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ABSTRACT

Human activities are impacting the global environment and changing the landscape
of the Earth at an unprecedented pace. One way to understand and quantify the
impacts of these transformations is to measure land cover and land use changes.
Earth observation by orbital sensors has became the most consistent way to do this
task as it reaches all globe in a periodic manner. The planet is continuously monitored
and large image databases are open to the public community. Cloud computing
is becoming the main choice for storage, distribution, and processing of satellite
imagery. To use these data sets to understand how our planet is changing, researchers
are developing software for big Earth observation data analytics. The massive volume
of spatiotemporal digital assets has brought about a major computational challenge:
how to design and build technologies that allow the Earth observation community
to analyse big data sets? This thesis addresses this problem by proposing an open
source R package called sits . The package works with satellite image time series
and machine learning methods to produce land use and land cover classification in a
“time-first, space-later” approach. Our hypothesis is that using all observed spectral
values of the time series coupled with advanced statistical learning methods is a
robust approach for land classification. Two case studies show that this approach
produces results of high accuracy. The first was conducted in Mato Grosso State,
Brazil, for years 2001-2017. The second was conducted in Cerrado biome for the year
2018. These study areas comprise some of the world’s most dynamic agricultural
frontiers. To show how to access collections of satellite images, we also present the
rstac R package. This package allows sits to connect to different imagery repositories
on the cloud.

Keywords: Big Earth observation data. Satellite image time series. Machine learning.
Land use and land cover maps. Cloud computing.
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CLASSIFICAÇÃO DE USO E COBERTURA DA TERRA A PARTIR
DE SÉRIES TEMPORAIS DE IMAGENS DE SATÉLITE USANDO

MÉTODOS DE APRENDIZADO DE MÁQUINA

RESUMO

As atividades humanas estão impactando o meio ambiente global e mudando a
paisagem da Terra a um ritmo sem precedentes. Uma maneira de entender e quantificar
os impactos destes transformações é olhar para a cobertura e as mudanças de uso
do solo. Nas últimas décadas, imagens de satélite sensores orbitais tornaram-se
a maneira mais consistente de faze-lo. Atualmente, o planeta é continuamente
monitorado e várias bases de dados de imagens estão abertas à comunidade científica.
Para armazenar, distribuição e processar essas imagens, a principal escolha é o
uso de computação em nuvem. Esse enorme volume de dados trouxe um desafio
computacional: como projetar e construir tecnologias que permitam à comunidade de
observação da Terra analisar grandes conjuntos de dados? Esta tese contribui para
resolver esse desafio científico ao propor um pacote R de código aberto chamado sits .
O software usa séries temporais de imagens de satélite e métodos de aprendizagem
de máquinas para produzir a classificação de uso e cobertura da Terra em uma
abordagem “time-first, space-later”. Nossa hipótese é a de que usar séries temporais
juntamente com métodos avançados de aprendizagem de máquina é uma abordagem
robusta para a classificação do uso e cobertura da terra. Mostramos no trabalho
que esta abordagem produz mapas de uso e cobertura da Terra com boa precisão
através de dois estudos de caso. O primeiro foi realizado no estado do Mato Grosso,
Brasil, para o período 2001-2017. O segundo no bioma brasileiro do Cerrado para o
ano de 2018. Nessas áreas de estudo estão localizas algumas das fronteiras agrícolas
mais dinâmicas do mundo. Além disso, apresentamos o pacote rstac desenvolvido e
integrado no sits que nos permitiu conectar a diferentes repositórios de imagens na
nuvem.

Keywords: Big data. Observação da Terra. Séries temporais de imagens de satélites.
Aprendizado de máquina. Mapas de uso e cobertura da terra. Computação em nuvem.
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1 INTRODUCTION

Changes in land have a great impact on carbon dioxide emissions (STOCKER et

al., 2013; ARNETH et al., 2017), biodiversity loss (FLYNN et al., 2009), ecosystems
degradation (FOLEY et al., 2005), and water availability and quality (SCANLON et al.,
2007). Land use and land cover change studies are a central field of investigation in
the Sustainability Science. These studies provide clear indications on human activities
and its impact on landscapes and natural resources of the planet. Thus, land cover
products provide support for environmental monitoring and public policy (WULDER

et al., 2020).

The primary source of information about land use and land cover changes comes
from Earth observation data. Most space agencies have adopted an open data policy,
making available an unprecedented amount of satellite imagery to the public (WULDER

et al., 2012). Combined with advances in machine learning and cloud computing,
experts can now process large volumes of earth observation data (PARENTE et al., 2019;
AMANI et al., 2020; FERREIRA et al., 2020a; GOMES et al., 2020). These massive data
sets allow better understanding of global changes, but bring about new challenges.
Researchers are calling for new big data analytics (CAMARA et al., 2016) focusing
particularly on satellite image time series (KUENZER et al., 2015). This thesis addresses
the problem of producing reliable land cover products from satellite image time series.
Thus, our scientific question is: how to design and build technologies that allow the
Earth observation community to analyse big data sets?

Our answer to that scientific question is to design and develop an open source
R package called sits that works with satellite image time series and machine learning
methods to produce land use and land cover classification in a “time-first, space-later”
approach. All observations are used to derive land use and land cover maps. Our
hypothesis is that using all observed spectral values of the time series coupled with
advanced statistical learning methods is a robust approach for land use and land
cover classification of satellite image time series. The software is open and efficient
and not locked to specific hardware architecture. It runs in any cloud computing
environment, taking advantage of existing Earth observation data collections.

Developers of analytical software for big Earth observation data face several challenges.
Designers need to balance between conflicting factors. Solutions which are efficient
for specific hardware architectures can not be used in other environments. Packages
based on generic hardware and open standards will not have the same performance as
dedicated solutions. Software that assumes that its users are computer programmers

1



are flexible, but may be difficult to learn for a wide audience. When designing and
implementing sits , we aimed to reach a large audience of experts, by providing a
compact and expressive API that runs on multiple environments.

