
A Metadata Handling API for Framework Development:
a Comparative Study

Eduardo Guerra
Computer Science Faculty

Free University of Bozen-Bolzano
Bolzano, Italy

guerraem@gmail.com

Phyllipe Lima
National Institute of

Telecommunications (INATEL)
Santa Rita do Sapucaí, Brazil

phyllipe@inatel.br

Joelma Choma, Marco Nardes
National Institute for Space Research

(INPE)
São José dos Campos, Brazil

{jh.choma70,marconardes}@gmail.com

Tiago Silva
Department of Computer Science
Federal University of São Paulo
São José dos Campos, Brazil

silva.tiago@unifesp.br

Michele Lanza
Faculty of Informatics
University of Lugano
Lugano, Switzerland
michele.lanza@usi.ch

Paulo Meirelles
São Paulo School of Medicine
Federal University of São Paulo

São Paulo, Brazil
paulo.meirelles@unifesp.br

ABSTRACT
Frameworks play an essential role in software development, provid-
ing not only code reuse, but also design reuse. Several Java frame-
works and APIs such as Spring, JPA, and CDI rely on the use of
metadata, mainly defined by code annotations. These frameworks
usually use the Java Reflection API to consume code annotations,
which only returns the annotations in a given code element. This
strategy, however, is far from the needs of a real framework. The
goal of this paper is to propose a novel API, named Esfinge Meta-
data, to assist in the development of frameworks based on metadata
and applications based on custom annotations. Being based on an-
notations itself, this new API uses them to map metadata to class
members. We carried out an experiment to evaluate our API and its
impact on aspects such as code structure, complexity, and coupling,
while also performing a comparison with the direct use of the Java
Reflection API. The participants implemented a metadata-based
framework based on realistic requirements in a sequence of 10 tasks
that took an average of nine hours. As a result, participants that
used our API maintained a more stable code evolution, regarding
complexity and coupling as opposed to participants using the Java
Reflection API, where the code metrics evolution and structure vary
greatly.

CCS CONCEPTS
• Software and its engineering → Software development tech-
niques.

KEYWORDS
Framework, Metadata, Meta-Framework, Annotations, Code Met-
rics, Exploratory Experiment, Java

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422428

ACM Reference Format:
Eduardo Guerra, Phyllipe Lima, Joelma Choma, Marco Nardes, Tiago Silva,
Michele Lanza, and Paulo Meirelles. 2020. A Metadata Handling API for
Framework Development: a Comparative Study. In 34th Brazilian Sympo-
sium on Software Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3422392.3422428

1 INTRODUCTION
Modern frameworks use metadata configuration to offer applica-
tions a high reuse level and a better adaptation to their needs. These
are known as metadata-based frameworks since they process their
logic based on the metadata configuration of the classes whose
instances they are working with [11]. Highly used Java frameworks
such as Spring, Hibernate, and JUnit use code annotations as their
primary approach for configuring metadata.

The consumption of code annotations in Java usually make di-
rect use of the Java Reflection API (Application Programming Inter-
face). In this native API, the primary method for metadata retrieval
returns the annotations that are configuring a given element. How-
ever, this approach is far from the needs of such a framework and
may lead to a complex and high coupled code that may compromise
its evolution and maintenance. For instance, it is typical for a frame-
work to (i) retrieve all methods or fields with an annotation, (ii)
to validate an annotation based on its context, and (iii) to retrieve
annotations based on a common annotation that configure its type
[11].

The Esfinge Metadata API is an extensible meta-framework for
reading and validating annotations, which aims at simplifying and
assisting, in particular, the development of metadata-based frame-
works. Moreover, any application that defines custom annotations
can also use it. The Esfinge Metadata API has features to retrieve
and find annotations, and it was developed based onmetadata-based
framework patterns and best practices [11]. The API was designed
to guide developers towards these best practices and provide a
stable code evolution, with low complexity and coupling.

This paper aims to propose a novel API approach for metadata
reading, processing, and consumption. As such, it provides function-
ality that assists the development of metadata-based frameworks,
as well as applications that use custom annotations. A prior work
presented a preliminary version of the Esfinge Metadata API and

499

https://doi.org/10.1145/3422392.3422428
https://doi.org/10.1145/3422392.3422428

SBES ’20, October 21–23, 2020, Natal, Brazil Guerra and Lima, et al.

performed a demonstrative case study. The API was still under con-
struction and no proper experiment was carried out for evaluation
[18].

To evaluate our novel API, we performed a controlled experi-
ment with two groups of carefully selected developers. One group
used our new Esfinge Metadata API, while the other used the Java
Reflection API. They both developed a metadata-based framework
for mapping application parameters to an annotated class instance,
which we named the “target framework”. We divided the experi-
ment into 10 tasks, where each one of them incrementally added
functionality to the target framework. The complete experiment
took, on average, nine hours of coding.

This paper aims to answer the following research question:
RQ: How does the Esfinge Metadata API provide support to main-

tain complexity and coupling in the evolution of a metadata-
based framework compared to the Java Reflection API?

To answer this question, we executed the experiment and af-
terward analyzed the repository provided by each participant. We
performed a careful code inspection in a qualitative analysis and
observed the evolution of well-established software code metrics.
All our findings and conclusions were obtained based on this code
inspection, rather than statistical and numerical analysis.

From the results, we highlight the following finding. The usage
of the Esfinge Metadata API provides a more consistent behavior in
the evolution of coupling and complexity metrics, guidingmetadata-
based framework development to a more predictive way towards
the best practices.

2 METADATA IN THE CONTEXT OF
OBJECT-ORIENTED PROGRAMMING

The term “metadata” is used in a variety of contexts in the computer
science field. In all of them, it means data referring to the data itself.
When discussing databases, the data are the ones persisted, and
the metadata is their description, i.e., the structure of the table.
In the object-oriented context, the data are the instances, and the
metadata is their description, i.e., information that describes the
class. As such, fields, methods, super-classes, and interfaces are
all metadata of a class instance. A class field, in turn, has its type,
access modifiers, and name as its metadata. When a developer uses
reflection, it is manipulating the metadata of a program and using
it to work with previously unknown classes [6, 11].

