

MANOBRAS DE ÓRBITA E ATITUDE DE SATÉLITES ARTIFICIAIS

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Jesus Bravo de Sousa da Fonseca (UNESP, Bolsista PIBIC/CNPq) e-mail: jesusbravo85@yahoo.com.br

Dr. Antonio F. Bertachini de Almeida Prado (DEM/INPE, Orientador) e-mail: prado@dem.inpe.br

Prof^a. Dra. Maria Cecília F. P. S. Zanardi (DMA/UNESP, Co-orientadora) e-mail: cecilia@feg.unesp.br

AGRADECIMENTOS

Ao CONSELHO NACIONAL DE PESQUISA E DESENVOLVIMENTO – CNPq pelo apoio financeiro recebido através da bolsa de iniciação científica junto ao programa PIBIC do INPE, ao orientador Dr. Antonio F. Bertachini de Almeida Prado e a co-orientadora Prof^a. Dra. Maria Cecília F. P. S. Zanardi pelo conhecimento passado.

RESUMO

Muitas pessoas acreditam que depois da colocação de um satélite em órbita ele se mantenha nessa por tempo indeterminado. Isso seria verdade se vivêssemos em um mundo ideal, mas no mundo em que vivemos isso não ocorre, devido a perturbações ambientais, tanto o movimento translacional quanto o rotacional do satélite sofrem alterações ao longo do tempo. Essas alterações podem acarretar danos irreversíveis e consequentemente o fim das operações do equipamento.

A resolução desse problema é uma das motivações deste trabalho, que está relacionado com manobras de transferência de órbitas, as quais são utilizadas para manutenção do movimento translacional do satélite e de manobras de atitude, que são feitas para correção do movimento rotacional de satélites artificiais.

Simulações numéricas utilizando métodos clássicos, como transferência de Hohmann, bi-elíptica foram realizadas. Essas simulações são apresentados, destacando as vantagens de cada uma delas, procurando sempre a manobra com menor gasto de combustível.

Resultados de manobra de atitude são também analisados, utilizando as equações dinâmicas e cinemáticas, incluindo torques propulsivos de pequena magnitude para o controle de atitude.

ORBIT AND ATTITUDE MANEUVERS OF ARTIFICIAL SATELLITES

ABSTRACT

Many people believe that after placing a satellite in orbit that it will keep the nominal orbit and attitude. That would be true if we lived in an ideal world. However due to environmental perturbations, the translational and rotation motions of the satellite have changes over time. These changes could cause irreversible damage so that the satellite is no able to execute its mission.

The resolution of this problem is one of the motivations of this work, which is related to the transfer orbit maneuvers, which are used for maintenance of the translational motion of the satellite and attitude maneuvers, which are made to correct the rotational motion of artificial satellites.

Numerical simulations using classical methods, such as Hohmann transfer, bielliptical were performed. These simulations are presented, highlighting the advantages of each, always trying to maneuver with less fuel consumption.

Displaying maneuver attitude are also analyzed using the kinematic and dynamic equations, including propulsive torques of small magnitude for the attitude control.

SUMÁRIO

Lista de Figuras	6
Lista de Tabelas	7
Lista de Símbolos	8
Lista de Siglas e Abreviaturas	9
1 Introdução.	10
2 Desenvolvimento	11
2.1 Transferência de órbitas.	11
2.1.1 Transferência de Hohmann.	11
2.1.1 Transferência bi-elíptica tri-impulsiva entre órbitas circulares.	12
2.1.3 Transferência "Tipo Hohmann PA".	14
2.1.4 Transferência "Tipo Hohmann AP".	15
2.1.5 Transferência bi-elíptica tri-impulsiva entre órbitas elípticas.	16
2.1.6 Órbitas não co-axiais de mesma dimensão.	17
2.1.7 Órbitas não cooplanares.	18
2.2 Manobra de atitude.	19
3 Resultados	21
3.1 Transferência de órbitas.	21
3.1.1 Transferência de Hohmann.	21
3.1.1 Transferência bi-elíptica tri-impulsiva entre órbitas circulares.	23
3.1.3 Transferência "Tipo Hohmann PA".	29
3.1.4 Transferência "Tipo Hohmann AP".	29
3.1.5 Transferência bi-elíptica tri-impulsiva entre órbitas elípticas.	29
3.1.6 Órbitas não co-axiais e não cooplanares.	34
3.1.7 Discussão dos resultados das transferências de órbitas	35
3.2 Manobra de atitude	40
3.2.2 Discussão dos resultados das manobras de atitude	49
4 Comentários finais	50
5 Referências bibliográfica	51

LISTA DE FIGURAS

Figura 1 - Transferência de Hohmann.	12
Figura 2 - Transferência bi-elíptica tri-impulsiva entre órbitas circulares.	13
Figura 3 - Transferência "Tipo Hohmann PA".	15
Figura 4 - Transferência "Tipo Hohmann AP".	16
Figura 5 - Transferência bi-elíptica tri-impulsiva entre órbitas elípticas.	17
Figura 6 - Órbitas não co-axiais de mesma dimensão.	18
Figura 7 - Órbitas não cooplanares.	18
Figura 8 - Ângulos de Euler (φ, θ, ψ) da sequência 3-1-3.	20
Figura 9 - Comparação do gasto de combustível das simulações das Tabelas 1, 2, 3 e 4.	35
Figura 10 - Comparação do gasto de tempo das simulações das Tabelas 1, 2, 3 e 4.	37
Figura 11 - Comparação do gasto de combustível das simulações das Tabelas 7 e 8.	37
Figura 12 - Comparação do gasto de tempo das simulações das Tabelas 7 e 8.	38
Figura 13 - Comparação gasto de combustível das simulações das Tabelas 9 e 10.	38
Figura 14 - Comparação gasto de tempo das simulações das Tabelas 9 e 10.	39
Figura 15 - Comportamento temporal da componente da velocidade de rotação (p) no eixo	45
X.	
Figura 16 - Comportamento temporal da componente da velocidade de rotação (q) no eixo	46
y.	
Figura 17 - Comportamento temporal da componente da velocidade de rotação (r) no eixo	47
Z.	
Figura 18 - Comportamento temporal do ângulo φ.	48
Figura 19 - Comportamento temporal do ângulo ψ.	48
Figura 20 - Comportamento temporal do ângulo θ .	49

LISTA DE TABELAS

Tabela 1 – Transferência de Hohmann.	22
Tabela 2 – Transferência bi-elíptica tri-impulsiva para 140.000 km.	24
Tabela 3 – Transferência bi-elíptica tri-impulsiva para 170.000 km.	25
Tabela 4 – Transferência bi-elíptica tri-impulsiva para 200.000 km.	26
Tabela 5 – Transferência bi-elíptica tri-impulsiva para 380.000 km.	27
Tabela 6 – Transferência bi-elíptica tri-impulsiva para 700.000.000 km.	28
Tabela 7 – Transferência Tipo Hohmann PA.	30
Tabela 8– Transferência Tipo Hohmann AP.	31
Tabela 9 – Transferência bi-elíptica 140.000 km (elíptica)	32
Tabela 10 – Transferência bi-elíptica 200.000 km (elíptica)	33
Tabela 11- Comportamento da atitude sem torques $(N_x = N_y = N_z = 0)$	40
Tabela 12 – Comportamento da atitude com torque de 0,02 Nm em torno do eixo X.	41
$(N_x = 0.02, N_y = N_z = 0).$	
Tabela 13 – Comportamento da atitude com torque de 0,04 Nm em torno do eixo Y.	41
$(N_x = 0, N_y = 0.04 \text{ e } N_z = 0).$	
Tabela 14 – Comportamento da atitude com torque de 0,06 Nm em torno do eixo Z.	42
$(N_x = N_y = 0 e N_z = 0.06).$	
Tabela 15 – Comportamento da atitude com torque de 0,02 Nm em torno do eixo X e 0,04	42
Nm em torno do eixo Y $(N_x = 0.02 N_y = 0.04 e N_z = 0)$.	
Tabela 16 – Comportamento da atitude com torques de 0,02 Nm em torno do eixo X e 0,06	43
Nm em torno do eixo Z ($N_x = 0.02 N_y = 0 e N_z = 0.06$).	
Tabela 17 – Comportamento da atitude com torques de 0,04 Nm em torno do eixo Y e 0,06	43
Nm em torno do eixo Z. $(N_x = 0, N_y = 0.04 \text{ e } N_z = 0.06)$.	
Tabela 18 – Comportamento da atitude com torque de 0,02 Nm em torno do eixo X, 0,04	44
Nm em torno do eixo Y e 0,06 Nm em torno do eixo Z. $(N_x = 0.02, N_y = 0.04 \text{ e } N_z = 0.06)$	

LISTA DE SÍMBOLOS

- *G* Constante de gravitação universal.
- *M* Massa da Terra.
- e_{τ} Excentricidade da órbita de transferência.
- r_1 Raio da órbita 1.
- r₂ Raio da órbita 2.
- ΔV_1 Primeiro impulso.
- ΔV_2 Segundo impulso.
- ΔV_3 Terceiro impulso.
- M_0 Massa inicial da espaçonave.
- M_f Massa final da espaçonave.
- ΔV Incremento total de velocidade.
- c Velocidade de ejeção dos gases propelentes do motor.
- a_t Semi-eixo maior da orbita de transferência.
- t Tempo gasto na transferência
- e_{T1} Excentricidade da elipse de transferência 1.
- e_{T2} Excentricidade da elipse de transferência 2.
- ra, Raio do apogeu das órbitas de transferência 1 e 2.
- r_{a1} Raio do apogeu da órbita 1.
- r_{a2} Raio do apogeu da órbita 2.
- r_{n1} Raio do perigeu da órbita 1.
- r_{n2} Raio do perigeu da órbita 2.
- e_1 Excentricidade da órbita 1.
- e_2 Excentricidade da órbita 2.
- e Excentricidade da órbita inicial e final.
- a_1 Semi eixo maior da órbita inicial.
- a_2 Semi eixo maior da órbita final.
- w argumento do perigeu
- Ω -longitude do nodo ascendente
- l inclinação orbital
- V Velocidade no ponto de intersecção entre órbitas não cooplanares.
- e Excentricidade.
- r_t Raio da orbita de transferência.
- β ângulo entre os eixos das orbitas.
- $\Delta \alpha$ Ângulo de inclinação desejado.
- V Velocidade no ponto de aplicação do impulso.
- ΔV_{α} Impulso para mudança de inclinação.

 ϕ , θ e ψ – ângulos de Euler.

p, q e r - Componentes da velocidade de rotação no sistema principal.

 I_x , I_y e I_z – Momentos principais de inércia do satélite.

 $N_{\scriptscriptstyle x}, N_{\scriptscriptstyle y}$ e $N_{\scriptscriptstyle z}-$ Componentes dos torques externos atuante no satélite.

LISTA DE SIGLAS E ABREVIATURAS

UNESP - Universidade Estadual Paulista

INPE - Instituto Nacional de Pesquisas Espaciais

CM - Centro de Massa

1 INTRODUÇÃO

Vamos imaginar uma espaçonave em órbita circular equatorial ao redor da Terra. Em um mundo ideal a espaçonave manteria sua órbita inalterada por tempo infinito, porém no mundo real ela sofre algumas perturbações ambientais (arrasto atmosférico, pressão de radiação solar, entre outras), essas podem ocasionar uma diminuição na altitude da espaçonave, causando a reentrada na atmosfera terrestre e consequentemente sua destruição. Para que isso não ocorra é necessária à correção da órbita com certa frequência.

Imaginemos agora que a mesma espaçonave tenha um período orbital igual a 12 horas e queremos que ela fique parada em relação à superfície terrestre, ou seja, tenha um período orbital igual a 24 horas, segundo a terceira lei de Kepler, devemos aumentar a altitude da espaçonave e assim teremos uma aumento no período orbital.