Three papers compose this thesis. The first Chapter is a manuscript submitted
to the special issue “Big Earth Observation Data: From Cloud Technologies to
Insights and Foresight” of the journal Remote Sensing journal. This paper describes
sits , its software design, API workflow, and how it does data access and parallel
processing in cloud computing environments. It shows how sits provides support for
the classification method using satellite image time series. We present a case study
in Brazilian Cerrado biome, producing a land use and land cover map for year 2018.
We also discuss the trade-offs of our choices on sits software design compared to
other Earth observation known solutions.

The second Chapter is a paper published in the journal Nature Scientific Data
(SIMOES et al., 2020). It presents a case study of land use and land cover classification
from 2001 to 2017 in the state of Mato Grosso, Brazil. It describes methods to
obtain land cover products of high accuracy using time series and machine learning.
We published the data and results in an open repository. Results provide qualified
information to researchers on crop and pasture expansion over natural vegetation,
on agricultural productivity, and on interplay between production and protection.

The third Chapter is a version of a paper accepted by the 2021 International
Geoscience and Remote Sensing Symposium (IGARSS 2021). It describes rstac ,
an R package that implements a client for the SpatioTemporal Assets Catalog
(STAC) protocol. This protocol describes geospatial information available in big
image collections (HANSON, 2019). The rstac package is an open RESTful API web
service based on OGC OAFeat that enables sits to connect to different image cloud
repositories. We discuss how common protocols are critical to interoperability in
heterogeneous cloud computing environments. We show how rstac enables sits to
query and find all images needed to perform a land use and land cover classification.

2



2 SATELLITE IMAGE TIME SERIES ANALYSIS FOR BIG EARTH
OBSERVATION DATA

This Chapter1 describes sits , an open-source R package for satellite image time series
analysis using machine learning. To allow experts to use the full extent of satellite
imagery, sits adopts a time-first, space-later approach. It supports the complete cycle
of data analysis for land classification. Its API provides a simple but powerful set of
functions. The software works in different cloud computing environments. Satellite
image time series are input to machine learning classifiers, and the results are post-
processed using spatial smoothing. Since machine learning methods need accurate
training data, sits includes methods for quality assessment of training samples. The
software also provides methods for validation and accuracy measurement. The package
thus comprises a production environment for big Earth Observation data analysis.
We show that this approach produces high accuracy for land use and land cover
maps by a case study in Cerrado biome, one of the world’s fast moving agricultural
frontiers, for the year 2018.

2.1 Introduction

The growing demand for natural resources has caused major environmental impacts
and is changing landscapes everywhere. Conversion of land cover due to human use is
one of the key factors behind greenhouse gas emissions and biodiversity loss (FOLEY et

al., 2005). Spatial quantification of land use and land cover change allows societies to
understand the extent of these impacts. Satellites are required to generate land cover
products, since they provide a consistent, periodic, and globally reaching coverage
of the planet’s surface. Thus, satellite-based land cover products are essential to
support evidence-based policies that promote sustainability.

There is currently an extensive amount of Earth observation (EO) data collected
by an increasing number of satellites. Coupled with the adoption of open data
policies by most spatial agencies, an unprecedented amount of satellite data is now
publicly available (WULDER et al., 2012). This has brought a significant challenge
for researchers and developers of geospatial technologies: how to design and build
technologies that allow the Earth observation community to analyse big data sets?

1A version of this Chapter was submitted to the special issue “Big Earth Observation Data:
From Cloud Technologies to Insights and Foresight” of the journal Remote Sensing. The paper is
authored by Rolf Simoes, Gilberto Camara, Gilberto Queiroz, Felipe Souza, Pedro R. Andrade,
Lorena Santos, Alexandre Carvalho and Karine Ferreira.
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The emergence of cloud computing services capable of storing and processing big EO
data sets allows researchers to develop innovative methods for extracting information
(GORELICK et al., 2017; GIULIANI et al., 2019). One of the relevant trends is to work
with satellite image time series, which are calibrated and comparable measures of
the same location on Earth at different times. These measures can come from a
single sensor (e.g., MODIS) or by combining various sensors (e.g., Landsat 8 and
Sentinel-2). When associated with frequent revisits, image time series can capture
significant land use and land cover changes (VERBESSELT et al., 2010). For this reason,
developing methods to analyse image time series has become a relevant research area
in Remote Sensing (ARVOR et al., 2011; MAUS et al., 2016; PELLETIER et al., 2019).

Multiyear time series of land cover attributes enable a broader view of land change.
Time series capture both gradual and abrupt changes (LAMBIN et al., 2003). Re-
searchers have used time series in applications such as forest disturbance (KENNEDY

et al., 2010), land change (ZHU et al., 2020), ecological dynamics (PASQUARELLA

et al., 2016), agricultural intensification (GALFORD et al., 2008), and deforestation
monitoring (ARVOR et al., 2012).

Methods for processing image time series include BFAST for detecting trends and
breaks (VERBESSELT et al., 2010), TIMESAT for extracting phenological attributes
(JONSSON; EKLUNDH, 2004), CCDC for continuous change detection (ARÉVALO et

al., 2020), and methods based on Dynamic Time Warping (DTW) for land use and
land cover classification (PETITJEAN et al., 2012; MAUS et al., 2019). Machine learning
methods such as random forests and support vector machines have also been proposed
and tested (PELLETIER et al., 2016; SHEEREN et al., 2016). More recently, researchers
have proposed deep learning classifiers designed specifically to work with image time
series (RUSSWURM; KORNER, 2018; PELLETIER et al., 2019; GARNOT; LANDRIEU,
2020). However, these methods are self-contained. Interested users need an additional
effort to access and prepare the input data to use them. Ideally, such methods
should be included in an end-to-end environment that provides data handling and
management.

This Chapter describes sits , an open-source R package for satellite image time series
analysis using machine learning. It supports the complete cycle of data analysis for
land classification, including data management, validation and quality assessment,
filtering, classification, post-processing, and accuracy estimates. Its API provides a
simple but powerful set of functions.