2.1 Code Annotations
Some programming languages provide features that allow custom
metadata to be defined and included directly on programming ele-
ments. This feature is supported in languages such as Java, through
the use of annotations [12], and in C#, by attributes [4]. A benefit is
that the metadata definition is closer to the programming element,
and its definition is less verbose than external approaches, such as
using an XML file. Also, the metadata is being explicitly defined in
the source code as opposed to code convention approaches. Some
authors call the usage of code annotations as attribute-oriented
programming since it is used to mark software elements [20, 23].

Annotations are a feature of the Java language, which became
official on version 1.5 [12] spreading, even more, the use of this
technique in the development community. Some base APIs, starting

in Java EE 5, like EJB (Enterprise Java Beans) 3.0, JPA (Java Per-
sistence API) [13], and CDI (Context and Dependency Injection),
use metadata in the form of annotations extensively. This native
support to annotations encourages many Java frameworks and API
developers to adopt the metadata-based approach in their solutions.

The Java language provides the Java Reflection API to allow
developers to retrieve code annotations at runtime. It is also used
to retrieve other information about the class structure, such as its
fields, methods, and constructors. Additionally, developers may
invoke methods, instantiate classes, and manipulate field values.

2.2 Java Reflection API to Consume Code
Annotations

The Java language offers means for developers to consume code an-
notations through the Java ReflectionAPI. Using the AnnotatedEle-
ment interface, implemented by reflection classes that represent
code elements (such as the classes Method, Field and so forth), de-
velopers have access to methods such as isAnnotationPresent()
and getAnnotation(). The first one verifies if an annotation is
present on a give code element, and the latter returns the desired
annotation [6].

Using the Java Reflection API, the developer must write explicit
code to read metadata and retrieve code annotations individually.
Developers cannot recover all annotations from a method, or a field,
or even a class using a single call. The search must be executed
iteratively. Hence, for complex metadata reading, using the Java
Reflection API, the code could get complicated and create barriers
to allow evolution. With this approach, the developer is not guided
into using known best practices for metadata reading [9].

3 ESFINGE METADATA API
The Esfinge Metadata API is an open-source1 meta-framework
developed to ease and support the process of metadata reading. It
also functions as an API, and a preliminary version was published
on [18] with no proper experiment, only a demonstration.

We believe the API is more suitable for metadata-based frame-
works development since the Java Reflection API has only two main
methods to access annotations. The first one checks if a specific
annotation is present on a code element, the second retrieves an an-
notation from an element. Both of these methods are insufficient for
the needs of developers. Hence they need to create much verbose
code to retrieve the necessary data.

Our research group designed the API based on recurrent solu-
tions found inside frameworks to read metadata from applications.
They are documented as patterns on a previous work [9]. Using
the API to read metadata is not limited to frameworks using these
patterns. However, the developer will be guided towards them, just
as MVC frameworks tend to do the same.

The core pattern is the “Metadata Container”. It introduces a
class role called Metadata Container, whose instance represents
metadata retrieved at runtime. Figure 1 presents the pattern’s basic
diagram.

The class MetadataContainer is responsible for storing meta-
data read from annotations at runtime. The FrameworkController
asks the Repository for metadata of a given target class. If it was
1github.com/EsfingeFramework/metadata

500

A Metadata Handling API for Framework Development SBES ’20, October 21–23, 2020, Natal, Brazil

Figure 1: Basic structure of the Metadata Container pattern
[9]

not yet retrieved, the Repository invokes the MetadataReader to
fetch it wherever it may be located. The MetadataReader should
handle all peculiarities of the annotation schema2 and strategies for
metadata definition, aswell as it should return the MetadataContainer
ready to be used by the FrameworkController.

Since this is a recurrent practice in several frameworks [9], we
assume that storing metadata in a regular class when reading a
complex annotation schema is an excellent general design. There-
fore the “Metadata Container” pattern is central for the proposed
API.

To demonstrate how to use this API, consider the class on Figure
2. It is annotated with @Annotation1(name="Player") and both
private fields are annotatedwith @Annotation2(attr=‘‘attr1’’).
We wish to read the metadata using the Esfinge Metadata API.

To read the metadata of the class Player, consider the class on
Figure 3. It contains a class using the Esfinge Metadata API. It is
functioning as a class metadata container to store metadata from
annotations used on the example code on Figure 2. Further, the
class FieldContainer on Figure 4 is working as a field metadata
container. This structure is following the “Metadata Container”
pattern.

1 @Annotation1(name="Player")
2 public class Player {
3
4 @Annotation2(attr="attr1")
5 private int field1;
6
7 @Annotation2(attr="attr2")
8 private int field2;
9 }

Figure 2: Simple class with metadata to be read

The classes on Figures 4 and 3 use some annotations provided
by the Esfinge Metadata API. The following list gives a brief un-
derstanding of some of the framework annotations, so interested
developers and researches may have a grasp of how the Esfinge
Metadata API works. The annotations presented on this list are just
a small sample of the functionalities and capabilities offered by the
Esfinge Metadata API3.
2An annotation schema is defined as a set of associated annotations that belong to the
same API. An annotation-based API usually uses a group of related annotations that
represent the set of metadata necessary for its usage.
3For further details, refer to the official website of the Esfinge Metadata API http:
//esfinge.sourceforge.net/MetadataEN.html, available in english

1
2 @ContainerFor(ContainerTarget.TYPE)
3 public class PlayerMetadataContainer {
4 @ElementName
5 private String elementName
6
7 @AllFieldsWith(Annotation2.class)
8 private List<FieldContainer> fieldMetadata;
9
10 @AnnotationProperty(annotation = Annotation1.class, property = "name")
11 private String exampleAnnotProp;
12 //getters and setters omitted
13 }

Figure 3: Simple Class Metadata Container

1 @ContainerFor(ContainerTarget.FIELDS)
2 public class FieldContainer {
3
4 @ElementName
5 private String elementName
6
7 @AnnotationProperty(annotation = Annotation2.class,
8 property="attr")
9 private String attr;
10
11 //getters and setters omitted
12 }

Figure 4: Simple Field Metadata Container

• @ContainerFor(): The container class can store metadata
read from fields, methods, classes, enums, etc. This annota-
tion informs the container class what type of code element
it will store. When we pass in ContainerTarget.TYPE, we
are informing that this class stores metadata from a class or
enum. We pass in ContainerTarget.FIELDS to store meta-
data from a field, and so forth.