As situações descritas acima são denominadas problemas de transferência de órbita e são de grande importância em Astronáutica, sendo um dos enfoques que abordados neste projeto.

No desenvolvimento deste projeto inicialmente foi realizado um estudo sobre os principais tópicos relacionados com o movimento orbital e rotacional de satélites artificiais com a supervisão dos orientadores, o que constituiu as fases I e II do projeto. Com o estudo da mecânica celeste foi adquirido o conhecimento necessário sobre o movimento translacional do satélite ao redor da Terra, em especial sobre as leis de Kepler, lei da gravitação universal de Newton, elementos orbitais, sistemas de coordenadas e potencial terrestre.

Na fase III foi feito um estudo das transferências de Hohmann e bi-elíptica e realizadas simulações numéricas, sendo que os resultados estão apresentados neste relatório. São descritas algumas maneiras de transferir uma espaçonave de uma órbita para outra, mostrando como calcular o incremento de velocidade e gasto de combustível necessário em cada etapa da manobra além do tempo em que a manobra é feita. Finalmente através de simulações numéricas, realizadas com auxilio do software Excel, são discutidas as vantagens e desvantagens das manobras apresentadas. Em todas as simulações foi considerado que o motor da espaçonave tem a capacidade de aplicar uma força instantânea de magnitude infinita, com essa consideração o problema se simplificou mas manteve uma precisão razoável. Nas duas situações descritas a altitude da espaçonave em relação à Terra aumentou , ou seja, colocar a espaçonave em uma órbita de raio maior. Os resultados são apresentados em tabelas, salientando o tempo e combustível gastos em cada manobra.

Na seqüência do projeto foram realizadas as manobras de atitude de pequenas magnitudes, cujos resultados enfatizam as alterações de atitude de satélites devido pequenos torques de controle. As manobras de atitude foram realizadas com diferentes magnitudes para os torques de controle. Neste projeto não foi avaliado o gasto de combustível nas manobras de atitude.

2. DESENVOLVIMENTO

2.1. TRANSFERÊNCIA DE ÓRBITAS

2.1.1. TRANSFERÊNCIA DE HOHMANN

Inicialmente será apresentado a manobra conhecida como transferência de "Hohmann" e é feita com o uso de dois impulsos (Prado e Kuga, 2001). O primeiro com um impulso aplicado na direção tangencial à órbita, a espaçonave entra em uma órbita elíptica conhecida como elipse de transferência, cujo raio de perigeu é igual ao raio da órbita inicial. Quando a espaçonave está no apogeu da órbita de transferência, cujo raio tem a mesma dimensão do raio da órbita final, o segundo impulso tangente a órbita de transferência é aplicado, assim a espaçonave entra na órbita circular final, como mostra a Figura 1.

Os incrementos de velocidade nessa manobra podem ser calculados usando as seguintes equações (Zanardi, 1990):

Primeiro impulso:

$$\Delta V_1 = \sqrt{\frac{GM}{r_1}} \{ (1 + e_T)^{\frac{1}{2}} - 1 \} \tag{1}$$

Segundo impulso:

$$\Delta V_2 = \sqrt{\frac{GM}{r_2}} \{ 1 - (1 - e_T)^{\frac{1}{2}} \}$$
 (2)

sendo: *G* - Constante de gravitação universal.

M - Massa da Terra.

 e_T - Excentricidade da órbita de transferência.

 r_1 - Raio da órbita 1.

 r_2 - Raio da órbita 2.

O consumo de combustível dessa manobra e dado por (Zanardi, 1990):

$$M_{p} = M_{0} - M_{f} \tag{3}$$

onde M_0 é a massa inicial da espaçonave e M_f é massa final da espaçonave dado por:

$$M_f = M_0 e^{\frac{\Delta V}{c}} \tag{4}$$

sendo: ΔV - Incremento total de velocidade

c - Velocidade de ejeção dos gases propelentes do motor

Pela 3ª lei de Kepler sabemos que o quadrado do período orbital é proporcional ao cubo do semi-eixo maior (Bate, 1978). Como podemos observar na Fig.1 a espaçonave permanece na elipse de transferência apenas a metade do período orbital, logo o tempo gasto na transferência corresponde à metade do período orbital da elipse de transferência, ou seja:

$$t = \pi \frac{a_t^{\frac{3}{2}}}{(GM)^{\frac{1}{2}}} \tag{5}$$

sendo: *a*₁ - Semi-eixo maior da orbita de transferência.

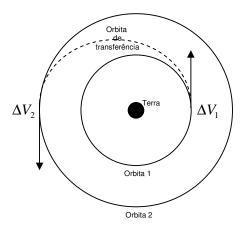


Figura 1 – Transferência de Hohmann.

2.1.2. TRANSFERÊNCIA BI-ELIPTICA TRI-IMPULSIVA ENTRE ÓRBITAS CIRCULARES

A manobra agora descrita também é utilizada para fazer a transferência de uma espaçonave de uma órbita circular para outra. Essa manobra é conhecida como transferência "bi-elíptica tri-impulsiva" e é feita com o uso de três impulsos. O primeiro impulso é aplicado na direção tangencial à órbita inicial, com isso a espaçonave entra em uma órbita elíptica conhecida como elipse de transferência 1, cujo raio de perigeu é igual ao raio da órbita inicial. Quando a espaçonave está no apogeu da elipse de transferência 1, cujo semi-eixo maior deve ser superior ao raio da órbita 2, o segundo impulso tangente a elipse de transferência 1 é aplicado, assim a espaçonave entra na elipse de transferência 2, que tem o apogeu igual ao apogeu da elipse de transferência 1.

O terceiro impulso é aplicado no perigeu da órbita de transferência 2, que deve ter a mesma dimensão do raio da órbita 2, assim a espaçonave entra na órbita circular pretendida, como mostra a Figura 2.

Os incrementos de velocidade nessa manobra podem ser calculados usando as seguintes equações (Zanardi, 1990):

Primeiro impulso:

$$\Delta V_1 = \sqrt{\frac{GM}{r_1}} \{ (1 + e_{T1})^{\frac{1}{2}} - 1 \}$$
 (6)

Segundo impulso:

$$\Delta V_2 = \sqrt{\frac{GM}{ra_t}} \{ (1 - e_{T2})^{\frac{1}{2}} - (1 - e_{T1})^{\frac{1}{2}} \}$$
 (7)

Terceiro impulso:

$$\Delta V_3 = \sqrt{\frac{GM}{r_2}} \{ 1 - (1 + e_{T2})^{\frac{1}{2}} \}$$
 (8)

sendo: e_{T1} - Excentricidade da elipse de transferência 1.

 e_{T2} - Excentricidade da elipse de transferência 2.

ra, - Raio do apogeu das órbitas de transferência 1 e 2.

O gasto de combustível é calculado de maneira idêntica ao da manobra anterior, através da Eq. 3, com o incremento de velocidade total dado pela soma dos 3 incrementos de velocidade dados pelas Eq. (6), (7) e (8), enquanto o tempo gasto em cada órbita de transferência pode ser determinado através da Eq. 5, com o tempo total sendo dado pela soma do tempo gasto em cada uma das órbitas de transferência.

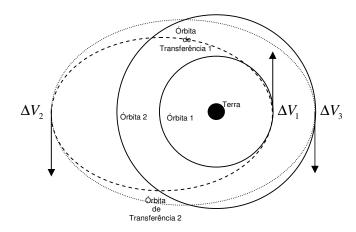


Figura 2 – Transferência bi-elíptica tri-impulsiva entre órbitas circulares.

A manobra bi-elíptica tri-impulsiva se torna mais econômica que a de Hohmann quando a razão entre as órbitas final e inicial é de 11,94 (Prado, 2010), isso utilizando órbita de transferências com apogeu tendendo ao infinito.

2.1.3. TRANSFERÊNCIA "TIPO HOHMANN PA" ENTRE ÓRBITAS ELIPTICAS

Será descrita agora uma manobra entre duas órbitas elípticas, que aqui é denominada "Tipo Hohmann PA", e corresponde ao primeiro impulso no perigeu da órbita 1 e um segundo impulso no apogeu da órbita 2, com o perigeu da elipse de transferência coincidente com o perigeu da órbita 1 e o apogeu da elipse de transferência coincidente com o apogeu da órbita 2, como mostra a Figura 3.

Os incrementos de velocidade nessa manobra podem ser calculados usando as seguintes equações (Zanardi, 1990):

Primeiro impulso:

$$\Delta V_1 = \sqrt{\frac{GM}{r_{p1}}} \{ (1 + e_T)^{\frac{1}{2}} - (1 + e_1)^{\frac{1}{2}} \}$$
 (9)

Segundo impulso:

$$\Delta V_2 = \sqrt{\frac{GM}{r_{a2}}} \{ (1 - e_2)^{\frac{1}{2}} - (1 - e_T)^{\frac{1}{2}} \}$$
 (10)

sendo: r_{a2} - Raio do apogeu da órbita 2.

 r_{n1} - Raio do perigeu da órbita 1.

 e_1 - Excentricidade da órbita 1.

 e_2 - Excentricidade da órbita 2.

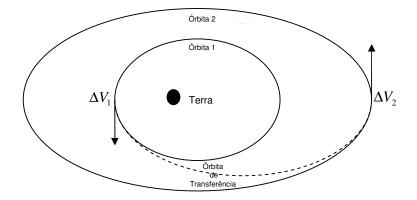


Figura 3 - Transferência "Tipo Hohmann PA".

2.1.4. TRANSFERÊNCIA "TIPO HOHMANN AP" ENTRE ÓRBITAS ELIPTICAS

Outra transferência entre órbitas elípticas é agora descrita e denominada de "Tipo Hohmann AP", e esta esquematizada na Figura 4. Esta manobra corresponde ao primeiro impulso no apogeu na órbita 1 e um segundo impulso no perigeu da órbita 2, com o perigeu da órbita de transferência coincidente com o apogeu da órbita 1 e o apogeu da órbita de transferência coincidente com o perigeu da órbita 2.

Os incrementos de velocidade nessa manobra podem ser calculados usando as seguintes equações (Zanardi, 1990):

Primeiro impulso:

$$\Delta V_1 = \sqrt{\frac{GM}{r_{a1}}} \{ (1 + e_T)^{\frac{1}{2}} - (1 - e_1)^{\frac{1}{2}} \}$$
 (11)

Segundo impulso:

$$\Delta V_2 = \sqrt{\frac{GM}{r_{p2}}} \{ (1 + e_2)^{\frac{1}{2}} - (1 - e_T)^{\frac{1}{2}} \}$$
 (12)

sendo: r_{a1} - Raio do apogeu da órbita 1.

 r_{p2} - Raio do perigeu da órbita 2.

Figura 4 - Transferência "Tipo Hohmann AP".

O consumo de combustível e o tempo gasto nas manobras são obtidos através das Eq. 3 e 5 de forma idêntica a primeira manobra apresentada, transferência de Hohmann.

2.1.5. TRANSFERÊNCIA BI-ELIPTICA TRI-IMPULSIVA ENTRE ÓRBITAS ELÍPTICAS

É descrita a seguir a transferência bi-elíptica tri-impulsiva entre órbitas elípticas, nela aplicamos o primeiro impulso no apogeu da órbita inicial, dessa forma a espaçonave entra na elipse de transferência 1, que tem raio de perigeu igual ao raio do apogeu da órbita inicial, o segundo impulso é aplicado no apogeu da elipse de transferência 1 que coincide com o apogeu da elipse de transferência 2, a dimensão desse é arbitraria, devendo sempre ser maior que o apogeu da órbita final. Para finalizar a manobra devemos aplicar o terceiro impulso no perigeu da elipse de transferência 2, que coincide com o apogeu da órbita final. A Figura 5 demonstra como essa manobra é realizada.