4



The traditional approach for change detection in remote sensing is to compare two
classified images of the same place in different times and derive a transition matrix.
Camara et al. (CAMARA et al., 2016) call this a space-first, time-later approach. The
sits package adopts a time-first, space-later method, where all the values of time
series are inputs for analysis and thus track changes continuously (SUDMANNS et al.,
2018; WOODCOCK et al., 2020). In the time-first, space-later method each spatial
location is associated to a time series. Each time series is classified separately and
spatial smoothing is later applied. The resulting maps of land use and land cover
capture the full information provided by big EO data sets.

The sits package makes extensive use of the R software ecosystem and has been
designed for extensibility so that contributors can add new data analysis methods.
In this Chapter, we show that algorithms such as TempCNN (PELLETIER et al., 2019)
and ResNet (FAWAZ et al., 2019) can be integrated into sits . These examples point
out how the open and extensible API of sits allows researchers to develop advanced
methods for big EO data analysis.

We organise this Chapter as follows. In Section 2, we review Earth observation data
cubes, pointing out the challenges involved in building them. Section 3 presents
the design decisions for the sits API and the internal components of the package.
Section 4 shows a concrete example of using sits to perform land use and land cover
classification in the Brazilian Cerrado and discusses the lessons learned. We conclude
by pointing out further directions in the development of the package.

2.2 Earth observation data cubes

The term EO data cube is being widely used to refer to large collections of satellite
images modelled as multidimensional structures to support time series analysis in
an easy way to scientists (APPEL; PEBESMA, 2019). There are different definitions
of EO data cube. Some authors refer to EO data cubes as organised collections of
images (LEWIS et al., 2017) or to the software used to produce the data collection
(GIULIANI et al., 2020). Others are more restrictive, defining data cubes as regular
collections reprocessed to a common projection and a consistent timeline (FERREIRA
et al., 2020a; APPEL; PEBESMA, 2019). We propose a conceptual approach, following
the idea of EO data cubes as geographical fields (GALTON, 2004; CAMARA et al.,
2014). The essential property of a geographical field is its field function; for each
location within a spatiotemporal extent, this function produces a set of values. This
perspective leads to the following definitions:
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Definition 1. A data cube is defined by a field function f : p → v,∀p ∈ ST,∃ v,
where ST is a set of positions in space-time and v is a vector of attributes.
Definition 2. An Earth observation data cube DC is a data cube whose spatiotempo-
ral extent has a two-dimensional spatial component S : X×Y where ∀p = (xi, yj) ∈ S,
the point p can be referenced to a location on the surface of the Earth.
Definition 3. The temporal component of the spatiotemporal extent ST is a set
of time intervals T = t1, ..., tn such that ∀(i, j, i 6= j), ti ∩ tj = ∅ and ∀(i, i +
1),Meets(ti, ti+1), where Meets(.) is the temporal relation defined by Allen and
Ferguson (ALLEN; FERGUSON, 1994).

Definitions [1-3] capture the essential properties of an EO data cube: (a) there is a
unique field function; (b) the spatial support is georeferenced; (c) temporal continuity
is assured; and (d) all spatiotemporal locations share the same set of attributes (See
Figure 2.1). Since the proposed definition is an abstract one, it can be satisfied by
different concrete implementations.

Given their properties, data cubes provide a useful abstraction for algorithms that
extract information from big EO data sets. Most machine learning and deep learning
algorithms require the input data to be consistent. The dimensionality of the data used
for training the model has to be the same as that of the data to be classified. There
should be no gaps in the input data and no missing values are allowed. However,
image collections available in cloud services do not support these requirements.
Thus, software developers need to provide an additional abstraction layer. To better
understand the problem, consider the differences between analysis ready data (ARD)
image collections and data cubes:
Definition 4. An ARD image collection is a set of files from a given sensor (or a
combined set of sensors) that has been corrected to ensure comparable measurements
between different dates. All images are reprojected to a single cartographical projec-
tion following well-established standards. Data producers usually crop ARD image
collections into tiling systems.

ARD image collections do not fully support a field function, as required by Definition
1 of data cubes. These collections do not guarantee that every pixel of an image has
a valid set of values, since they may contain cloudy and missing pixels. For example,
Figure 2.2 shows images of MGRS tile 20LKP of the Sentinel-2/2A image collection
available in AWS for different dates. Some images have a significant number of clouds.
To support the data cube abstraction, data analysis software has to replace cloudy
or missing pixels by valid values.
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Figure 2.1 - Conceptual view of data cubes.

A further point concerns the timeline of different tiles. Consider the neighbouring
Sentinel-2 tiles 20LLP and 20LKP for the period 2018-07-13 to 2019-07-28. Tile
20LLP has 144 temporal instances, while tile 20LKP has only 71 instances. Such
differences in temporal extent are common in large image collections. To ensure that
big areas can be processed using a single machine learning model without the need
for data reprocessing, data analysis software has to enforce a unique timeline for all
tiles.

The differences between between ARD image collections and data cubes proper have
led some experts to develop tools that reprocess collections, making them regular in
space and in time, and account for missing or noisy values. For example, the Brazil
Data Cube provides organised collections (FERREIRA et al., 2020a). The R gdalcubes
package supports generating consistent data cubes (APPEL; PEBESMA, 2019). When
designing sits , the authors decided that the software would support both kinds of
imagery: regular data cubes and irregular image collections. The design decisions for
sits will be further explored in the next section.

Figure 2.2 - Sentinel-2 image colour composites for MGRS tile 20LKP in different dates.
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2.3 Software design and analysis methods

2.3.1 User requirements

The target audience for sits is the new generation of specialists who understand the
principles of remote sensing and can write scripts in R . To allow experts to use the
full extent of available satellite imagery, sits adopts a time-first, space-later approach.
Satellite image image time series are used as inputs to machine learning classifiers;
the results are then post-processed using spatial smoothing. Since machine learning
methods need accurate training data, sits includes methods for quality assessment of
training samples. The software also provides tools for model validation and accuracy
measurement. The package thus comprises a production environment for big EO
data analysis.