• @ElementName: This stores the name of the code element
from where we are reading the metadata. In this example
the name is “Player”, since we are reading the metadata from
the class Player. If we were reading metadata from a field,
as shown in Figure 4, the @ElementName would be the name
of the field, i.e, field1 and field2.

• @AnnotationProperty(): Retrieves the specified property
from a given annotation. Observing Figure 3, line 11, we
want to retrieve from inside @Annotation1 the value stored
on the parameter “name”. As shown on the code of Figure 2,
line 1, this value is “Player”.

• @AllFieldsWith()): This is done to retrieve metadata on
fields inside the class. We specify what annotation we are
looking for, and it searches for the fields that contain those
annotations. In the code on Figure 3, line 8, we are search-
ing every field that contains the annotation @Annotation2.
Looking at Figure 2 the fields are “field1” and “field2”. This an-
notations also has a version formethods, @AllMethodsWith(),
i.e, it will search for methods with a given annotation.

Figure 5 shows how the containers are being used to read meta-
data from the class Player. We first create the AnnotationReader
and the method readingAnnotationsTo() returns the container.
It has two parameters; the first is the class with the metadata to be
read, i.e., the (Player) class. The second parameter is the class that

501

http://esfinge.sourceforge.net/MetadataEN.html
http://esfinge.sourceforge.net/MetadataEN.html

SBES ’20, October 21–23, 2020, Natal, Brazil Guerra and Lima, et al.

will store the metadata that was read, i.e., the (PlayerMetadata-
Container) class. Afterward, the container is populated with meta-
data that can be accessed through getter methods. The output of
running this code is presented on Figure 6.

1
2 public class Main {
3
4 public static void main(String args[]){
5
6 AnnotationReader reader = new AnnotationReader();
7 PlayerMetadataContainer container = reader.readingAnnotationsTo
8 (Player.class,
9 PlayerMetadataContainer.class);
10
11 System.out.println(container.getElementName());
12 System.out.println(container.getExampleAnnotProp());
13
14 for (FieldContainer fContainer : container.getFieldMetadata())
15 {
16 System.out.println(fContainer.getElementName());
17 System.out.println(fContainer.getAttr());
18 }
19
20 }

Figure 5: Reading Simple Metadata

1 Player \\ The name of the class with metadata
2 Player \\ The attribute inserted in the annotation @Annotation1
3 field1 \\ The name of the field
4 attr1 \\ The attribute inserted on the @Annotation2 on field1
5 field2 \\ The name of the field
6 attr2 \\ The attribute inserted on the @Annotation2 on field2

Figure 6: Output code

As seen in this example, the developer does not have to write
Reflection code directly and has an intuitive way of retrieving
metadata. The developer can map fields decoratively to receive
information about specific annotations or to retrieve all annotations
from methods, fields, and classes. By using this API, the developer
is guided into using good practices to recover metadata, even if
unaware. The creation and mapping of the class in the role of the
metadata container can seem unnecessarily complicated to retrieve
data of a simple set of annotations. Still, for a more complicated
metadata schema, the gain in terms of maintainability might worth
it.

4 EVALUATING METADATA-BASED
FRAMEWORK DEVELOPMENT API

In this section, we present the methodology used to evaluate the
Esfinge Metadata API. We begin discussing the research question
that guided our work. Then we show how our experiment was
carried out in terms of the participants’ selection and how the target
framework was divided into tasks, where each task added new
functionality to the framework. To analyze our data, we performed
a careful code inspection with the aid of source code metrics and
also the time spent on each task.

4.1 Research Questions
The goal of this experiment is to analyze APIs for code annota-
tion reading for the purpose of exploring with regard to object-
oriented metrics from the viewpoint of experienced and skilled
Java developers, in the context of development and evolution of
metadata-based frameworks [2]. We focus this study on the follow-
ing research question:

RQ: How does the Esfinge Metadata API provide support to main-
tain complexity and coupling in the evolution of a metadata-based
framework compared to the Java Reflection API?. To answer this
question, we performed a historical analysis and observed how
object-oriented code metrics values evolved during the develop-
ment. We analyzed well-established metrics such as Number of
Methods (NOM) and others from the CK suite (as described in Sec-
tion 4.2.4). Regarding these metrics, our hypothesis is composed of
two parts. First (i), the complexity should be lower in codes that
used our Esfinge Metadata API since some logic is being executed
through annotations reading and processing. As for the Java Re-
flection API, similar rules are supposed to be implemented, using
imperative code. Second (ii), the coupling should be lower in codes
that used our Esfinge Metadata API if we do not consider the cou-
pling to annotations. That is because several links should be bound
by metadata configuration and not by method calls.

4.2 Experimental Design
From a practical point of view, we cannot measure an API’s impact
during the development of a small framework. We conducted an ex-
ploratory experiment to overcome this challenge and observe how
API usage influences code evolution. The required time for imple-
mentation was much longer than other controlled experiments that
last, on average, 110 minutes [14]. Due to this implementation time,
it is not viable for the participants to implement all the features in a
continuous period. The division of the experiment in tasks allowed
the participants to perform it in small portions, being able to take a
break between them.