Os incrementos de velocidade nessa manobra podem ser calculados usando as seguintes equações (Zanardi, 1990):

Primeiro impulso:

$$\Delta V_1 = \sqrt{\frac{GM}{r_1}} \{ (1 + e_{T1})^{\frac{1}{2}} - (1 - e_1)^{\frac{1}{2}} \}$$
 (13)

Segundo impulso:

$$\Delta V_2 = \sqrt{\frac{GM}{ra_t}} \{ (1 - e_{T2})^{\frac{1}{2}} - (1 - e_{T1})^{\frac{1}{2}} \}$$
 (14)

Terceiro impulso:

$$\Delta V_3 = \sqrt{\frac{GM}{r_2}} \{ (1 - e_2)^{\frac{1}{2}} - (1 + e_{T2})^{\frac{1}{2}} \}$$
 (15)

sendo: e_{T1} - Excentricidade da elipse de transferência 1.

 e_{T2} - Excentricidade da elipse de transferência 2.

ra, - Raio do apogeu das órbitas de transferência 1 e 2.

O gasto de combustível e tempo é calculado de maneira idêntica ao da transferência "bi-elíptica tri-impulsiva" apresentada anteriormente, onde as órbitas final e inicial eram circulares.

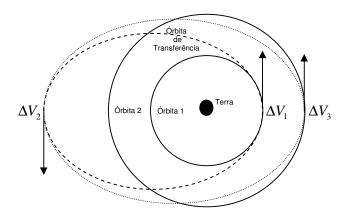


Figura 5 – Transferência bi-elíptica tri-impulsiva entre órbitas elípticas.

2.1.6 TRANSFERÊNICA ENTRE ÓRBITAS NÃO COAXIAIS

Quando deseja-se transferir uma espaçonave de uma orbita para outra de mesma dimensão, porem com eixos desalinhados deve-se realizar uma manobra com o uso de um órbita de circular de transferência, como mostra a Figura 6. Vamos aplicar primeiro impulso no apogeu da órbita 1 e o segundo impulso de mesma magnitude é aplicado quando a direção axial da órbita 2 é alcançada.

O incremento de velocidade em cada impulso dessa manobra pode ser calculado usando a seguinte equação :

$$\Delta V = \sqrt{\frac{GM}{r_{a1}}} \{ 1 - (1 - e)^{\frac{1}{2}} \}$$
 (16)

sendo: e - Excentricidade da órbita inicial e final.

O gasto de combustível é obtido com o uso da eq. 3 e tempo gasto na manobra é dado por:

$$t = \frac{r_t^{3/2}}{(GM)^{1/2}} \beta \tag{17}$$

sendo: r_t - Raio da orbita de transferência e β - ângulo entre os eixos das orbitas.

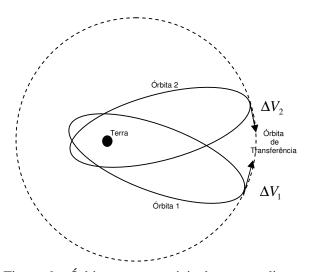


Figura 6 – Órbitas não co-axiais de mesma dimensão.

2.1.7 TRANSFERÊNICA ENTRE ÓRBITAS NÃO COPLANARES

Para transferir uma espaçonave de uma órbita para outra de mesma dimensão, mas inclinada em relação à primeira, deve-se aplicar um impulso no ponto de intersecção das duas órbitas com mostra a Figura 7.



Figura 7 – Órbitas não cooplanares.

A magnitude desse incremento de velocidade e dado por:

$$\Delta V_{\alpha} = 2Vsen \frac{\Delta \alpha}{2} \tag{18}$$

Ângulo de aplicação desse impulso em relação à órbita 1:

$$\tau = \frac{\pi}{2} - \frac{\Delta \alpha}{2} \tag{19}$$

sendo: $\Delta \alpha$ - Ângulo de inclinação desejado; V - Velocidade no ponto de aplicação do impulso.

2.2 MANOBRAS DE ATITUDE

Imagine um satélite em órbita terrestre que deva apontar suas antenas sempre em direção a Terra. Ao longo do tempo as perturbações ambientais ocasionam mudanças na atitude do satélite, fazendo com que suas antenas não apontem mais em direção a Terra e assim tornando a comunicação com o equipamento impossível, o que prejudicaria a missão do satélite. Para que isso não ocorra são necessárias ao longo da vida útil do satélite algumas manobras de atitude.

A atitude de um satélite artificial está relacionada ao movimento de rotação em torno de seu centro de massa (CM) é através dela que conhecemos a orientação espacial do satélite. Existem diferentes representações para descrever a atitude de um satélite, nesse trabalho é utilizado os ângulos de Euler (ϕ, θ, ψ) , que são definidos por uma sequência sucessiva de rotações nos três eixos coordenados a partir do sistema inicial (sistema com eixos paralelos ao sistema Equatorial da Terra e origem no CM do satélite, denominado sistema satélite) de modo a obter um sistema final (sistema associado ao sistema de eixos principais do satélite com origem em seu CM, denominado sistema principal). Uma sequência 3-2-1 significa que a primeira rotação de um ângulo ϕ ocorre no eixo Z, a segunda de um ângulo θ no eixo Y e a terceira de um ângulo ψ em torno de X. Existem 12 sequências de rotações, neste trabalho vamos utilizar, a sequência 3-1-3, que é a mais usada na analise de dinâmica de atitude e órbita de satélites artificiais, sendo os ângulos (ϕ, θ, ψ) esquematizados na Figura 7.

As equações cinemáticas que fornecem as taxas de variação dos ângulos de Euler para sequência 3-1-3 são dadas por (WERTZ, 1978; ZANARDI, 2005):

$$\frac{d\varphi}{dt} = (psen\psi + q\cos\psi)/sen\theta$$

$$\frac{d\theta}{dt} = p\cos\psi - qsen\psi$$

$$\frac{d\psi}{dt} = r - (psen\psi + q\cos\psi)\cot g\theta$$

Sendo p, q e r componentes da velocidade de rotação no sistema principal cujo comportamento pode ser avaliado pelas equações dinâmicas:

$$\frac{dp}{dt} = \frac{I_y - I_z}{I_x} qr + \frac{N_x}{I_x}$$

$$\frac{dq}{dt} = \frac{I_z - I_x}{I_y} rp + \frac{N_y}{I_y}$$

$$\frac{dr}{dt} = \frac{I_x - I_y}{I_z} pq + \frac{N_z}{I_z}$$

sendo: I_x , I_y , I_z – Momentos principais de inércia do satélite.

 N_x , N_y , N_z – Componentes dos torques externos atuante no satélite.

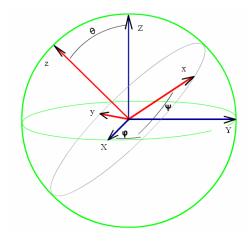


Figura 8 – Ângulos de Euler (φ, θ, ψ) da sequência 3-1-3.

Neste trabalho é realizada uma série de simulações com as quais se analisa como a atitude do satélite se comporta quando aplicamos torques de pequena magnitude em torno de seus eixos de rotação.

3. RESULTADOS

3.1. TRANSFERÊNCIA DE ÓRBITA

A seguir são apresentados alguns resultados de simulações numéricas para diversos tipos de manobras.

Para as simulações, foi escolhida uma espaçonave com massa inicial de 1450 kg que usa como combustível a Hidrazina, que corresponde a uma velocidade de ejeção de gases propelente de 2200 km/s (Prado e Kuga, 2001). Após cada simulação são apresentadas algumas discussões sobre vantagens e desvantagens de uma em relação à outra.

3.1.1. TRANSFERÊNCIA DE HOHMANN

Os resultados apresentados na Tabela 1 são referentes à transferência de uma espaçonave entre duas órbitas circulares, com a órbita inicial de raio de 7000 km para diversas altitudes a partir de 10000 km até 130000. Esses resultados foram obtidos com o uso da transferência de Hohmann descrita n item 2.1.1.

Tabela 1 – Transferência de Hohmann.

/ 1 [m]	r 2 [m]	ΔV T [km/s]	t ⊤ [h]	M p [kg]
7000	10000	1,2229	1,0832	0,8058
7000	13000	1,9622	1,3822	1,2927
7000	16000	2,4519	1,7046	1,6151
7000	19000	2,796	2,0488	1,8416
7000	22000	3,048	2,4134	2,0075
7000	25000	3,2384	2,7974	2,1328
7000	28000	3,3858	3,1999	2,2298
7000	31000	3,5021	3,62	2,3064
7000	34000	3,5952	4,057	2,3677
7000	37000	3,6708	4,5104	2,4174
7000	40000	3,7328	4,9794	2,4582
7000	43000	3,7841	5,4637	2,4919
7000	46000	3,8268	5,9628	2,52
7000	49000	3,8625	6,4761	2,5435
7000	52000	3,8926	7,0034	2,5633
7000	55000	3,918	7,5443	2,58
7000	58000	3,9396	8,0985	2,5942
7000	61000	3,9579	8,6656	2,6062
7000	64000	3,9734	9,2453	2,6165
7000	67000	3,9866	9,8374	2,6252
7000	70000	3,9978	10,442	2,6325
7000	73000	4,0073	11,058	2,6388
7000	76000	4,0153	11,686	2,6441
7000	79000	4,0221	12,325	2,6485
7000	82000	4,0277	12,975	2,6522
7000	85000	4,0324	13,637	2,6553
7000	88000	4,0362	14,309	2,6578
7000	91000	4,0393	14,992	2,6599
7000	94000	4,0418	15,686	2,6615
7000	97000	4,0437	16,39	2,6627
7000	100000	4,045	17,104	2,6636
7000	103000	4,0459	17,829	2,6642
7000	106000	4,0465	18,563	2,6645
7000	109000	4,0466	19,307	2,6646
7000	112000	4,0465	20,061	2,6646
7000	115000	4,0461	20,824	2,6643
7000	118000	4,0454	21,597	2,6638
7000	121000	4,0445	22,379	2,6633
7000	124000	4,0434	23,171	2,6625
7000	127000	4,0422	23,971	2,6617
7000	130000	4,0408	24,781	2,6608

3.1.2. TRANSFERÊNCIA BI-ELIPTICA TRI-IMPULSIVA ENTRE ÓRBITAS CIRCULARES

Os resultados apresentados nas Tabelas 2, 3, 4, 5 e 6 são resultados obtidos com a transferência "bi-elíptica tri-impulssiva", descrita no item 2.1.2, também para orbita inicial de 7000 km e órbitas finais variando de 10000 km a 130000 km. Foram utilizadas orbitas de transferência com raio de apogeu igual a 140.000, 170.000, 200.000, 380.000 e 700.000.000 km respectivamente.

Tabela 2 – Transferência bi-elíptica tri-impulsiva para 140.000 km

		A 1/		
/ 1 [m]	r ₂ [m]	$\Delta V_{\text{T [km/s]}}$	t ⊤ [h]	<i>M</i> p [kg]
7000	10000	5,2763	55,933	3,4734
7000	13000	4,9969	56,789	3,2897
7000	16000	4,8077	57,654	3,1652
7000	19000	4,6705	58,526	3,075
7000	22000	4,5666	59,407	3,0067
7000	25000	4,4852	60,296	2,9532
7000	28000	4,4199	61,194	2,9102
7000	31000	4,3665	62,099	2,875
7000	34000	4,3221	63,013	2,8458
7000	37000	4,2848	63,934	2,8213
7000	40000	4,2531	64,863	2,8005
7000	43000	4,2259	65,8	2,7826
7000	46000	4,2025	66,744	2,7672
7000	49000	4,1822	67,697	2,7538
7000	52000	4,1644	68,656	2,7421
7000	55000	4,1489	69,624	2,7319
7000	58000	4,1352	70,599	2,7229
7000	61000	4,1232	71,581	2,715
7000	64000	4,1125	72,57	2,708
7000	67000	4,103	73,567	2,7018
7000	70000	4,0946	74,571	2,6962
7000	73000	4,0872	75,583	2,6913
7000	76000	4,0805	76,601	2,6869
7000	79000	4,0746	77,627	2,6831
7000	82000	4,0694	78,66	2,6796
7000	85000	4,0647	79,699	2,6765
7000	88000	4,0605	80,746	2,6738
7000	91000	4,0568	81,799	2,6713
7000	94000	4,0535	82,86	2,6692
7000	97000	4,0506	83,927	2,6673
7000	100000	4,0481	85,001	2,6656
7000	103000	4,0458	86,082	2,6641
7000	106000	4,0438	87,169	2,6628
7000	109000	4,0421	88,263	2,6617
7000	112000	4,0407	89,364	2,6607
7000	115000	4,0394	90,471	2,6599
7000	118000	4,0383	91,585	2,6592
7000	121000	4,0374	92,705	2,6586
7000	124000	4,0367	93,832	2,6581
7000	127000	4,0361	94,965	2,6577
7000	130000	4,0357	96,104	2,6575

Tabela 3 - Transferência bi-elíptica tri-impulsiva para 170.000 km.