Further requirements come from the authors’ affiliation with Brazil’s National Insti-
tute for Space Research (INPE). The institute provides the official Brazilian estimates
of deforestation and land use change in the environmental-sensitive Amazonia and
Cerrado biomes. Given the emissions and biodiversity impacts of land use change in
Amazonia and Cerrado, INPE has been providing estimates of deforestation since
1998. Since 2007, INPE also produces daily alerts of forest cuts (SHIMABUKURO et al.,
2012). Comprehensive assessments have shown the quality of INPE’s work (PARENTE
et al., 2021). Since INPE experts aim to use sits to generate monitoring products
(FERREIRA et al., 2020a), the package has been designed to meet the performance
needs of operational activities.

These requirements led to the following design goals:

a) Encapsulate the land classification workflow in a concise API.

b) Provide access to data cubes and image collections available in cloud
services.

c) Develop methods for quality control of training data sets.

d) Offer a single interface to different machine learning and deep learning
algorithms.

e) Support efficient processing of large areas, with internal support for parallel
processing.

f) Include innovative methods for spatial post-processing.
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2.3.2 Workflow and API

The design of the sits API considers the typical workflow for land classification using
satellite image time series (see Figure 2.3). Users define a data cube by selecting
a subset of an ARD image collection. They obtain the training data from a set of
points in the data cube whose labels are known. After performing quality control on
the training samples, users build a machine learning model and use it to classify the
entire data cube. The results go through a spatial smoothing phase that removes
outliers. Thus, sits supports the entire cycle of land use and land cover classification.

Figure 2.3 - Using time series for land classification. EO data cube catalogues are queried
(upper-left) and the images data retrieved to form satellite image time series
(bottom-left); labelled samples referring to geographic locations and time
intervals are used to recover time series that train machine learning models
(upper-right); these models are used to classify all time series of EO data cube
(bottom-right).

When designing the sits API, we tried to capture the essential properties of good
software. As stated by Bloch (BLOCH, 2006), good APIs "should be easy to use
and hard to misuse, and should be self-documenting". Bloch (BLOCH, 2006) also
recommends: "good programs are modular, and inter-modular boundaries define
APIs". Following this advice, in sits each function carries out one task of the land
classification workflow. For example, instead of having separate functions for working
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with machine learning models, there is one function for model training. The sits_-
train() function encapsulates all of the differences between different methods,
ranging from random forests to convolutional neural networks. All functions have
convenient default parameters. Thus, novice users can achieve good results, while
more experienced ones are able to fine-tune their models to get further improvements.

The sits API captures the main steps of the workflow. These functions are: (a) sits_-
cube() creates a cube; (b) sits_get_data() extracts training data from the cube;
(c) sits_train() trains a machine learning model; (d) sits_classify() classifies
the cube and produces a probability cube; (e) sits_smooth() performs spatial
smoothing using the probabilities; (f) sits_label_classification() produces the
final labelled image. Since these functions encapsulate the core of the package, scripts
in sits are concise and easy to reuse and reproduce.

2.3.3 Handling data cubes

The sits package works with ARD image collections available in different cloud
services such as AWS, Microsoft, and Digital Earth Africa. It accepts ARD image
collections as input and has user-transparent internal functions that enforce the
properties of data cubes (Definitions [1-3]). Currently, sits supports data cubes
available in the following cloud services: (a) Sentinel-2/2A level 2A images in AWS
and on Microsoft’s Planetary Computer; (b) collections of Sentinel, Landsat, and
CBERS images in the Brazil Data Cube (BDC); (c) collections available in Digital
Earth Africa; (d) data cubes produced by the gdalcubes package (APPEL; PEBESMA,
2019); (f) local files.

The big EO data sets available in cloud computing services are constantly being
updated. For this reason, sits uses the STAC (SpatioTemporal Asset Catalogue)
protocol. STAC is a specification of geospatial information adopted by providers of
big image collections (HANSON, 2019). Using STAC brings important benefits, as
sits does not need to build indexes of data available in repositories. Relying on STAC
web services allows sits to access up-to-date information.

Using sits , the user defines a data cube by selecting an ARD image collection and
determining a space-time extent. Listing 2.1 shows the definition of a data cube
using AWS Sentinel-2/2A images. The user selects the “Sentinel-2 Level 2” collection
in the AWS cloud service. The data cube’s geographical area is defined by the tile
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"20LKP" and the temporal extent by a start and end date. Access to other cloud
services works in similar ways. Data cubes in sits contain only metadata; access to
data is done on as-need basis.

Listing 2.1 - Defining a data cube in sits

1 s2_cube <- sits_cube(
2 source = "AWS",
3 name = "T20LKP_2018_2019",
4 collection = "sentinel-s2-l2a",
5 tiles = c("20LKP","20LLP"),
6 start_date = "2018-07-18",
7 end_date = "2018-07-23",
8 s2_resolution = 20
9 )

2.3.4 Handling time series

Following the approach taken by the sf R package for handling geospatial vector
objects (PEBESMA, 2018), sits stores time series in an object-relational table. As
shown in Figure 2.4, a sits time series table contains data and metadata. The first six
columns contain the metadata: spatial and temporal information, the label assigned
to the sample, and the data cube from where the data has been extracted. The spatial
location is given in longitude and latitude coordinates for the WGS84 ellipsoid. For
example, the first sample at location (−55.2, −10.8) has been labelled “Pasture”,
being valid during the interval (2013-09-14, 2014-08-29). The time series column
contains the time series data for each spatiotemporal location.

Figure 2.4 - Data structure for time series.

Time series tables store training data used for land use and land cover classification.
They are built in two steps. First, experts provide samples with valid locations, labels,
and dates, based on field observations or by interpreting high-resolution images. Such
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data can be provided as comma-separated text files or as shapefiles. Then, sits uses
the expert data to retrieve the values of time series for each location from the data
cube, as illustrated in Listing 2.2.