Table 1: Time spent to conclude the experiment

API Participant Time Spent Execution
Esfinge Metadata API P1 6 days (432 min) Correct
Esfinge Metadata API P2 5 days (810 min) Correct
Esfinge Metadata API P3 4 days (733 min) Correct
Esfinge Metadata API P4 8 days (773 min) Correct
Esfinge Metadata API P5 2 days (318 min) Correct
- Group Average 5 days (613 min) -
Reflection P6 11 days (1110 min) Correct
Reflection P7 12 days (472 min) Correct
Reflection P8 21 days (611 min) Incorrect
Reflection P9 1 days (389 min) Correct
Reflection P10 6 days (350 min) Correct
- Group Average 10.2 days (586 min) -
- Average 7 days (545 min) -

We provided an automated test suite to ensure that a given
behavior is implemented at the end of each task. Thus, the task is
considered complete only after the tests are passing. Afterward,
the participant should commit the code to the repository. Given
the nature of this experiment and the time spent executing the

502

A Metadata Handling API for Framework Development SBES ’20, October 21–23, 2020, Natal, Brazil

tasks, each participant remotely performed the experiment. We
modeled our tests with a blackbox approach, considering only input
and desired output. Hence the tests did not consider the internal
structure used by the participants to develop their target framework

During the selection of the participants, we observed that the
execution time of tasks varied greatly between them. Hence we con-
cluded that a careful analysis of time would not be very meaningful
to our experiment.

In the following subsections, we describe the design of our ex-
periment based on the recommendations of Ko at al. [14].

4.2.1 Participants Selection and Training. We initially recruited 47
professional developers with at least three years of Java experience.
The demographic data was gathered to understand better their level
of expertise, background, and experience with the required tools.
With this information, we were able to decide which participants
were qualified to be in our experiment.

To select the participants, we applied a test to assess their knowl-
edge of Java Reflection. We invited them to develop a short program
in which the participants would have to demonstrate their skills
in advanced programming techniques through reflection and code
annotations. As a selection criterion, they would have to implement
the activity correctly and in less than one hour. As a result, 10 par-
ticipants completed the exercise successfully and agreed with the
terms of the study. In short, we submitted the candidates through a
rigorous selection process and selected ones with suitable program-
ming skills. Once the selected participants agreed to participate in
the study, they all signed a consent form.

During the recruitment stage, all the candidates watched a set of
video lectures on Java Reflection API, Code Annotations, Apache
Bean Utils, and metadata-based frameworks to align the knowledge
needs for the experiment. Later, after the group’s assignment, the
participants of the second group – the one required to use the
Esfinge Metadata API – received further training by dedicated
video lectures about our Esfinge Metadata API.

As the participants executed the experiment, they filled a diary
where they made comments and personal notes/opinions. We did
not consider this, however, when performing the code analysis,
since the information we needed was in the provided code.

Finally, this research was funded, and we were able to reward
the participants. At the end of the experiment, we also debriefed
the participants by explaining (i) what exactly the study was in-
vestigating; (ii) why the research was necessary; (iii) how we were
going to use the data; and that (iv) we were going to spread the
results as soon as we were finished analyzing the data.

4.2.2 Procedure. Firstly, we created a GitLab repository for each
participant with the initial configuration already set up. All these
repositories belong to a group4.

A pilot experiment was conducted to observe if the target frame-
work and the instructions were adequate. Two authors of this pa-
per executed the experiment, and the first round of revision was
performed for general improvement. One author used the Java Re-
flection API purely, and a second author used our Esfinge Metadata
API. Afterward, four graduate students also executed the exper-
iment, and a final round of revision was done. At this point, we

4gitlab.com/metadataexperiment

considered the experiment ready to be carried out with professional
programmers. We did not address these subjects in the analysis.

Before starting the experiment, we provided a set of detailed
instructions to the participants to prepare and test their environ-
ment, including the Eclipse IDE, FLUORITE plugin, and the GitLab
repository access. After that, the participants read the problem and
the framework description to start the experiment tasks. We also
provided a detailed set of general instructions to the participants for
each task. That guide cover unit tests, logging, time measurement,
criteria to consider a task finished, and instructions to commit the
code to the repository.

Although we designed the experiment to be performed in several
days, the participants were advised to be prepared to execute a task
without interruption. We instructed the participants to reserve at
least 2 hours to work on each task. If an unforeseen interruption is
necessary, the participant should pause the time measurement and
register it in FLUORITE.

The instructions also specify a protocol if the participant has
some problem and its unable to continue the implementation. We
oriented the participant not to spend more than half an hour trying
to solve a problem. The procedure to ask for help requires the
participant to pause the execution following the same instructions
of an unforeseen interruption.

A different author of this paper executed the experiment using
both approaches after the experiment was entirely carried out, with
every participant handling their source code in the repository. He
provided a reference source code that we used for the qualitative
analysis. This verification was done through mining the partici-
pant’s repositories and carefully observing the source code and its
evolution.

4.2.3 Tasks. According to Sjoberg at al. [21], one of the challenges
in controlled experimental design is the trade-off between realism
and control. The task design is at the heart of this trade-off, as tasks
represent the essence of realistic and messy software engineering
work [14].

One aspect is to consider what features the target framework
will contain and how they will be broken down into tasks for the
participants to execute. From previous research outcomes [7, 9–
11, 17], our group was able to identify common characteristics of
metadata-based frameworks and used such knowledge to prepare
the tasks to have good feature coverage.

These frameworks validate the metadata inserted in the pro-
gramming elements before they are processed to execute custom
behavior. For instance, some annotations can only be configured
on specific element types, or the values of the attributes may have
some restrictions. As such, there are tasks where the participants
will execute routines that validate metadata.

Metadata reading and processing are also two common features
present in metadata-based frameworks. The first is about identi-
fying the code annotation and the code element. The second is
regarding executing the behavior. The target framework developed
by the participants also contained such tasks. Finally, there was
also a task about the introduction of an extension point and others
that impacts the framework control flow. With this, we believe that
the target framework has the same characteristics and features that
are implemented in a real one.