/ 1 [m]	/ 2 [m]	$\Delta extcolor{V}$ T [km/s]	t ⊤ [h]	M p [kg]
7000	10000	5,3559	73,711	3,5257
7000	13000	5,0694	74,648	3,3374
7000	16000	4,874	75,592	3,2089
7000	19000	4,7315	76,545	3,1151
7000	22000	4,6227	77,504	3,0436
7000	25000	4,5368	78,472	2,9871
7000	28000	4,4674	79,447	2,9414
7000	31000	4,4102	80,429	2,9038
7000	34000	4,3623	81,418	2,8723
7000	37000	4,3217	82,415	2,8456
7000	40000	4,2869	83,42	2,8227
7000	43000	4,2569	84,431	2,803
7000	46000	4,2307	85,449	2,7858
7000	49000	4,2078	86,475	2,7707
7000	52000	4,1876	87,508	2,7574
7000	55000	4,1698	88,547	2,7456
7000	58000	4,1539	89,594	2,7352
7000	61000	4,1397	90,647	2,7259
7000	64000	4,127	91,708	2,7235
7000	67000	4,1156	92,775	2,7173
7000	70000	4,1053	93,849	2,7033
7000	73000	4,0961	94,93	2,6972
7000	76000	4,0878	96,017	2,6917
7000	79000	4,0802	97,111	2,6867
7000	82000	4,0734	98,212	2,6822
7000	85000	4,0671	99,319	2,6781
7000	88000	4,0615	100,43	2,6744
7000	91000	4,0564	101,55	2,6711
7000	94000	4,0517	102,68	2,668
7000	97000	4,0475	103,81	2,6652
7000	100000	4,0437	104,95	2,6627
7000	103000	4,0402	106,1	2,6604
7000	106000	4,037	107,25	2,6583
7000	109000	4,0341	108,41	2,6564
7000	112000	4,0315	109,57	2,6547
7000	115000	4,0292	110,74	2,6532
7000	118000	4,0271	111,92	2,6518
7000	121000	4,0251	113,1	2,6505
7000	124000	4,0234	114,29	2,6494
7000	127000	4,0219	115,49	2,6483
7000	130000	4,0205	116,69	2,6474
7,500	100000	1,0200	110,00	2,0 17 1

Tabela 4 - Transferência bi-elíptica tri-impulsiva para 200.000 km.

D t 1	ereneta er enpirea		<i>t</i> "1	M
R ₁ [m]	/ 2 [m]	Δ <i>V</i> T [km/s]	<i>t</i> τ [h]	M p [kg]
7000	10000	5,4122	93,053	3,5627
7000	13000	5,1207	94,064	3,3711
7000	16000	4,9209	95,083	3,2397
7000	19000	4,7745	96,109	3,1434
7000	22000	4,6621	97,141	3,0695
7000	25000	4,573	98,181	3,0109
7000	28000	4,5007	99,227	2,9633
7000	31000	4,4407	100,28	2,9239
7000	34000	4,3902	101,34	2,8907
7000	37000	4,3472	102,41	2,8624
7000	40000	4,3102	103,48	2,838
7000	43000	4,278	104,56	2,8169
7000	46000	4,2498	105,65	2,7983
7000	49000	4,225	106,74	2,782
7000	52000	4,203	107,85	2,7675
7000	55000	4,1834	108,95	2,7546
7000	58000	4,1658	110,07	2,7431
7000	61000	4,15	111,19	2,7327
7000	64000	4,1358	112,31	2,7233
7000	67000	4,123	113,45	2,7149
7000	70000	4,1113	114,59	2,7072
7000	73000	4,1007	115,73	2,7002
7000	76000	4,0911	116,88	2,6939
7000	79000	4,0823	118,04	2,6881
7000	82000	4,0742	119,21	2,6828
7000	85000	4,0668	120,38	2,6779
7000	88000	4,0601	121,55	2,6735
7000	91000	4,0539	122,74	2,6694
7000	94000	4,0482	123,93	2,6657
7000	97000	4,0429	125,12	2,6622
7000	100000	4,0381	126,32	2,659
7000	103000	4,0336	127,53	2,6561
7000	106000	4,0295	128,75	2,6534
7000	109000	4,0258	129,96	2,6509
7000	112000	4,0223	131,19	2,6486
7000	115000	4,0191	132,42	2,6465
7000	118000	4,0161	133,66	2,6446
7000	121000	4,0134	134,9	2,6428
7000	124000	4,0109	136,15	2,6411
7000	127000	4,0086	137,41	2,6396
7000	130000	4,0064	138,67	2,6382

Tabela 5 - Transferência bi-elíptica tri-impulsiva para 380.000 km.

R 1 [m]	/ 2 [m]	$\Delta \emph{V}$ T [km/s]	t ⊤ [h]	M p [kg]
7000	10000	5,574	236,67	3,6689
7000	13000	5,268	238,05	3,4679
7000	16000	5,056	239,42	3,3283
7000	19000	4,898	240,81	3,2247
7000	22000	4,776	242,2	3,1442
7000	25000	4,677	243,59	3,0795
7000	28000	4,596	244,99	3,0263
7000	31000	4,528	246,39	2,9816
7000	34000	4,471	247,8	2,9435
7000	37000	4,42	249,22	2,9106
7000	40000	4,377	250,64	2,8818
7000	43000	4,338	252,06	2,8565
7000	46000	4,304	253,49	2,834
7000	49000	4,274	254,93	2,8139
7000	52000	4,246	256,37	2,7958
7000	55000	4,221	257,81	2,7795
7000	58000	4,199	259,26	2,7646
7000	61000	4,178	260,72	2,7511
7000	64000	4,159	262,18	2,7387
7000	67000	4,142	263,64	2,7273
7000	70000	4,126	265,11	2,7168
7000	73000	4,111	266,58	2,7071
7000	76000	4,097	268,06	2,6981
7000	79000	4,085	269,55	2,6897
7000	82000	4,073	271,04	2,6819
7000	85000	4,062	272,53	2,6747
7000	88000	4,052	274,03	2,6679
7000	91000	4,042	275,53	2,6615
7000	94000	4,033	277,04	2,6556
7000	97000	4,024	278,55	2,65
7000	100000	4,016	280,07	2,6447
7000	103000	4,009	281,6	2,6398
7000	106000	4,002	283,12	2,6351
7000	109000	3,995	284,65	2,6307
7000	112000	3,989	286,19	2,6266
7000	115000	3,983	287,73	2,6226
7000	118000	3,977	289,28	2,6189
7000	121000	3,972	290,83	2,6154
7000	124000	3,967	292,38	2,612
7000	127000	3,962	293,94	2,6088
7000	130000	3,957	295,51	2,6058

Tabela 6 - Transferência bi-elíptica tri-impulsiva para 700.000.000 km.

		1 1		
/ 1 [m]	/ 2 [m]	Δ <i>V</i> T [km/s]	t т [h]	<i>M</i> p [kg]
7000	10000	5,749	18101649	3,7841
7000	13000	5,427	18101707	3,5724
7000	16000	5,2	18101766	3,4235
7000	19000	5,03	18101824	3,3114
7000	22000	4,896	18101882	3,2231
7000	25000	4,786	18101940	3,1512
7000	28000	4,695	18101998	3,0912
7000	31000	4,617	18102056	3,0401
7000	34000	4,55	18102114	2,996
7000	37000	4,492	18102172	2,9573
7000	40000	4,439	18102230	2,9231
7000	43000	4,393	18102288	2,8925
7000	46000	4,351	18102346	2,8649
7000	49000	4,313	18102404	2,84
7000	52000	4,279	18102462	2,8172
7000	55000	4,247	18102520	2,7963
7000	58000	4,218	18102579	2,7771
7000	61000	4,19	18102637	2,7592
7000	64000	4,165	18102695	2,7427
7000	67000	4,142	18102753	2,7273
7000	70000	4,12	18102811	2,7129
7000	73000	4,099	18102869	2,6994
7000	76000	4,08	18102927	2,6866
7000	79000	4,062	18102985	2,6747
7000	82000	4,045	18103043	2,6633
7000	85000	4,028	18103101	2,6526
7000	88000	4,013	18103159	2,6425
7000	91000	3,998	18103217	2,6328
7000	94000	3,984	18103275	2,6236
7000	97000	3,971	18103333	2,6149
7000	100000	3,958	18103391	2,6065
7000	103000	3,946	18103450	2,5985
7000	106000	3,935	18103508	2,5909
7000	109000	3,923	18103566	2,5836
7000	112000	3,913	18103624	2,5765
7000	115000	3,902	18103682	2,5698
7000	118000	3,893	18103740	2,5633
7000	121000	3,883	18103798	2,557
7000	124000	3,874	18103856	2,551
7000	127000	3,865	18103914	2,5452
7000	130000	3,857	18103972	2,5396

3.1.3. TRANSFERÊNCIA "TIPO HOHMANN PA" ENTRE ÓRBITAS ELÍPTICAS

Na Tabela 7 é apresentado resultados de simulações de transferência "Tipo Hohmann PA", descrita no item 2.1.3, de uma órbita inicial com semi-eixo maior igual a 7000 km e excentricidade de 0,002, para uma órbita final com excentricidade 0,002, com semi-eixo maior variando de 10000 até 130000.

3.1.4. TRANSFERÊNCIA "TIPO HOHMANN AP" ENTRE ÓRBITAS ELÍPTICAS

Na Tabela 8 é apresentado os resultados para as simulações "Tipo Hohmann AP", descrita no item 2.1.4, de uma órbita inicial com semi-eixo maior igual a 7000 km e excentricidade de 0,002, para uma órbita final com excentricidade 0,002, com semi-eixo maior variando de 10000 até 130000.

3.1.5. TRANSFERÊNCIA BI-ELIPTICA TRI-IMPULSIVA ENTRE ÓRBITAS ELÍPTICAS

As Tabelas 9 e 10 apresentam os resultados das simulações de transferência "bielíptica tri-impulsiva", descrita no item 2.1.5. Nas simulações foi considerado uma órbita inicial com semi-eixo maior igual a 7000 km e excentricidade de 0,002, e uma órbita final com excentricidade 0,002, com semi-eixo maior variando de 10000 até 130000. Foram utilizadas órbitas de transferência com raio de apogeu ra_t =140000 e outra com ra_t =200000.