Listing 2.2 - Extracting time series from a a data cube.

1 # text file containing sample information
2 csv_file <- "/home/user/samples.csv"
3 # obtain time series
4 samples <- sits_get_data(
5 cube = s2_cube,
6 file = csv_file
7 )

2.3.5 Sample quality control

Experience with machine learning methods shows that the limiting factor in obtaining
good results is the number and quality of training samples. Large and accurate data
sets are better, no matter the algorithm used (MAXWELL et al., 2018; NOI; KAPPAS,
2018), while noisy and imperfect samples have a negative effect on classification
performance (FRENAY; VERLEYSEN, 2014). Software that uses machine learning for
satellite image analysis needs good methods for sample quality control.

The sits package provides an innovative sample quality control technique based
on self-organising maps (SOM) (SANTOS et al., 2019; SANTOS et al., 2021). SOM is
a dimensionality reduction technique. High-dimensional data is mapped into two
dimensions, keeping the topological relations between similar patterns (KOHONEN,
1990). The input data for quality assessment is a set of training samples, obtained
as described in the "Handling Time Series" subsection above. When projecting a
high-dimensional data set of training samples into a 2D self-organising map, the
units of the map (called “neurons”) compete for each sample. It is expected that
good quality samples of each label should be close together in the resulting map.
The neighbours of each neuron of a SOM map provide information on intraclass and
interclass variability.

The function som_map() creates a SOM to assess the quality of the samples. Each
sample is assigned to a neuron based on similarity. After the samples are mapped
to neurons, each neuron will be associated with a discrete probability distribution.
Usually, homogeneous neurons (those with a single label) contain good quality
samples. Heterogeneous neurons (those with two or more labels with significant
probability) are likely to contain noisy samples. The som_map() function provides
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quality information for every sample. It also generates a 2D map that is useful to
visualise class noise, since neurons associated to the same class are expected to form
a cluster in the SOM map.

Figure 2.5 - SOM map for Cerrado training samples.

Figure 2.5 shows a SOM map for a set of training samples in the Brazilian Cerrado,
obtained from the MODIS MOD13Q1 product. This set ranges from 2000 to 2017
and includes 50,160 land use and land cover samples divided into 12 labels: Dunes,
Fallow-Cotton, Millet-Cotton, Soy-Corn, Soy-Cotton, Soy-Fallow, Pasture, Rocky
Savanna, Savanna, Dense Woodland, Savanna Parkland, and Planted Forest. Visual
inspection shows several outlier neurons located far from their label cluster. For
example, while the neurons associated to the “Pasture” label form a cluster, some of
those linked to the “Rocky Savanna” label are mixed among those labelled “Dense
Woodland”, an unexpected situation. The quantitative evaluation confirms this
intuitive insight. As shown by Santos et al. (SANTOS et al., 2021), removing these
and other outliers improves classification results.
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2.3.6 Training machine learning models

After selecting good quality samples, the next step is to train a machine learning model.
The package provides support for the classification of time series, preserving the full
temporal resolution of the input data. It supports two kinds of machine learning
methods. The first group of methods does not explicitly consider spatial or temporal
dimensions; these models treat time series as a vector in a high-dimensional feature
space. From this class of models, sits includes random forests (BELGIU; DRAGUT,
2016), support vector machines (MOUNTRAKIS et al., 2011), extreme gradient boosting
(CHEN; GUESTRIN, 2016), and multi-layer perceptrons (PARENTE et al., 2019). The
authors have used these methods with success for classifying large areas (PICOLI et

al., 2018; SIMOES et al., 2020; PICOLI et al., 2020; FERREIRA et al., 2020a). Our results
show that, given good quality samples, sits can achieve high classification accuracy
using feature space machine learning models.

The second group of models comprises deep learning methods designed to work with
image time series. Temporal relations between observed values in a time series are
taken into account. Time series classification models for satellite data include 1D
convolution neural networks (1D-CNN) (PELLETIER et al., 2019; FAWAZ et al., 2020),
recurrent neural networks (RNN) (RUSSWURM; KORNER, 2018), and attention-based
deep learning (GARNOT; LANDRIEU, 2020; RUSSWURM et al., 2020). The sits package
supports a set of 1D-CNN algorithms: TempCNN (PELLETIER et al., 2019), ResNet
(FAWAZ et al., 2019), and InceptionTime (FAWAZ et al., 2020). Models based on 1D-
CNN treat each band of an image time separately. The order of the samples in
the time series is relevant for the classifier. Each layer of the network applies a
convolution filter to the output of the previous layer. This cascade of convolutions
captures time series features in different time scales (PELLETIER et al., 2019). In the
Results section, we show the use of a TempCNN model to classify the Cerrado biome
in Brazil for the year 2018.

2.3.7 Data cube classification

The sits package runs in any computing environment that supports R . When working
with big EO data, the target environment for sits is a virtual machine located close to
the data repository. To achieve efficiency sits implements its own parallel processing.
Users are not burdened with the need to learn how to do multiprocessing and thus
their learning curve is shortened.
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Memory management in R is a hard challenge. Some advanced machine learning and
deep learning methods require dedicated environments outside R . For example, the
keras package in R that supports deep learning relies on Python code that calls the
TensorFlow library written in C++. All of these dependencies cause R not to have a
predictable memory allocation behaviour when doing parallel processing. Given this
situation, we developed a customised parallel processing implementation for sits to
work well with big EO data.

After many tests with different R packages that provide support for parallel processing,
we found out that no current R package meets our needs. The authors implemented
a new fault tolerant multi-tasking procedure for big EO data classification. Image
classification in sits is done by a cluster of independent workers linked to one or more
virtual machines. To avoid communication overhead, all large payloads are read and
stored independently; direct interaction between the main process and the workers
is kept at a minimum. The customised approach, depicted in Figure 2.6, takes the
steps presented below.

a) Based on size of the cube, the number of cores, and the available memory,
divide the cube into chunks.

b) Assign chunks to the worker cores. Each core processes a block and produces
an output image which is a subset of the result.

c) After all the subimages are produced, join them to obtain the result.

d) If a worker fails to process a block, provide failure recovery and ensure the
worker completes the job.