503

SBES ’20, October 21–23, 2020, Natal, Brazil Guerra and Lima, et al.

In practice, the participants implemented ametadata-based frame-
work that maps the command-line parameter array received in the
main() method to a JavaBean class. This mapping is done through
metadata configurations, i.e., using annotations. The features of this
framework were organized into tasks that tackle common features
of a metadata-based framework. Following is a list describing the
ten tasks.

(1) MappingBooleanProperties: Verify if a parameter is present
on the command-line.

(2) Mapping String properties: Store the String attribute passed
after a parameter.

(3) Mandatory Parameters: Verify if a parameter marked as
mandatory is present on the command line. If not, an error
occurs.

(4) MappingNumeric properties: Store the numeric attribute
passed after a parameter.

(5) Validating text properties: Validate the string attribute
passed on the command line.

(6) Validating numeric properties: Validate the number at-
tribute passed on the command line.

(7) Supporting composite classes: Provide functionality to
map command-line attributes to encapsulated classes.

(8) Annotation extension: Add an extension point to create
custom annotations.

(9) Supporting parameter lists: Stores a list of attributes, both
numeric and textual, passed on the command line.

(10) Supporting dates: Store the date attribute passed after a
parameter.

The participant should perform these tasks strictly in the speci-
fied order and not read the subsequent tasks before finishing the
current one. Each experiment task contains (i) a textual description
of the feature to be developed; and (ii) a set of classes that consist
of automated tests to check the correctness of the implemented
feature.

Finally, the target framework tasks were also designed to repre-
sent realistic functionality that would be implemented for retrieving
command-line parameters. Nonetheless, they were not based on
features present in any of the APIs, emulating the development of
a real-world metadata-based framework.

4.2.4 Qualitative Analysis with Source Code Metrics. Source code
metrics are used to retrieve information from software and assess
its characteristics. They help summarize particular aspects of soft-
ware elements, detecting outliers in large amounts of code. They
are valuable in software engineering since they enable developers
to keep control of complexity, making them aware of the abnormal
growth of specific system characteristics. To effectively take advan-
tage of metrics, they should provide meaningful information and
not just numerical values [16].

We used object-oriented code metrics to analyze the complexity
and coupling of the source code from the developed target frame-
work. Respectively, these metrics are from the CK suite [3], such
as Weight Method Count (WMC) and Coupling Between Objects
(CBO). We also use the Number of Methods (NOM) metric.

5 DATA ANALYSIS
In this section, we present the quantitative and qualitative analysis
of the data collected from the experiment to answer our research
question. We monitored the evolution of some selected software
metrics as the participants were developing the framework. For the
qualitative analysis, we performed an inspection of the source code
developed by the participants to extract information about their
use of both Java Reflection and our Esfinge Metadata API.

As mentioned in Section 4.2, we recruited and trained ten par-
ticipants. However, participant P8, as presented in Table 1, did not
execute the experiment correctly. As such, we excluded P8 from the
analysis. Therefore the final sample has nine participants: four for
the Java Reflection Group and five for the Esfinge Metadata Group.

We analyzed how three well-established software metrics be-
haved during the evolution of the target framework by both ap-
proaches designed for the experiment. These metrics are WMC
(Weight Method Class), NOM (Number of Methods), and CBO (Cou-
pling Between Objects). We designed the development of the target
framework into ten tasks, and at the end of each task, we extracted
these metrics values. We present graphs that show how these met-
rics behaved in the next sub-sections, and we use them to analyze
the experiment further.

5.1 Complexity
The tool used to extract values for WMC has implemented it as Mc-
Cabe’s Complexity, i.e., counting the number of branch instructions
in a class. We observe in Figure 7 that the Esfinge Metadata Group
has larger WMC values. However, we also notice that these partic-
ipants evolve in a similar pattern when compared to the Java Re-
flection Group. We expected this greater value since to use the API
developers are required to write getters and setters to populate
the MetadataContainer class, as part of the MetadataContainer
design pattern. Developers on the Java Reflection Group, although
it was mandatory to use the design pattern mentioned earlier, could
take another route during the development. We also know that
every single method, regardless of its complexity, adds a number
to the WMC count. As such, we are purely looking at this number
might not be a true measure of complexity.

To complete the complexity analysis, we also looked at the Num-
ber of Methods (NOM) metric. The graph in Figure 8 presents how
the NOMmetric evolved during the development. This graph shows
that the Esfinge Metadata Group created more methods, roughly
twice the Java Reflection Group, which is in agreement with the
higher WMC number presented in Figure 7.

The code evolution from two participants, P6 and P10, repre-
sented as dashed blue lines on both Figures 7 and 8 presented an
abnormal value of WMC metric. However, observing Figure 8, we
notice that these two participants had practically a constant value
for NOM. This metric behavior suggests that these methods were
constantly growing to accommodate the new features of the frame-
work. WMC values were growing from the complexity of these
methods rather than the addition of new methods.

From this analysis, we plotted a new graph that is the ratio of
WMC per NOM, as presented in Figure 9. Thereby, we observed
how the participants P6 and P10 has a curve with much higher
values than all other participants, confirming they have created

504

A Metadata Handling API for Framework Development SBES ’20, October 21–23, 2020, Natal, Brazil

Figure 7: WMC produced overtime

Figure 8: NOM produced overtime

highly complex methods. Moreover, all participants from the ous
Group present lower values of this ratio, which confirms that even
though a higher number of methods, their complexity is inferior.
This information was not clear, only analyzing the WMC graph
in Figure 7. With this analysis complete, it becomes clear why we
included the NOM metric in this section. Although it does not
measure complexity, it was used as a normalization factor for the
WMC values.