Tabela 7 – Transferência Tipo Hohmann PA.

a 1 [m]	a 2 [m]	ΔV T [km/s]	[t [h]	M p [kg]
7000	10000	1,2226	1,0838	0,8056
7000	13000	1,9613	1,3835	1,2921
7000	16000	2,4505	1,7066	1,6142
7000	19000	2,794	2,0516	1,8403
7000	22000	3,0456	2,4172	2,0059
7000	25000	3,2356	2,8021	2,131
7000	28000	3,3827	3,2057	2,131
7000	31000	3,4987	3,6269	2,3041
7000	34000		4,0651	
7000	37000	3,5917		2,3653
		3,667	4,5196	2,4149
7000	40000	3,7288	4,9899	2,4556
7000	43000	3,7799	5,4755	2,4892
7000	46000	3,8225	5,9759	2,5172
7000	49000	3,8581	6,4907	2,5406
7000	52000	3,8881	7,0195	2,5603
7000	55000	3,9134	7,5619	2,577
7000	58000	3,9349	8,1175	2,5911
7000	61000	3,9531	8,6862	2,6031
7000	64000	3,9685	9,2676	2,6133
7000	67000	3,9817	9,8613	2,6219
7000	70000	3,9928	10,467	2,6293
7000	73000	4,0023	11,085	2,6355
7000	76000	4,0103	11,715	2,6407
7000	79000	4,017	12,356	2,6451
7000	82000	4,0226	13,008	2,6488
7000	85000	4,0272	13,672	2,6519
7000	88000	4,031	14,346	2,6544
7000	91000	4,0341	15,031	2,6564
7000	94000	4,0365	15,727	2,658
7000	97000	4,0383	16,433	2,6592
7000	100000	4,0397	17,149	2,6601
7000	103000	4,0406	17,876	2,6607
7000	106000	4,0411	18,612	2,661
7000	109000	4,0412	19,358	2,6611
7000	112000	4,0411	20,114	2,661
7000	115000	4,0406	20,88	2,6607
7000	118000	4,0399	21,655	2,6602
7000	121000	4,039	22,439	2,6597
7000	124000	4,0379	23,233	2,6589
7000	127000	4,0367	24,036	2,6581
7000	130000	4,0352	24,848	2,6572

Tabela 8 – Transferências Tipo Hohmann AP

a 1 [m]	a 2 [m]	ΔV T [km/s]	t ⊤ [h]	$M_{ m p}$ [kg]
7000	10000	1,2232	1,0826	0,806
7000	13000	1,9631	1,381	1,2933
7000	16000	2,4534	1,7026	1,6161
7000	19000	2,7979	2,0459	1,8429
7000	22000	3,0503	2,4097	2,0091
7000	25000	3,2411	2,7927	2,1346
7000	28000	3,3889	3,1941	2,2318
7000	31000	3,5054	3,6131	2,3086
7000	34000	3,5988	4,049	2,37
7000	37000	3,6746	4,5011	2,4199
7000	40000	3,7368	4,9689	2,4608
7000	43000	3,7882	5,4519	2,4946
7000	46000	3,831	5,9496	2,5228
7000	49000	3,8669	6,4616	2,5464
7000	52000	3,8971	6,9874	2,5663
7000	55000	3,9226	7,5268	2,5831
7000	58000	3,9443	8,0794	2,5973
7000	61000	3,9626	8,6449	2,6094
7000	64000	3,9782	9,223	2,6197
7000	67000	3,9915	9,8135	2,6284
7000	70000	4,0028	10,416	2,6358
7000	73000	4,0123	11,03	2,6421
7000	76000	4,0204	11,656	2,6474
7000	79000	4,0272	12,294	2,6519
7000	82000	4,0329	12,943	2,6556
7000	85000	4,0376	13,602	2,6587
7000	88000	4,0415	14,273	2,6613
7000	91000	4,0446	14,954	2,6633
7000	94000	4,0471	15,646	2,6649
7000	97000	4,049	16,348	2,6662
7000	100000	4,0504	17,06	2,6671
7000	103000	4,0513	17,782	2,6677
7000	106000	4,0519	18,514	2,6681
7000	109000	4,052	19,256	2,6682
7000	112000	4,0519	20,008	2,6681
7000	115000	4,0515	20,769	2,6679
7000	118000	4,0509	21,54	2,6674
7000	121000	4,05	22,32	2,6669
7000	124000	4,0489	23,109	2,6662
7000	127000	4,0477	23,907	2,6653
7000	130000	4,0463	24,714	2,6644

Tabela 9 – Transferência bi-elíptica 140.000 km (elíptica).

a 1 [m]	a 2 [m]	ΔV T [km/s]	t ⊤ [h]	$M_{\!p}$ [kg]
7000	10000	5,284	55,931	3,4784
7000	13000	5,0042	56,786	3,2945
7000	16000	4,8146	57,648	3,1698
7000	19000	4,6773	58,519	3,0795
7000	22000	4,5732	59,398	3,011
7000	25000	4,4917	60,286	2,9574
7000	28000	4,4262	61,181	2,9144
7000	31000	4,3727	62,084	2,8792
7000	34000	4,3283	62,996	2,8499
7000	37000	4,2909	63,915	2,8253
7000	40000	4,2591	64,842	2,8044
7000	43000	4,2319	65,777	2,7865
7000	46000	4,2085	66,719	2,7711
7000	49000	4,1881	67,669	2,7577
7000	52000	4,1703	68,627	2,746
7000	55000	4,1547	69,592	2,7358
7000	58000	4,141	70,565	2,7267
7000	61000	4,1289	71,545	2,7188
7000	64000	4,1182	72,532	2,7118
7000	67000	4,1088	73,527	2,7055
7000	70000	4,1003	74,528	2,7
7000	73000	4,0929	75,537	2,6951
7000	76000	4,0862	76,553	2,6907
7000	79000	4,0803	77,577	2,6868
7000	82000	4,075	78,607	2,6833
7000	85000	4,0703	79,644	2,6802
7000	88000	4,0661	80,688	2,6774
7000	91000	4,0624	81,739	2,675
7000	94000	4,0591	82,797	2,6728
7000	97000	4,0562	83,862	2,6709
7000	100000	4,0536	84,933	2,6692
7000	103000	4,0513	86,011	2,6677
7000	106000	4,0493	87,096	2,6664
7000	109000	4,0476	88,187	2,6653
7000	112000	4,0461	89,285	2,6643
7000	115000	4,0449	90,39	2,6635
7000	118000	4,0438	91,501	2,6628
7000	121000	4,0429	92,618	2,6622
7000	124000	4,0421	93,742	2,6617
7000	127000	4,0416	94,872	2,6613
7000	130000	4,0411	96,009	2,661

Tabela 10 – Transferência bi-elíptica 200.000 km (elíptica).

a 1 [m]	a 2 [m]	ΔV T [km/s]	t ⊤ [h]	$\emph{M}_{ extsf{p}}$ [kg]
7000	10000	5,42	93,051	3,5679
7000	13000	5,128	94,06	3,3759
7000	16000	4,928	95,077	3,2444
7000	19000	4,7813	96,1	3,1479
7000	22000	4,6688	97,131	3,0739
7000	25000	4,5796	98,168	3,0152
7000	28000	4,5071	99,212	2,9676
7000	31000	4,447	100,26	2,928
7000	34000	4,3965	101,32	2,8948
7000	37000	4,3534	102,39	2,8665
7000	40000	4,3163	103,46	2,8421
7000	43000	4,2841	104,54	2,8209
7000	46000	4,2559	105,62	2,8023
7000	49000	4,231	106,71	2,7859
7000	52000	4,2089	107,81	2,7714
7000	55000	4,1893	108,92	2,7585
7000	58000	4,1717	110,03	2,7469
7000	61000	4,1559	111,15	2,7365
7000	64000	4,1416	112,27	2,7272
7000	67000	4,1288	113,4	2,7187
7000	70000	4,1171	114,54	2,711
7000	73000	4,1065	115,68	2,704
7000	76000	4,0968	116,83	2,6976
7000	79000	4,088	117,99	2,6918
7000	82000	4,0799	119,15	2,6865
7000	85000	4,0725	120,32	2,6817
7000	88000	4,0657	121,49	2,6772
7000	91000	4,0595	122,67	2,6731
7000	94000	4,0538	123,86	2,6693
7000	97000	4,0485	125,05	2,6659
7000	100000	4,0437	126,25	2,6627
7000	103000	4,0392	127,45	2,6598
7000	106000	4,0351	128,66	2,6571
7000	109000	4,0313	129,88	2,6546
7000	112000	4,0278	131,1	2,6523
7000	115000	4,0246	132,33	2,6501
7000	118000	4,0216	133,57	2,6482
7000	121000	4,0189	134,81	2,6464
7000	124000	4,0164	136,05	2,6447
7000	127000	4,014	137,3	2,6432
7000	130000	4,0119	138,56	2,6418

3.1.6 TRANSFERÊNCIA ENTRE ÓRBITAS NÃO COAXIAIS E NÃO COOPLANARES

É apresentado agora os resultados da simulação de um caso mais geral, com a órbita inicial com os seguintes parâmetros a=7726km, e=0.002, $w=235^{\circ}$, $\Omega=45^{\circ}$ e $i=5^{\circ}$ e a órbita final com a=7800km, e=0.005, $w=280^{\circ}$, $\Omega=45^{\circ}$ e $i=8^{\circ}$.

No ponto de intersecção (alinhada na linha dos nodos das duas órbitas) não sabemos o valor de V, então é aplicada a manobra vista na item 2.1.6 para que o eixo da órbita se alinhe com a linha dos nodos. Observamos que nas simulações apresentadas até o momento, são necessários menores incrementos de velocidade em órbitas altas. Assim primeiro a espaçonave é transferida para a órbita mais alta de dimensão a=7800km e e=0,005, obtendo o seguinte incremento de velocidade.

$$\Delta V_{T1} = 0.034114915 \text{km/s}$$

A seguir se faz o alinhamento do eixo com a linha dos nodos, obtendo o seguinte incremento de velocidade:

$$\Delta V_{T2} = 0.035698729 \text{km/s}$$

Pode-se agora fazer a mudança do plano orbital. Como eixo esta alinhado com a linha dos nodos e a aeronave se encontra no apogeu, essa também é a velocidade no ponto de intersecção das órbitas, logo temos como saber o incremento de velocidade necessário para mudança de inclinação ($\Delta \alpha$):

$$\Delta V_{T3} = 0,37332567 \text{km/s}$$

Observa-se que a mudança de plano necessita de um grande incremento de velocidade, muito maior que os demais aqui obtidos.

Para a aeronave entrar na órbita final requerida, ainda é necessário fazer novamente a manobra de alinhamento dos eixos.

$$\Delta V_{T4} = 0.035698729 \text{km/s}$$

Assim temos um incremento de velocidade total de:

$$\Delta V_{Total} = 0,478838043 km/s$$

Assim a manobra total e feita em 4 etapas: na primeira é feita uma manobra para alterar a dimensão da órbita, depois fazemos uma modificação na direção do eixo da órbita, agora com o eixo da órbita coincidente com a linha dos nodos, fazemos a mudança da

inclinação do plano orbital, por fim modificamos novamente a direção do eixo da órbita tendo assim a órbita desejada. Observamos que das 4 etapas a que requer mais combustível é a etapa em que é feita a mudança do plano orbital, tendo um gasto da ordem de 10 vezes maior que as outras manobra.

3.1.7 DISCUSSÃO DOS RESULTADOS DAS TRANSFERÂNCIAS DE ÓRBITAS

Para melhor analisar os resultados foram elaborados gráfico do gasto de combustível por tipo de transferência e altitude da órbita final.

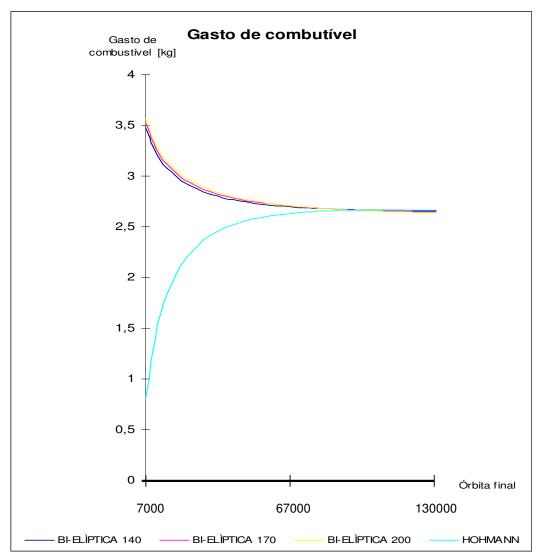


Figura 9 – Comparação do gasto de combustível das simulações das Tabelas 1, 2, 3 e 4.