This approach has many advantages. It works in any virtual machine that supports
R and has no dependencies on proprietary software. Processing is done in a concurrent
and independent way, with no communication between workers. Failure of one worker
does not cause failure of the big data processing. The software is prepared to resume
classification processing from the last processed chunk, preventing against failures
such as memory exhaustion, power supply interruption, or network breakdown. From
an end-user point of view, all work is done smoothly and transparently.
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Figure 2.6 - Parallel processing in sits . Main process start workers’ process (small yellow
areas) that request independently chunks of data from EO data cube through
partial data HTTP requests (arrows); each process has a copy of the machine
learning model and classifies its chunk (bottom); the final map is obtained by
main process by merging classified chunks (right yellow area).

2.3.8 Post-processing

When working with big EO data sets, there is a considerable degree of data variability
in each class. As a result, some pixels will be misclassified. These errors are more
likely to occur in transition areas between classes or when dealing with mixed pixels.
To offset these problems, sits includes a post-processing smoothing method based on
Bayesian probability that uses information from a pixel’s neighbourhood to reduce
uncertainty about its label.

The post-classification smoothing uses the output probabilities of a machine learning
algorithm. Generally, we label a pixel pi as being of class k if the probability of that
pixel belonging to to class k is higher than any other probability associated to the
pixel. Instead of using these probabilities directly, Bayesian smoothing first performs
a mathematical transformation by taking the log of the odds ratio for each pixel:

xi = log[pi,k/(1− pi,k)] (2.1)
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To allow mathematical tractability, we assume that xi follows a multivariate normal
distribution Nk(θi,Σi) where k is the number of classes. This distribution has an
unknown mean θi and an estimated a priori covariance matrix Σi that controls the
level of smoothness to be applied. The covariance matrix represents our prior belief
in the class variability and possible confusion between classes.

The local uncertainty is modelled by a multivariate normal distribution Nk(mi,Si)
where k is the number of classes. The distribution has mean mi and covariance matrix
Si. Our strategy to reduce local uncertainty is to estimate these parameters from the
neighbourhood of pixel pi. Taking Xi as the set of all xi vectors in a neighbourhood,
we compute mi = E[Xi] and Si = cov[Xi,Xi]. The point estimator θ̂i for each pixel
pi that minimises the quadratic loss functions can be obtained by applying Bayes’
rule. The posterior estimator for the pixel’s probabilities can be expressed as

θ̂i = E[θi|xi] = Σi (Σi + Si)−1 mi + Si (Σi + Si)−1 xi. (2.2)

This estimator is computed for each pixel, producing a smoothed map. It is a
weighted combination of xi and the neighbourhood mean mi, where the weights
are determined by the covariance matrices Σi and Si. The component (Σi + Si)−1

plays a normalisation role. Given that the smoothing factor Σi is provided a priori
by the user, the estimate depends only on the neighbourhood covariance matrix
Si. When the X values in a neighbourhood of a pixel are similar, the matrix Si

increases relative to Σi. In this case, we will have more confidence in the original
pixel value and less confidence in the neighbourhood mean m. Likewise, when the X
values in a neighbourhood of a pixel are diverse, the values of the correlation matrix
will be low. Thus, the weight expressed by Si will decrease relative to Σi. We will
have less confidence to the original pixel value xi and more confidence in the local
mean mi. The smoothing procedure is thus most relevant in situations where the
original classification odds ratio is low, indicating a low level of separability between
classes. In these cases, the updated values of the classes will be influenced by the
local class variance. The resulting smoothed map will thus consider the influence of
the neighbours only when the confidence in the most likely label for a pixel is low.
The Bayesian smoothing is a suitable procedure for post-processing probability maps
resulting from machine learning methods (SIMOES et al., 2020).

17



2.3.9 Validation and accuracy assessment

The sits package offers support for cross-validation of training models and accuracy
assessment of results. Cross-validation estimates the expected prediction error. It
uses part of the available samples to fit the classification model, and a different
part to test it. The sits software does k-fold validation. The data is split into k
partitions with approximately the same size. The model is tested k times. At each
step, sits takes one distinct partition for testing and the remaining k − 1 partitions
for training the model. The results are averaged to estimate the prediction error.
The estimates provided by validation are a “best-case” scenario, since they use only
the training samples, which are subject to selection bias. Thus, validation is best
used to compare different models for the same training data. Such results must not
be used as accuracy measures.

To measure the accuracy of classified images, sits provides a function that calculates
area-weighted estimates (OLOFSSON et al., 2013; OLOFSSON, 2014). The need for
area-weighted estimates arises because land use and land cover classes are not evenly
distributed in space. In some applications (e.g., deforestation) where the interest lies
in assessing how much has changed, the area mapped as deforested is likely to be a
small fraction of the total area. If users disregard the relative importance of small
areas where change is taking place, the overall accuracy estimate will be inflated
and unrealistic. For this reason, the sits_accuracy_area() function adjusts the
mapped areas to eliminate bias resulting from classification error. This function
provides error-adjusted area estimates with confidence intervals, following the best
practices proposed by Olofsson et al. (OLOFSSON et al., 2013; OLOFSSON, 2014).

2.3.10 Extensibility

Since one of design aims of sits is to keep a simple application programming interface,
it uses the R S3 object model, which is easily extensible. The designers gave particular
attention to the support required for machine learning researchers to include new
models in sits . For machine learning models, sits uses two R constructs. In R ,
classifiers should provide a predict function, which carries out the actual assignment
of input to class probabilities. R also provides support for closures, which are functions
written by functions (WICKHAM, 2019a). Using closures is particularly useful for
dealing with machine learning functions that have completely different internal
implementations. The sits_train() function in sits is a closure that encapsulates
the details of how the classifier works. The closure returns a function to classifies time
series and data cubes using the overloaded R predict function. Therefore, training

18



and classification in sits are independent and extensibility is easy. Users can provide
new models without any need for changing the other components of the package.
We expect that both the authors and other contributors to the package will include
further advanced deep learning models tailored for image time series.