5.2 Coupling
We calculated the CBO metric as Fan-Out, i.e., how many external
classes a specific class refers too. Observing Figure 10, we notice
that the Esfinge Metadata group has higher values and, therefore,
presents more upper coupling. By analyzing two participants of
the Java Reflection Group, P7, and P9, we observed unexpected
CBO values. The latter presents a decrease in its CBO value after

Figure 9: WMC x NOM produced overtime

completing Task #8, and the former shows an abrupt growth on the
CBO value after the final task’s conclusion.

During code inspection, it was not explicit why P9 had a decrease
in its value. It was subtle the reason that caused this behavior. An
important observation is that this participant was the only one in
the Reflection Group that implemented the MetadataContainer
design pattern as expected. This behavior means storing the meta-
data in a container class for later analysis. It is interesting to observe
because its CBO value approximates that of the Esfinge Metadata
Group, suggesting that this design pattern presents a higher cou-
pling factor.

For this reason, P9 had separate classes responsible for metadata
reading of a specific data type. During most of the development,
an abstract class was used as the superclass for metadata reading
classes, but, during Task #8, P9 switched to an interface. During
the refactoring process of these classes, some became less coupled,
which resulted in a lower CBO value overall.

Figure 10: Coupling between objects (CBO) over time

505

SBES ’20, October 21–23, 2020, Natal, Brazil Guerra and Lima, et al.

As for participant P7, he was not implementing the pattern cor-
rectly MetadataContainer, i.e., he was not storing metadata in a
container class. On the last task, however, he performed a signifi-
cant refactoring of the code. In short, he created different classes
to read and process the metadata according to its type, hence the
CBO value had an abrupt growth.

Figure 11: CBO without considering code annotations

Given that the Esfinge Metadata API is a metadata-based frame-
work, it relies heavily on code annotations, which is considered
when calculating the CBO metric. We altered the CBO calculation
of our metric extraction tool and generated a new graph in Figure
11.

This graph shows how the CBO evolved without considering
code annotations. As expected, the CBO values for the Esfinge
Metadata Group had a decrease, lower than P9, for most of the
development, and P7, after the significant refactoring. The two
developers from the Java Reflection group that stayed below are P6
and P10. As seen in the WMC analysis, these two participants did
not implement the MetadataContainer design pattern correctly.
They created large and complex methods to avoid separating the
functionality ofmetadata reading and processing. The complexity of
their methods outweighs the lower coupling values they presented
since the produced code shows lower readability and more effort
to maintain.

Overall, from Figure 11, the Esfinge Metadata Group presents
a more similar growth pattern, and it is more homogeneous than
the Reflection Group. This behavior is a reflection of having a
design pattern that is mandatory when using the Esfinge Metadata
API. Developers using pure Java Reflection API have to build this
architecture themselves, and as reinforced in this CBO analysis,
may divert.

Another analysis is to observe how the CBO metric evolved as
the number of classes evolved, i.e., normalizing the CBO value by
the number of classes. This observation is similar to the analysis
performed on how the WMC metric evolved as the NOM evolved
presented in Figure 9. Figure 12 presents the normalized CBO graph.
From this figure, it is clear that the Esfinge Metadata Group has

Figure 12: CBO normalized by the number of classes

Figure 13: CBO normalized by the number of classes, with-
out considering annotations

more coupled classes. However, this graph also reinforces they
have, overall, more homogeneous growth. However, participant
P4 shows an abrupt growth on commit seven, surpassing other
participants. This behavior indicates that the CBO is growing more
rapidly than the number of classes, which suggests high coupling
in the framework’s classes. After code inspection, one reason for
this growth was the use of unnecessary Esfinge Metadata API
annotations for validation, since they have no effect where it was
placed. Using just the CBO graph in Figure 10 this observation
is not clear. To analyze the normalized CBO without considering
annotations, we generated the graph in Figure 13. From this, we
see that most developers on the Esfinge Metadata Group have very
similar CBO values, while the Reflection Group is more scattered.
This factor is yet another confirmation that the CBO value from

506

A Metadata Handling API for Framework Development SBES ’20, October 21–23, 2020, Natal, Brazil

the Esfinge Metadata Group is strongly related to code annotations.
It also has the API enforcing the use of the MetadataContainer
pattern leads towards a homogeneous code even from different
developers.

6 DISCUSSION
Answering our RQ (How does the Esfinge Metadata API pro-
vide support to maintain complexity and coupling in the evo-
lution of a metadata-based framework compared to the Java
Reflection API?), we observed how three metrics – WMC, NOM,
and CBO – evolved during the evolution of the target framework,
dividing the analysis into two parts: complexity and coupling.

We were expecting that the complexity for participants using our
Esfinge Metadata API would be lower, and the analysis concluded
that. We used the WMC metric to measure the complexity, but as
shown and discussed, purely analyzing its values would not suffice,
since simple access methods contribute to the metrics values. To
further investigate the complexity, we normalized the WMC value
per NOM. Thus, we were able to identify that methods from the Es-
finge Metadata API Group were less complex than methods created
by the Java Reflection Group. Moreover, this was a consequence
of having the MetadataContainer pattern being implemented cor-
rectly by the Esfinge Metadata API Group since the API also guides
the developers to use best practices.

For the coupling analysis, we used the CBOmetric. The expected
result was that the overall coupling would be lower for the Esfinge
Metadata API Group if coupling to code annotations were not con-
sidered. The analysis showed that the group using Esfinge Metadata
API has higher CBO value, i.e., more coupled classes. What was
observed is that developers from the Reflection Group that did not
use the MetadataContainer pattern correctly had low values for
CBO. However, they had more complex methods. Developers who
did implement the pattern successfully had higher coupling values,
including both Esfinge Metadata API and Java Reflection Group.
Hence we conclude that the pattern has a high coupling factor.
When code annotations were removed from the calculation, the
CBO values for the Esfinge Metadata API Group dropped roughly
fifty percent, while it stayed stable for the Java Reflection Group.
This behavior shows that the coupling for the Esfinge Metadata
API Group has a substantial contribution from code annotations,
which means the coupling is due to metadata configuration and
not method calls. We conclude that using a metadata approach to
implement the MetadataContainer pattern increased the coupling
factor.