Com auxilio da Figura 3 pode-se analisar o gasto de combustível das simulações apresentadas nas Tabelas 1, 2, 3 e 4.

Pode-se observar que até certo ponto a transferência de "Hohmann" é muito vantajosa quando comparada com a "bi-elíptica tri-impulsiva", esse ponto esta intimamente ligado com o tamanho da órbita final, ou melhor, com a razão entre as órbitas final e inicial. Outra observação feita é que, quando modificamos o raio do apogeu das órbitas de transferência utilizadas nas manobras "bi-elíptica tri-impulsiva" o consumo de combustível se altera.

Comparando os resultados das simulações feitas com o uso da transferência de "Hohmann" e a "bi-elíptica tri-impulsiva 140", apresentadas nas Tabelas 1 e 2, verificase que quando transferimos uma espaçonave de uma orbita inicial de raio 7000 km para uma final de até 100000 km a manobra de "Hohmann" se mostra mais econômica, quando a órbita final é igual ou superior a 103000 km a "bi-elíptica tri-impulsiva 140". se torna a mais econômica. Portanto verifica-se que uma manobra se torna mais econômica que a outra, e essa mudança acontece quando a razão das órbitas final e inicial esta entre 14,3 e 14,7.

Fazendo a comparação das simulações das Tabelas 1 e 3, que corresponde a transferência "Hohmann" e "bi-elíptica tri-impulsiva 170" respectivamente, nota-se que a "bi-elíptica tri-impulsiva 170" tem menor gasto de combustível quando a órbita final é igual ou superior a 100.000 km, assim verificamos que, quando a mudança da manobra mais econômica ocorre, a razão das órbitas final e inicial esta entre 13.9 e 14,3.

Comparando as simulações apresentadas nas Tabelas 1 e 4, que correspondem a manobra de "Hohmann" e "bi-elíptica tri-impulsiva 200", observa-se que a transferência de "Hohmann" é mais econômica quando o raio da órbita final é igual ou inferior a 94.000 km, a partir daí há uma mudança e a "bi-elíptica tri-impulsiva 200" se torna mais econômica, verifica-se que essa mudança ocorre quando a razão do raio das órbitas final e inicial esta entre 13,4 e 13,9.

Nota-se que quanto maior é o raio do apogeu das órbitas de transferência menor fica a razão entre as órbitas final e inicial, com objetivo de determinar até que ponto essa razão diminui, vamos apresentar nas Tabelas 5 e 6, simulações de manobras "bielípticas tri-impulsiva" com raio de apogeu das elipses de transferência igual a 380.000 km, que a aproximadamente a distância terra lua, e 700.000.000 km que pode ser considerado infinito.

Fazendo a comparação das simulações apresentadas nas Tabelas 1 e 5, verificamos que a "bi-elíptica tri-impulsiva 380" se torna mais econômica quando a razão das órbitas final e inicial esta entre 13 e 13,4.

Na comparação das simulações apresentadas nas Tabelas 1 e 6, a transferência de "Hohmann" se torna menos econômica quando a razão das órbitas final e inicial esta entre 11,7 e 12,1 este valor compreende o valor 11,94 encontrado nas literaturas, valor esse que foi determinado na década de 50 por Hoelker e Silber (1959) e Shternfeld (1959) independentemente (Prado, 2010).

Resumindo utilizando órbitas de transferência com apogeu de dimensão infinita a transferência de "Hohmann" é a solução mais econômica quando a razão das órbitas final e inicial e menor que 11,94, a partir dai a bi-elíptica tri-impulsiva se torna a manobra com menor gasto de combustível.

Na Figura 10 analisa-se o gasto de tempo em cada manobra apresentada nas Tabelas 1, 2, 3 e 4. A análise de tempo é bem mais simples, nela concluí-se que a transferência de Hohmann e sempre a mais rápida, seguida pela, bi-elíptica 140, bi-elíptica 200 respectivamente, ou seja para transferência bi-elíptica tri-impulsiva, quanto maior for o raio do apogeu das orbitas de transferência, maior é o tempo gasto na manobra.

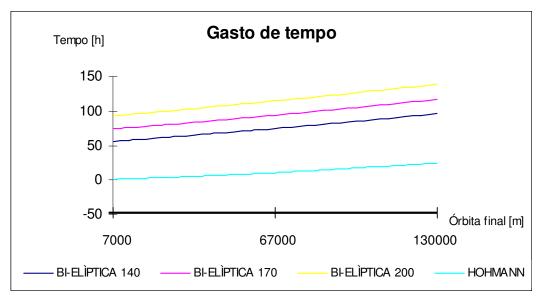


Figura 10 - Comparação do gasto de tempo das simulações das Tabelas 1, 2, 3 e 4.

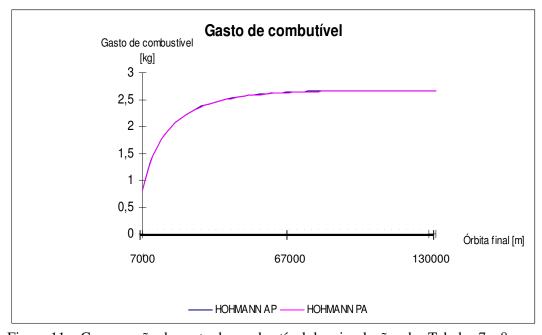


Figura 11 – Comparação do gasto de combustível das simulações das Tabelas 7 e 8.

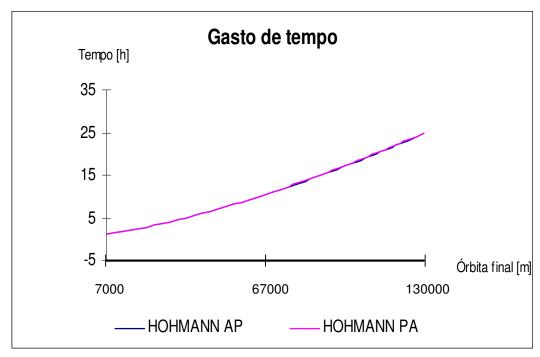


Figura 12 – Comparação do gasto de tempo das simulações das Tabelas 7 e 8.

Com as Tabelas 7 e 8 e o auxilio das Figuras 11 e 12 observa-se que a transferência "Tipo Hohmann PA" tem sempre um consumo de combustível menor e um gasto de tempo maior quando comparada com a "Tipo Hohmann AP".

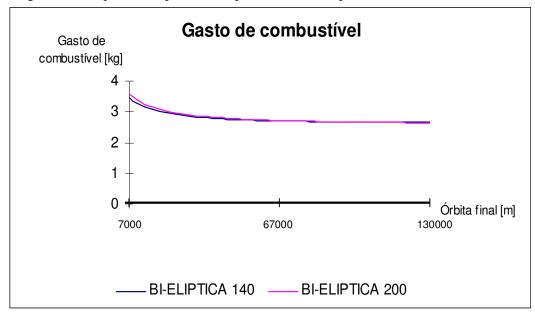


Figura 13 – Comparação gasto de combustível das simulações das Tabelas 9 e 10.

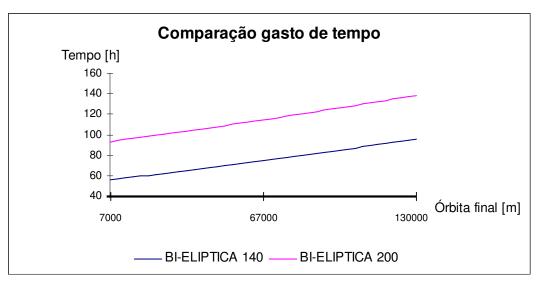


Figura 14 – Comparação gasto de tempo das simulações das Tabelas 9 e 10.

Fazendo a análise das Figuras 13 e 14, observa-se que o consumo de combustível e o tempo gasto em cada manobra se comportam do mesmo modo ao consumo de combustível e o tempo gasto nas transferências entre órbitas circulares.

3.2 MANOBRAS DE ATITUDE

A seguir são apresentados os resultados das simulações nas quais foram aplicados torques de pequena magnitude à um satélite com as mesmas dimensões do SCD2, que tem os seguintes momentos de inércia I_x =12,32, I_y =12,35 e I_z =14,50, com a velocidade de rotação alinhada em torno do eixo de maior momento de inércia, ou seja p = q = 0. Na Tabela 11 é apresentado o comportamento da atitude do satélite sem a aplicação de torque, durante um intervalo de 15 segundos.

Nas Tabelas de 12 a 14 são apresentados os resultados das simulações quando admiti-se o torque atuando apenas em um dos eixos.

Tabela 11- Comportamento da atitude sem torques $(N_x = N_y = N_z = 0)$.

t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,460000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	0,00152527760817	0,00048105519188	3,46413793064289	0,15312992836643	3,46150578744468	0,46394572863592
2	0,00250329727823	0,00175306954540	3,46827585687330	0,15213789699123	6,92860043893517	0,46508916518294
3	0,00258068900622	0,00336034096343	3,47241377402959	0,15155812581335	10,39946575513240	0,46323489774383
4	0,00172655402802	0,00472379405810	3,47655168647235	0,15499101483867	13,87088209715300	0,46502560421243
5	0,00024620457287	0,00534911620193	3,48068960689371	0,14932179107772	17,35457503421710	0,46433010877884
6	-0,00132666127841	0,00500635964874	3,48482754389917	0,15494802094324	20,83230628012000	0,46345216732086
7	-0,00242176196123	0,00381547710503	3,48896549259034	0,15171599644639	24,32209611626750	0,46543178289968
8	-0,00263931481944	0,00220549254654	3,49310343989855	0,15186412615157	27,81300060214610	0,46341611168268
9	-0,00189710250467	0,00076059589201	3,49724137811992	0,15345051673978	31,30675553320510	0,46463117223038
10	-0,00046303285982	0,00000796869279	3,50137931012344	0,15219417344553	34,80718939545740	0,46420157298739
11	0,00114017310236	0,00022430734499	3,50551724107391	0,15220839429867	38,31062497440430	0,46457995393812
12	0,00232478899091	0,00133229393998	3,50965516922735	0,15239778788950	41,81804238830700	0,46357469822918
13	0,00265374572982	0,00292623111485	3,51379308893504	0,15396776819216	45,32836446822850	0,46509312668052
14	0,00200295322212	0,00441900859124	3,51793100169284	0,14972818083510	48,84801982492380	0,46398516890147
15	0,00060962441993	0,00525760738287	3,52206891921574	0,15533496003920	52,36300941754450	0,46371567982852