2.4 Results

In this section, we present an application of sits for generation of land cover products.
The case study takes a one-year classification of the Cerrado biome in Brazil using
Landsat-8 images. Cerrado is the second largest biome in Brazil with 200 million ha
(Figure 2.7). It has great biodiversity value due to a large variety of endemic species.
Its natural areas are being converted to agriculture at a fast pace, as it is one of the
world’s fast moving agricultural frontiers (WALTER, 2006).

The Brazilian Cerrado is comprised of a wide diversity of natural vegetation, ranging
from grasslands to woodlands. There are three major types of Cerrado physiognomy:
“Open Cerrado”, typically composed of grasses and small shrubs with a sporadic
presence of small tree vegetation; “Cerrado” Sensu Stricto, a typical savanna forma-
tion, characterized by the presence of low, irregularly branched, thin-trunked trees;
and finally, the “Cerradão”, a dry forest of medium-sized trees (up to 12-meters), in
whose understory it is possible to find grasses and small shrubs (GOODLAND, 1971;
DEL-CLARO; TOREZAN-SILINGARDI, 2019).

Figure 2.7 - Cerrado biome extension. Its area covers about 200 million ha.
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2.4.1 Input data

The Brazilian Cerrado is covered by 51 Landsat-8 tiles available in the Brazil Data
Cube (BDC) (FERREIRA et al., 2020b). Each Landsat tile in the BDC covers an area
of 336× 220 km, with 11, 204× 7, 324 pixels in Albers equal area projection. The
analysis used a one-year classification period from September 2017 to August 2018,
following the agricultural calendar. The temporal interval is 16-days, thus resulting
in 24 images per year. We use seven spectral bands plus two vegetation indexes
(NDVI and EVI) and the cloud cover information. The total data size for processing
is about 8 TB.

2.4.2 Training samples

We did a systematic sampling by defining a grid of points at every 5-kilometers
throughout the Cerrado biome, with a total of 85,026 points. The training data
labels were extracted using existing land cover products: the pastureland map of
2018 from Pastagem.org (PARENTE et al., 2019), MapBiomas collection 5 for year
2018 (SOUZA et al., 2020), and Brazil’s National Mapping Agency IBGE maps for
2016-2018 (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE, 2020).

We retrieved the labels for these ∼85K points from each of the maps. For this purpose,
we used the land use and land cover trajectory extraction service (WLTS) of the
Brazil Data Cube (FERREIRA et al., 2020a). We accepted as valid only points where
the labels were the same in the three products. As a result, we got 48,850 points from
which we extracted the time series from the Landsat 8 data cube. The distribution
of the samples for each class is the following: “Annual Crop” (6,887), “Cerradao”
(4,211), “Cerrado” (16,251), “Natural Non Vegetated” (38), “Open Cerrado” (5,658),
“Pasture” (12,894), “Perennial Crop” (68), “Silviculture” (805), “Sugarcane” (1775),
and “Water” (263).

2.4.3 Training and classification

Our maps were classified using the TempCNN method (PELLETIER et al., 2019). The
model was trained with the ∼48K training samples described above. All available
attributes in the BDC Landsat 8 data cube (2 vegetation indices and 7 spectral
bands) were used for training and classification. We used the default configuration of
the TempCNN method in sits , which has three 1D convolutional layers followed by
a multilayer perceptron (PELLETIER et al., 2019). After the classification, we applied
Bayesian smoothing to the probability maps and then generated a labelled map,
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selecting the most likely class for each pixel. The classification was executed on
Ubuntu server, using 24 cores and 128 GB memory. Each Landsat tile was classified
in an average of 29 minutes, and the total classification took about 24 hours. Figure
2.8 shows the final map.

2.4.4 Code

According to the principles of the sits API, each function is responsible for one of
the workflow tasks. As a consequence, the classification of the whole Cerrado (200
million ha) is achieved by six R commands, as shown in Listing 2.3.

Listing 2.3 - R Code for Cerrado LUCC classification.

1 # defines a reference to a data cube stored in the BDC.
2 cube <- sits_cube(
3 source = "BDC",
4 name = "cerrado",
5 collection = "LC8_30_16D_STK-1",
6 roi = "./cerrado.shp", # region of interest is a shapefile
7 start_date = "2017-09-01",
8 end_date = "2018-08-31"
9 )

10 # obtain the time series for the samples
11 samples <- sits_get_data(
12 data = cube,
13 file = "./samples.csv" # samples in CSV
14 )
15 # train model using TempCNN algorithm
16 cnn_model <- sits_train(
17 data = samples,
18 ml_method = sits_TempCNN()
19 )
20 # classify data cube
21 probs <- sits_classify(
22 data = cube,
23 ml_model = cnn_model
24 )
25 # compute Bayesian smoothing
26 probs_smooth <- sits_smooth(
27 cube = probs
28 )
29 # generate thematic map
30 map <- sits_label_classification(
31 cube = probs_smooth
32 )
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Figure 2.8 - Cerrado land Use and Land Cover map for year 2018. The map was generated
using temporal convolutional neural networks algorithm trained with ∼48K
samples extracted from three existing land cover products. A spatial smoothing
Bayesian was applied to obtain the final result.
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2.4.5 Classification accuracy

An accuracy assessment of the land use and land cover map was conducted by a
systematic sampling defined by a grid of 20-kilometers throughout the Cerrado biome,
with a total of 5,402 points. These samples are independent of the training set used
in the classification. The samples were interpreted by five specialists using high
resolution images from the same period of the classification. For the assessment, we
merged the labels “Cerradao” “Cerrado” and “Open Cerrado” to one label called
“Cerrado”. We also did additional sampling to reach a minimal number of samples for
the classes “Natural Non Vegetated”, “Perennial Crop”, and “Water”. This resulted
in 5,286 evaluation samples thus distributed: “Annual Crop” (553), “Cerradao”
(704), “Cerrado” (2451), “Natural Non Vegetated” (44), “Pasture” (1246), “Perennial
Crop” (38), “Silviculture” (94), “Sugarcane” (77), and “Water” (79). We used the
sits implementation of the area-weighted technique (OLOFSSON et al., 2013) to provide
an unbiased estimator for the overall accuracy and the total area of each land use
and land cover class based on the reference samples.