Overall, our Esfinge Metadata API allowed developers to have a
steady evolution of the code while developing the target framework.
The main reason is that our API guides the developers in using best
practices, precisely, the MetadataContainer pattern. Although par-
ticipants from the Java Reflection API group also had to use this
pattern, it was still possible to diverge and create more complex
code. This behavior became apparent during the code inspection
phase.

There is a learning curve required to use our Esfinge Metadata
API, and although it does not require developers to directly deal
with reflection code, they still need to have a firm grasp of the
involved concepts. During our inspection, we observed that codes

using our API weremuch cleaner and readable when comparedwith
code directly using the Java Reflection API. This is the main goal of
our API, that is, to guide developers towards best practices when
implementing metadata-based frameworks or code annotations-
based solutions. Creating such kinds of solution does not necessarily
mean less effort.

7 THREATS TO VALIDITY
In this section we present the threats to validity of our work fol-
lowing the guidelines proposed by [24].

• Conclusion Validity: Our findings were based on manual code
inspection, therefore our own coding skills and knowledge
of Java Reflection might have affected our conclusions.

• Internal Validity: Initially, the participants received the same
training through a set of video lectures on the topics ad-
dressed by the experimental study. We applied an exercise
to evaluate each participant. Thus, we distributed them in
balanced groups in terms of their performance. The Esfinge
Metadata API group received further training to learn about
this new API, which also potentially reinforced their knowl-
edge about reflection code and techniques.

• Construct Validity: The Esfinge Metadata API guides the de-
velopers towards best practices, while the Java Reflection API
does not. Hence, developers using Java Reflection had noth-
ing forcing them to keep following these practices, which
may have led to low quality code.

• External Validity: The experiment was conducted remotely
by the participants in their own environment. They were
also responsible for managing their execution time. Some
developers might have had a more adequate environment
than others, or less interruption during the experiment.

8 RELATEDWORK
We exhaustively searched and did not find other solutions of APIs
for metadata reading in this context. However, we have related
works about studies involving annotated code and metadata-based
frameworks. Yu et al. [25] perform a large-scale and empirical study
about Java annotation on 1,094 open-source Java projects hosted on
GitHub. The authors presented 10 novel empirical findings about
Java annotation usage, annotation evolution, and annotation im-
pact. For instance, the authors show that annotations are actively
maintained, and most of their changes are consistent with other
code changes.

Regarding annotation definition, Rocha and Valente [19] investi-
gated how annotations are used in open source Java systems. The
authors analyzed 106 open source projects from Qualitas Corpus
project database [22], from which 65 projects used annotations.
Only the number of annotations and their type was considered
in this study. In some of the evaluated systems, a high density of
annotations was detected, indicating a possible misuse. Some other
data extracted from this study also revealed that more than 90% of
the annotations are in methods, and framework annotations are
the most used ones.

Alba [1] performed a study regarding legibility on annotated
code. The author used a questionnaire to present two similar codes

507

SBES ’20, October 21–23, 2020, Natal, Brazil Guerra and Lima, et al.

that represented different approaches expressing the same seman-
tics, where developers should choose the most legible one. The
questionnaire was answered by more than a hundred developers
and had 27 questions focusing on the usage of annotations. The
study pointed out that annotated code is perceived as more legible
than the unannotated one. Besides that, the usage of annotation
idioms [8] can improve annotation readability and context where
the annotation was used has an influence on the perception of
legibility.

9 CONCLUSION
In this paper, the main contribution is the proposal of a novel API
approach to support the development of metadata-based frame-
works, as well as applications based on custom annotations. The
proposed API provides features based on frameworks needs, such
as (a) support to search annotations in other code elements related
to the target code element; (b) mapping for class metadata and
annotation attributes; (c) chain processing of methods and field
metadata; (d) support for the implementation of an extensible meta-
data schema; and (e) extension point that allows the creation of
new metadata reading annotations.

We conducted an experiment that compared our Esfinge Meta-
data API with the Java Reflection API, evaluating the effects of
their usage under various aspects related to software quality and
development practices, such as code complexity and coupling. As a
result, our Esfinge Metadata API allowed developers to have a more
stable evolution of the code while developing the target framework.
The detailed code inspection revealed evidence that the proposed
API guides the developers into using best practices, not necessarily
with less effort. Although participants from the Java Reflection API
group were also instructed to use a similar structure, the experi-
ment revealed that in some cases, the developer could diverge to
add accidental complexity, ending up with a higher coupling.

As future work, we intend to add new features in our Esfinge
Metadata API, especially to enable the support for code conventions
and external metadata configuration.We also plan to carry out other
studies about the usage of the proposed API, such as evaluating it
from the Developer eXperience (DX) [5, 15] point of view and by
using it in the development of projects.

ACKNOWLEDGMENT
We would like to thank the support granted by Brazilian funding
agencies CAPES (Higher Education Improvement Coordination)
and FAPESP (São Paulo Research Foundation, grant 2014/16236-6
and 2019/12743-4).

REFERENCES
[1] A. Alba. 2011. Code Legibility Analysis by Means of Annotation Patterns. Technical

Report. Aeronautical Institute of Technology, Brazil. [in portuguese].
[2] Victor R Basili and H Dieter Rombach. 1988. The TAME project: Towards

improvement-oriented software environments. Software Engineering, IEEE Trans-
actions on 14, 6 (1988), 758–773.

[3] S. R. Chidamber and C. F. Kemerer. 1994. A Metrics Suite for Object Oriented
Design. IEEE Trans. Softw. Eng. 20, 6 (June 1994), 476–493. https://doi.org/10.
1109/32.295895

[4] ECMA. 2017. ECMA - 334: C# Language Specification. https://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-334.pdf

[5] Fabian Fagerholm and Jürgen Münch. 2012. Developer experience: Concept and
definition. In Proceedings of the International Conference on Software and System
Process. IEEE Press, 73–77.