Tabela 12 – Comportamento da atitude com $\,$ torque de 0,02 Nm em torno do eixo X. $(N_x=0,02,\,N_y=N_z=0).$

t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,46000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	0,00152542175142	0,00048069212787	3,45999999960863	0,15313164720092	3,45943528496146	0,46394579266636
2	0,00250537270794	0,00175087931546	3,45999999480759	0,15212131576296	6,92033940139701	0,46508980869719
3	0,00258943527613	0,00335635929482	3,45999998091930	0,15160156308027	10,38080622695930	0,46322218689032
4	0,00174754979842	0,00472303350358	3,45999996221673	0,15494420413682	13,83782054708960	0,46507047491161
5	0,00028076347589	0,00536219720320	3,45999995129841	0,14929211818894	17,30287754693000	0,46424840954530
6	-0,00128642017531	0,00504529386085	3,45999995688479	0,15512661051855	20,75766396813640	0,46353614474352
7	-0,00239359687791	0,00388564394322	3,45999997442689	0,15141166260918	24,22098903893150	0,46540551441221
8	-0,00264485477918	0,00229792301749	3,45999999105608	0,15214903360657	27,68033227577210	0,46335700652257
9	-0,00195034733844	0,00084987923632	3,45999999877660	0,15333101468683	31,13927651895170	0,46472754892305
10	-0,00055842129152	0,00005931405011	3,45999999999404	0,15218164117700	34,60030442087670	0,46416093246463
11	0,00103318887933	0,00020892319383	3,45999999992607	0,15210151193538	38,06037607443760	0,46453031801598
12	0,00225534426882	0,00124520840127	3,45999999737372	0,15287104134258	41,51968844356490	0,46360874584340
13	0,00267101815492	0,00279760768262	3,45999998674344	0,15321280176121	44,97938449560990	0,46527188460169
14	0,00213157102360	0,00431100343243	3,45999996852148	0,15024838843961	48,44203789343880	0,46348287799123
15	0,00082990209883	0,00524422521032	3,45999995341777	0,15566213099050	51,89720035660510	0,46440058814088

Tabela 13 – Comportamento da atitude com torque de 0,04 Nm em torno do eixo Y. $(N_x = 0, N_y = 0,04 \text{ e } N_z = 0).$

t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,460000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	-0,00094815419736	0,00304343254689	3,46000000154020	0,15047724063351	3,46180918033282	0,46383432221365
2	-0,00345356929947	0,00499857355832	3,46000002043411	0,15555302591001	6,91727407441602	0,46474982741737
3	-0,00662034176919	0,00516629022700	3,46000007508968	0,14728246479902	10,38467481743900	0,46518657889210
4	-0,00931607530276	0,00348660916835	3,46000014869124	0,15547676787902	13,83735907245220	0,46224528876446
5	-0,01057681082181	0,00056016224310	3,46000019165886	0,15181590214649	17,30064828745500	0,46723010578712
6	-0,00995172572564	-0,00256659138679	3,46000016967436	0,14864826678710	20,76349723584210	0,46209207445253
_ 7 _	-0,00766434230823	-0,00477556546532	3,46000010063967	0,15693841103511	24,21609723615760	0,46535624676127
8	-0,00453259902400	-0,00527685983166	3,46000003519768	0,14787936182119	27,68420427740710	0,46472834558088
9	-0,00167636624057	-0,00389121830415	3,46000000481457	0,15394956357932	31,13878129669660	0,46365364053258
1	-0,00011699529954	-0,00111412817432	3,46000000002345	0,15143406991913	34,60103175415980	0,46468526292048
_11	-0,00041209677026	0,00206135956690	3,46000000029096	0,15307794589929	38,05956225203610	0,46475767278549
12	-0,00245614624182	0,00449973218307	3,46000001033542	0,14898139489374	41,52322695942930	0,46406449190596
13	-0,00551821846884	0,00532905960796	3,46000005216956	0,15637062327278	44,97662515046930	0,46378194916315
14	-0,00850335661064	0,00425278515015	3,46000012387971	0,14843583359012	48,44372874540760	0,46638348334130
15	-0,01034411433576	0,00165577034508	3,46000018331838	0,15249909904643	51,90011079142490	0,46160906700113

Tabela 14 – Comportamento da atitude com torque de 0,06 Nm em torno do eixo Z. $(N_x = N_y = 0 \text{ e } N_z = 0,06)$.

4[0]	r. [mod/o]	or [mod/o]	[d./]	(C) [m d]	w (V) [mad]	O(O) [rad]
t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,460000000000000	0,15250000000000	0,00000000000000	0,46440000000000
1	-0,00094887033278	0,00304314496069	3,46413793257555	0,15047695580883	3,46387839987769	0,46383585442239
2	-0,00345788947780	0,00499443278195	3,46827588251585	0,15555042881199	6,92555224014668	0,46473502993107
3	-0,00662819551901	0,00514884017909	3,47241386816616	0,14733848871330	10,40324535367760	0,46522507568378
4	-0,00931757547758	0,00344471963173	3,47655187236597	0,15527831235092	13,87063991962960	0,46220344925637
5	-0,01055100884244	0,00049121233962	3,48068984516707	0,15217401989260	17,35205222145580	0,46720437950477
6	-0,00987492888168	-0,00264687807241	3,48482775270350	0,14827937902451	20,83830941574030	0,46225110322016
7	-0,00752593983805	-0,00483175876641	3,48896561425231	0,15705438229317	24,31737183334260	0,46508594871634
8	-0,00435028207146	-0,00526580679394	3,49310348124367	0,14814599606331	27,81637842616860	0,46498012144699
9	-0,00150025694437	-0,00378498729983	3,49724138399510	0,15351981413361	31,30675045681110	0,46354767997200
10	-0,00001571782184	-0,00092381475173	3,50137931121607	0,15161451135461	34,80776552767660	0,46467399315620
_11	-0,00044244170782	0,00227480819881	3,50551724258121	0,15329988751992	38,30970720009250	0,46466241095807
12	-0,00262792048951	0,00463828415938	3,50965518495367	0,14882836024871	41,82129327955490	0,46448553153615
13	-0,00577192520873	0,00529459857256	3,51379316056327	0,15558960477246	45,32697716383010	0,46310754997005
14	-0,00871639421619	0,00399617432150	3,51793116352329	0,15063865044566	48,84727640182060	0,46684741522712
15	-0,01037051020455	0,00121628513310	3,52206914773082	0,14946775007039	52,36833898675920	0,46190139194189

Nas tabelas 15, 16 e 17, são apresentados resultados de simulações com aplicação de torques com componentes em torno de eixos diferentes. Na tabela 15 aplicamos um torque de 0,02 Nm em torno do eixo X e 0,04 Nm em torno do eixo Y, em 16 os torques foram de 0,02 Nm em torno do eixo X e 0,06 Nm em torno do eixo X e em 17 aplicamos torques de 0,04 Nm em torno do eixo X e 0,06 Nm em torno do e

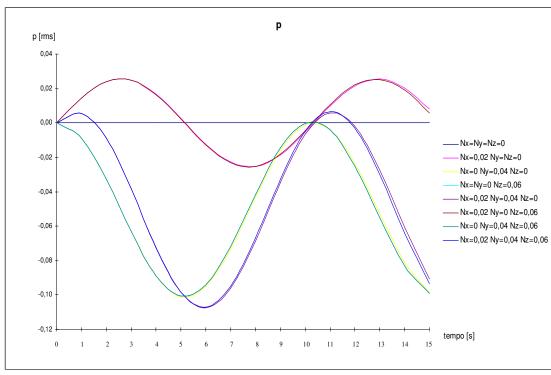
Tabela 15 – Comportamento da atitude com torque de 0,02 Nm em torno do eixo X e 0,04 Nm em torno do eixo Y ($N_x = 0.02 N_y = 0.04 e N_z = 0$).

	- ,		(- · x	- , - · · · L		
t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,0000000000000	0,00000000000000	3,46000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	0,00057726755448	0,00352412467480	3,45999999797291	0,15110776344307	3,46124559668810	0,46337960408337
2	-0,00094819658341	0,00674945288048	3,45999999906563	0,15517041821598	6,91761743139078	0,46543916891620
3	-0,00403090648469	0,00852264957571	3,46000003871115	0,14637315881735	10,38549201035500	0,46401066796811
4	-0,00756852561160	0,00820964278554	3,46000014136203	0,15792750756703	13,83517313719860	0,46291864764109
5	-0,01029604772713	0,00592235939658	3,46000027517148	0,14862590304266	17,30350805281420	0,46707943331137
6	-0,01123814640927	0,00247870183471	3,46000037079026	0,15128020608777	20,76115620166780	0,46122414048206
7	-0,01005793924257	-0,00088992289872	3,46000038790817	0,15584347757874	24,21709354165480	0,46635981003050
8	-0,00717745284834	-0,00297893844164	3,46000035137600	0,14751885603145	27,68454701040380	0,46368606030094
9	-0,00362671161126	-0,00304134009496	3,46000031571772	0,15478090974384	31,13805865608220	0,46398162374690
10	-0,00067541424247	-0,00105481390096	3,46000030537070	0,15111537664279	34,60133798379220	0,46444634797656
11	0,00062109388248	0,00227028430021	3,46000030446468	0,15267965245895	38,05993991577950	0,46488790281715
12	-0,00020080159988	0,00574494283237	3,46000030172537	0,14934697030912	41,52292297293400	0,46327273555072
13	-0,00284720161167	0,00812666919930	3,46000032335128	0,15707772554757	44,97601780789170	0,46465485674617
14	-0,00637178813945	0,00856378910537	3,46000040453710	0,14618567024596	48,44576793616710	0,46547017153696
15	-0,00951421508857	0,00689999397623	3,46000053471467	0,15567878130486	51,89729662804440	0,46160949984958

Tabela 16 – Comportamento da atitude com torques de 0,02 Nm em torno do eixo X e 0,06 Nm em torno do eixo Z (N_x = 0,02 N_y = 0 e N_z = 0,06).

t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,46000000000000	0,15250000000000	0,00000000000000	0,46440000000000
1	0,00152527760817	0,00048105519188	3,46413793064289	0,15312992836643	3,46150578744468	0,46394572863592
2	0,00250329727823	0,00175306954540	3,46827585687330	0,15213789699123	6,92860043893517	0,46508916518294
3	0,00258068900622	0,00336034096343	3,47241377402959	0,15155812581335	10,39946575513240	0,46323489774383
4	0,00172655402802	0,00472379405810	3,47655168647235	0,15499101483867	13,87088209715300	0,46502560421243
5	0,00024620457287	0,00534911620193	3,48068960689371	0,14932179107772	17,35457503421710	0,46433010877884
6	-0,00132666127841	0,00500635964874	3,48482754389917	0,15494802094324	20,83230628012000	0,46345216732086
7	-0,00242176196123	0,00381547710503	3,48896549259034	0,15171599644639	24,32209611626750	0,46543178289968
8	-0,00263931481944	0,00220549254654	3,49310343989855	0,15186412615157	27,81300060214610	0,46341611168268
9	-0,00189710250467	0,00076059589201	3,49724137811992	0,15345051673978	31,30675553320510	0,46463117223038
10	-0,00046303285982	0,00000796869279	3,50137931012344	0,15219417344553	34,80718939545740	0,46420157298739
11	0,00114017310236	0,00022430734499	3,50551724107391	0,15220839429867	38,31062497440430	0,46457995393812
12	0,00232478899091	0,00133229393998	3,50965516922735	0,15239778788950	41,81804238830700	0,46357469822918
13	0,00265374572982	0,00292623111485	3,51379308893504	0,15396776819216	45,32836446822850	0,46509312668052
14	0,00200295322212	0,00441900859124	3,51793100169284	0,14972818083510	48,84801982492380	0,46398516890147
15	0,00060962441993	0,00525760738287	3,52206891921574	0,15533496003920	52,36300941754450	0,46371567982852

Tabela 17 – Comportamento da atitude com torques de 0,04 Nm em torno do eixo Y e 0,06 Nm em torno do eixo Z. $(N_x = 0, N_y = 0.04 \text{ e } N_z = 0.06)$.


t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,000000000000000	0,000000000000000	3,460000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	-0,00094887033278	0,00304314496069	3,46413793257555	0,15047695580883	3,46387839987769	0,46383585442239
2	-0,00345788947780	0,00499443278195	3,46827588251585	0,15555042881199	6,92555224014668	0,46473502993107
3	-0,00662819551901	0,00514884017909	3,47241386816616	0,14733848871330	10,40324535367760	0,46522507568378
4	-0,00931757547758	0,00344471963173	3,47655187236597	0,15527831235092	13,87063991962960	0,46220344925637
5	-0,01055100884244	0,00049121233962	3,48068984516707	0,15217401989260	17,35205222145580	0,46720437950477
6	-0,00987492888168	-0,00264687807241	3,48482775270350	0,14827937902451	20,83830941574030	0,46225110322016
7	-0,00752593983805	-0,00483175876641	3,48896561425231	0,15705438229317	24,31737183334260	0,46508594871634
8	-0,00435028207146	-0,00526580679394	3,49310348124367	0,14814599606331	27,81637842616860	0,46498012144699
9	-0,00150025694437	-0,00378498729983	3,49724138399510	0,15351981413361	31,30675045681110	0,46354767997200
10	-0,00001571782184	-0,00092381475173	3,50137931121607	0,15161451135461	34,80776552767660	0,46467399315620
11	-0,00044244170782	0,00227480819881	3,50551724258121	0,15329988751992	38,30970720009250	0,46466241095807
12	-0,00262792048951	0,00463828415938	3,50965518495367	0,14882836024871	41,82129327955490	0,46448553153615
13	-0,00577192520873	0,00529459857256	3,51379316056327	0,15558960477246	45,32697716383010	0,46310754997005
14	-0,00871639421619	0,00399617432150	3,51793116352329	0,15063865044566	48,84727640182060	0,46684741522712
15	-0,01037051020455	0,00121628513310	3,52206914773082	0,14946775007039	52,36833898675920	0,46190139194189

A tabela 18 apresenta resultados de uma simulação coma aplicação de torques com componentes em torno dos três eixos, 0.02 Nm em torno do eixo X, 0.04 em torno do eixo Y e 0.06 em torno do eixo Z.

