and young SF. Note that the AGB‐Age model was built from young
SF (age < 10 years), and SF ages older than 10 years were inferred from the AGB‐Age relationship (Figure 8).
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4. Conclusion

Through the analysis of a suite of satellite data for SF in Brazilian Amazon, we found that young secondary
forest is a potentially significant carbon sink because of fast rates of carbon accumulation and rapid expan-
sion of the SF area during the last decade. However, we also found that frequent disturbances of the SF inter-
rupted the regrowth process such that the average SF age never exceeded 10 years. In comparison to intact
old growth forests, the SF in the Brazilian Amazon contain a small fraction of the total carbon storage.
Moreover, the gain in SF area in recent years translated into only a small sink for carbon annually because
the rapid carbon uptake of young SF was balanced by emissions from extensive clearing.
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