[6] Eduardo Guerra. 2014. Componentes Reutilizáveis em Java com Reflexão e Ano-
tações (1st ed.). Casa do Código. [in portuguese].

[7] Eduardo Guerra, Felipe Alves, Uirá Kulesza, and Clovis Fernandes. 2013. A
reference architecture for organizing the internal structure of metadata-based
frameworks. Journal of Systems and Software 86, 5 (2013), 1239 – 1256. https:
//doi.org/10.1016/j.jss.2012.12.024

[8] Eduardo Guerra, Menanes Cardoso, Jefferson Silva, and Clovis Fernandes. 2010.
Idioms for Code Annotations in the Java Language. In Proceedings of the 8th
Latin American Conference on Pattern Languages of Programs (Salvador, Bahia,
Brazil) (SugarLoafPLoP ’10). ACM, New York, NY, USA, Article 7, 14 pages. https:
//doi.org/10.1145/2581507.2581514

[9] Eduardo Guerra, Jerffeson de Souza, and Clovis Fernandes. 2013. Pattern Language
for the Internal Structure of Metadata-Based Frameworks. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 55–110. https://doi.org/10.1007/978-3-642-38676-3_3

[10] Eduardo M Guerra, Fábio F Silveira, and Clóvis T Fernandes. 2009. Questioning
traditional metrics for applications which uses metadata-based frameworks. In
Proceedings of the 3rd Workshop on Assessment of Contemporary Modularization
Techniques (ACoM’09), October, Vol. 26. 35–39.

[11] Eduardo Martins Guerra, Jerffeson T De Souza, and Clovis T Fernandes. 2009.
A pattern language for metadata-based frameworks. In Proceedings of the 16th
Conference on Pattern Languages of Programs. ACM, 3.

[12] JSR. 2004. JSR 175: A Metadata Facility for the Java Programming Language.
http://www.jcp.org/en/jsr/detail?id=175

[13] JSR. 2007. JSR 220: Enterprise JavaBeans 3.0. http://jcp.org/en/jsr/detail?id=220
[14] Andrew J Ko, Thomas D Latoza, and Margaret M Burnett. 2015. A practical guide

to controlled experiments of software engineering tools with human participants.
Empirical Software Engineering 20, 1 (2015), 110–141.

[15] Kati Kuusinen, Helen Petrie, Fabian Fagerholm, and Tommi Mikkonen. 2016.
Flow, intrinsic motivation, and developer experience in software engineering. In
International Conference on Agile Software Development. Springer, 104–117.

[16] Michele Lanza and RaduMarinescu. 2006. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer.

[17] Phyllipe Lima, Eduardo Guerra, Paulo Meirelles, Lucas Kanashiro, Hélio Silva,
and Fábio Silveira. 2018. A Metrics Suite for code annotation assessment. Journal
of Systems and Software 137 (2018), 163 – 183. https://doi.org/10.1016/j.jss.2017.
11.024

[18] Phyllipe Lima, Eduardo Guerra, Marco Nardes, Andrea Mocci, Gabriele Bavota,
and Michele Lanza. 2017. An Annotation-based API for Supporting Run-
time Code Annotation Reading. In Proceedings of the 2Nd ACM SIGPLAN In-
ternational Workshop on Meta-Programming Techniques and Reflection (Van-
couver, BC, Canada) (Meta 2017). ACM, New York, NY, USA, 6–14. https:
//doi.org/10.1145/3141517.3141856

[19] H. Rocha and H. Valente. 2011. How Annotations are Used in Java: An Empirical
Study. In 23rd International Conference on Software Engineering and Knowledge
Engineering (SEKE). 426–431.

[20] Don Schwarz. 2004. Peeking Inside the Box: Attribute-Oriented Program-
ming with Java 1.5, Part. http://archive.oreilly.com/pub/a/onjava/2004/06/
30/insidebox1.html

[21] D. I. K. Sjoberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A. Karahasanovic,
E. F. Koren, and M. Vokac. 2002. Conducting realistic experiments in software
engineering. In Proceedings International Symposium on Empirical Software Engi-
neering. 17–26. https://doi.org/10.1109/ISESE.2002.1166921

[22] E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton, and
J. Noble. 2010. The Qualitas Corpus: A Curated Collection of Java Code for
Empirical Studies. In Software Engineering Conference (APSEC), 2010 17th Asia
Pacific. 336–345. https://doi.org/10.1109/APSEC.2010.46

[23] Hiroshi Wada and Junichi Suzuki. 2005. Modeling turnpike frontend system:
A model-driven development framework leveraging UML metamodeling and
attribute-oriented programming. Model Driven Engineering Languages and Sys-
tems (2005), 584–600. http://www.springerlink.com/index/l166363337837142.pdf

[24] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[25] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus. 2019. Characterizing the Usage,
Evolution and Impact of Java Annotations in Practice. IEEE Transactions on
Software Engineering (2019).

508

https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
https://doi.org/10.1016/j.jss.2012.12.024
https://doi.org/10.1016/j.jss.2012.12.024
https://doi.org/10.1145/2581507.2581514
https://doi.org/10.1145/2581507.2581514
https://doi.org/10.1007/978-3-642-38676-3_3
http://www.jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=220
https://doi.org/10.1016/j.jss.2017.11.024
https://doi.org/10.1016/j.jss.2017.11.024
https://doi.org/10.1145/3141517.3141856
https://doi.org/10.1145/3141517.3141856
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1109/APSEC.2010.46
http://www.springerlink.com/index/l166363337837142.pdf

	Abstract
	1 Introduction
	2 Metadata in the Context of Object-Oriented Programming
	2.1 Code Annotations
	2.2 Java Reflection API to Consume Code Annotations

	3 Esfinge Metadata API
	4 Evaluating Metadata-based Framework Development API
	4.1 Research Questions
	4.2 Experimental Design

	5 Data Analysis
	5.1 Complexity
	5.2 Coupling

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