Tabela 18 – Comportamento da atitude com torque de 0,02 Nm em torno do eixo X, 0,04 Nm em torno do eixo Y e 0,06 Nm em torno do eixo Z. (N_x = 0,02 N_y = 0,04 e N_z = 0,06).

t[s]	p [rad/s]	q [rad/s]	r [rad/s]	φ (G) [rad]	ψ (Y) [rad]	θ (O) [rad]
0	0,00000000000000	0,00000000000000	3,460000000000000	0,152500000000000	0,00000000000000	0,46440000000000
1	0,00057640727581	0,00352420015261	3,46413792900859	0,15110575539445	3,46331635761667	0,46338107358219
2	-0,00095459219147	0,00674750233406	3,46827586117195	0,15518438736047	6,92588078765183	0,46542374855440
3	-0,00404750650470	0,00850918119634	3,47241383199910	0,14638615130454	10,40410097676950	0,46406194480460
4	-0,00759102155764	0,00816851380209	3,47655186571745	0,15777678971540	13,86841115277010	0,46283179640685
5	-0,01030480464928	0,00584032848677	3,48068992967082	0,14901352621053	17,35488550454210	0,46713494036087
6	-0,01120159065607	0,00235948093156	3,48482795394173	0,15072975876198	20,83613092098730	0,46129911285683
_ 7 _	-0,00994770182854	-0,00101628302715	3,48896589921911	0,15626229860615	24,31809739457500	0,46611627494528
8	-0,00698959590961	-0,00306031582860	3,49310379244582	0,14750219130659	27,81697406994550	0,46399740512123
9	-0,00339735748646	-0,00302439235341	3,49724168878480	0,15447149798356	31,30591976957480	0,46377919331463
10	-0,00047874839623	-0,00091584574497	3,50137961071939	0,15130850085952	34,80806001380970	0,46447568867084
_11	0,00069773304132	0,00249911713872	3,50551754062648	0,15300821150763	38,30998918191050	0,46484226980858
12	-0,00030313128676	0,00597058032026	3,50965546893101	0,14871998269356	41,82141288249030	0,46366041993463
13	-0,00311818091036	0,00822083146429	3,51379342495718	0,15705696206828	45,32568925940910	0,46380239473476
14	-0,00671344358250	0,00841518321776	3,51793144243370	0,14787887837189	48,84976959752250	0,46643477977158
15	-0,00976088851089	0,00647389068911	3,52206950359585	0,15231245445912	52,36582444182030	0,46121353415904

Os gráficos das Figuras 15, 16 e 17 apresentam como as componentes da velocidade de rotação em torno dos eixos X,Y e Z, p, q e r respectivamente, se comportam com a aplicação de diferentes torques em diferentes direções.

Figura 15 – Comportamento temporal da componente da velocidade de rotação (p) no eixo x.

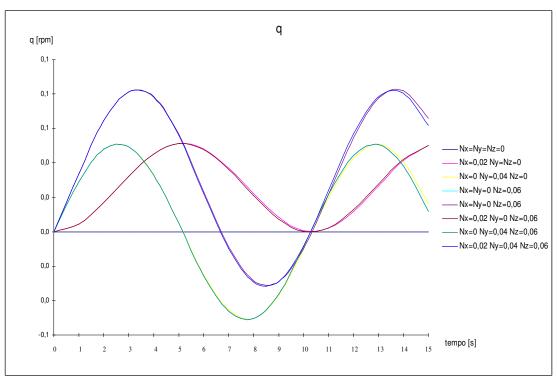


Figura 16 - Comportamento temporal da componente da velocidade de rotação (q) no eixo y

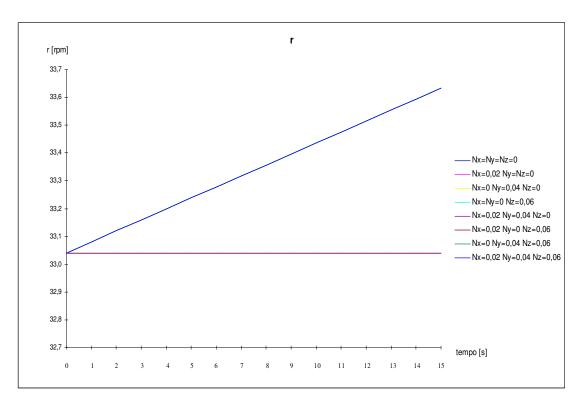


Figura 17 - Comportamento temporal da componente da velocidade de rotação (r) no eixo z

As figuras 18, 19 e 20 apresentam as variações dos ângulos de Euler ϕ , ψ e θ respectivamente, quando aplicamos diferentes torques em diferentes direções.

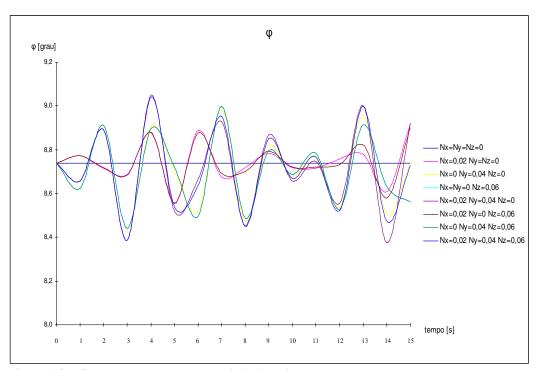


Figura 18 - Comportamento temporal do ângulo ϕ .

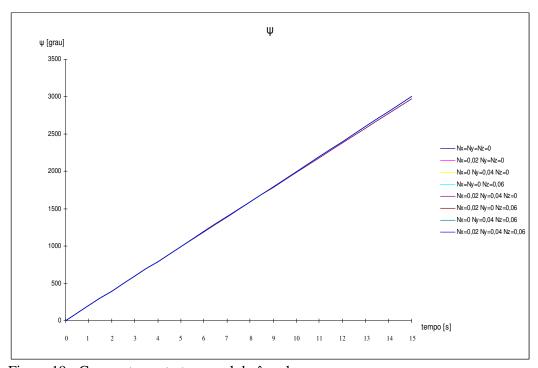


Figura 19 - Comportamento temporal do ângulo $\boldsymbol{\psi}$

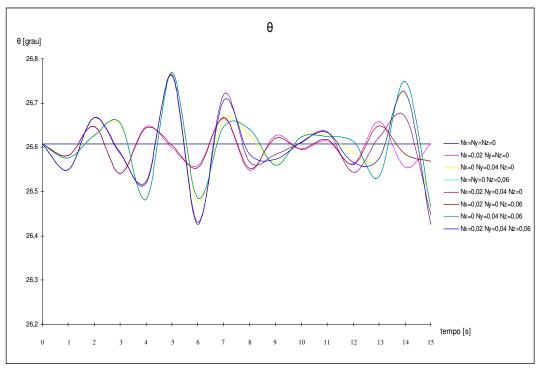


Figura 20 - Comportamento temporal do ângulo θ

3.2.2 DISCUSSÃO DOS RESULTADOS DAS MANOBRAS DE ATITUDE

Pelos resultados apresentados nas Figuras 12, 13 e 14 verifica-se que as componentes da velocidade de rotação p e q no eixo x e y possuem um comportamento período, que aumentam de amplitude dependendo do tipo e da magnitude do torque de controle aplicado. Pelos resultados tabelados pode-se determinar qual a magnitude do torque requerido para uma determinada variação da velocidade de rotação.

Pode-se observar pela Figura 12 que para a componente p (ao longo do eixo x) quando predomina a componente do torque no eixo x , p possui um comportamento periódico em torno de zero (valor inicial de p), e que com o aumento da componente do torque no eixo y o comportamento periódico é deslocado deste valor inicial.

Pode-se observar pela Figura 13 que para a componente q (ao longo do eixo y) quando a componente do torque no eixo x é nula, q possui um comportamento periódico em torno de zero (valor inicial de q), e que com o aumento desta componente do torque o comportamento periódico é deslocado deste valor inicial.

Pela Figura 14 e Tabelas 14-18 observa-se que a componente r (ao longo do eixo z) é afetada pela componente do torque em torno do eixo z (Tabelas 14, 16, 17, 18), sendo um aumento linear é observado em sua magnitude.

Para o ângulo ψ verifica-se pela Figura 16 que seu comportamento é pouco afetado pelo torque de controle, mantendo a natureza do comportamento linear do movimento sem torque. Isso ocorre devido ao satélite SCD2 ser estabilizado por rotação, com a rotação ocorrendo em torno do eixo de maior momento de inércia (eixo z).

Para os ângulos $\varphi \in \theta$ observa-se um comportamento oscilatório em torno do valor inicial (sem aplicação do torque). Com o aumento do torque de controle observa-se um aumento na amplitude de oscilação.

4 COMENTÁRIOS FINAIS

Pelo relatório apresentado observa-se que todas as fases previstas no plano de atividades foram cumpridas, com exceção da fase IV. Esta fase ficou restrita ao estudo do método de busca direta de órbitas genéricas para as manobras de transferência de órbita, não havendo tempo viável para a realização das simulações numéricas.

Os resultados aqui apresentados serão úteis no projeto preliminar de missões de satélites de modo a prever a transferência de órbita necessária para a colocação do satélite em órbita nominal ou para pequenas manobras de órbita e também para avaliar as magnitude dos torque para o controle de atitude.

Os resultados deste trabalho serão apresentados no SINCINPE 2010 e um trabalho foi submetido para apresentação no Colóquio Brasileiro de Dinâmica Orbital de 2010.

5 REFERÊNCIAS BIBLIOGRÁFICAS

PRADO, A. F. B. A. Optimal Transfer and Swing-By Orbits in the Two and Theree Body Problems, Ph. D. Dissertation, University of Texas, Austin, Texas, USA, 1993.

PRADO, A. F. B. A; KUGA, H. K. Fundamentos de Tecnologia Espacial. INPE, São José dos Campos, 2001.

PRADO, A. F. B. A Manobras Orbitais. Apostila da Escola de Verão de Dinâmica Orbital e Planetologia, 107 – 129, Guaratinguetá, 2010.

ZANARDI, M. C. Fundamentos de Astronáutica, Apostila do ITA, 1990.

ZANARDI, M. C. Dinâmica da Atitude de Satélites Artificiais, Tese de Livre Docência, FEG/UNESP, Guaratinguetá, SP, 2005.