Table 2.1 - Area-weigthed classification accuracy.

Labels User’s accuracy Producer’s accuracy
Annual Crop 0.88 0.81
Cerrado 0.91 0.89
Natural Non Vegetated 0.95 0.63
Pasture 0.76 0.82
Perennial Crop 0.74 0.51
Silviculture 0.91 0.83
Sugarcane 0.81 0.96
Water 0.97 0.93
Overall Accuracy: 0.86

2.5 Discussion

The good results of mapping the entire Cerrado biome using sits show that the
software has met its design goals. It was possible to classify a large area of about
200 million ha using an advanced deep learning model on time series with good
performance. Running the whole training and classification process requires a script
with only 6 R commands. No specific knowledge of parallel processing was required.
All in all, the concept of having an integrated solution has been demonstrated.
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We now discuss some of the thematic results from the mapping of the Cerrado biome.
The classes which have the worst performance are “Perennial Crop” and “Natural
Non Vegetated” with producer’s accuracy of 51% and 63%, respectively. Since these
classes are associated with small areas of the Cerrado biome, they had fewer training
samples. The authors had access to only 68 samples of the “Perennial Crop” class
and 38 samples of the “Natural Non Vegetated” class. To improve the accuracy of
these classes, future classifications need to ensure that the number of samples per
class is balanced and representative.

Considering the aims and design of sits , it is relevant to discuss how its design and
implementation choices differ from other software for big EO data analytics, such as
Google Earth Engine (GORELICK et al., 2017), Open Data Cube (LEWIS et al., 2017)
and textitopenEO (SCHRAMM et al., 2021). In what follows, we compare sits to each
of these solutions.

Google Earth Engine (GEE) (GORELICK et al., 2017) uses the Google distributed file
system (GHEMAWAT et al., 2003) and its map-reduce paradigm (DEAN; GHEMAWAT,
2008). By combining a flexible API with an efficient back-end processing, GEE has
become a widely used platform (AMANI et al., 2020). However, GEE is restricted to
the Google environment and does not provide direct support for deep learning. By
contrast, sits aims to support different cloud environments and to allow advances
in data analysis by providing a user-extensible interface to include new machine
learning algorithms.

The Open Data Cube (ODC) is an important contribution to the EO community
and has proven its usefulness in many domains (LEWIS et al., 2017; GIULIANI et al.,
2020). It reads subsets of image collections and makes them available to users as a
Python xarray structure. ODC does not provide an API to work with xarrays, relying
on the tools available in Python. This choice allows much flexibility at the cost of
increasing the learning curve. It also means that temporal continuity is restricted
to the xarray memory data structure; cases where tiles from an image collection
have different timelines are not handled by ODC. The design of sits takes a different
approach, favouring a simple API with few commands to reduce the learning curve.
Processing and handling large image collections in sits does not require knowledge of
parallel programming tools. Thus, sits and ODC have different aims and will appeal
to different classes of users.
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Designers of the openEO API (SCHRAMM et al., 2021) aim to support applications
that are both language-independent and server-independent. To achieve their goals,
openEO designers use microservices based on REST protocols. The main abstraction
of openEO is a process, defined as an operation that performs a specific task. Processes
are described in JSON and can be chained in process graphs. The software relies
on server-specific implementations that translate an openEO process graph into an
executable script. Arguably, openEO is the most ambitious solution for reproducibility
across different EO data cubes. To achieve its goals, openEO needs to overcome
some challenges. Most data analysis functions are not self-contained. For example,
machine learning algorithms depend on libraries such as TensorFlow and Torch. If
these libraries are not available in the target environment, the user-requested process
may not be executable. Thus, while the authors expect openEO to evolve into a
widely-used API, it is not yet feasible to base an user-driven operational software
such as sits in openEO.

Designing software for big Earth observation data analysis requires making com-
promises between flexibility, interoperability, efficiency, and ease of use. GEE is
constrained by the Google environment and excels at certain tasks (e.g., pixel-based
processing) while being limited at others such as deep learning. ODC allows users
complete flexibility in the Python ecosystem, at the cost of limitations when work-
ing with large areas and requiring programming skills. The openEO API achieves
platform independence but needs additional effort in designing drivers for specific
languages and cloud services. While the sits API provides a simple and powerful
environment for land classification, it has currently no support for other kinds of EO
applications. Therefore, each of these solutions has benefits and drawbacks. Potential
users need to understand the design choices and constraints to decide which software
best meets their needs.

2.6 Conclusions

The development of analytical software for big EO data faces several challenges.
Designers need to balance between conflicting factors. Solutions which are efficient for
specific hardware architectures can not be used in other environments. Packages that
work on generic hardware and open standards will not have the same performance as
dedicated solutions. Software that assumes that its users are computer programmers
are flexible, but may be difficult for a wide audience to learn. The challenges lead a
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diversity of solutions in academia and industry to work with big Earth observation
data. Arguably, it is unlikely that a single approach will emerge as the complete best
solution for big EO analytics.

Despite the challenges, there are points of convergence and common ground between
most of the solutions for big EO data. The STAC protocol has emerged as a de
facto standard for describing EO image collections. Users need interoperable and
reusable solutions, where the same software can be used in different cloud services
with similar results. Experience with existing solutions shows the benefits of simple
APIs for the remote sensing community at large. These commonalities should be
considered by big EO software designers.

In the design of sits , we had to make choices. We took an early option of focusing
on time series analysis, based on the hypothesis that time series provide an adequate
description of changes in land use and land cover. Instead of relying on time series
metrics, we opted to allow machine learning methods to find patterns in multidi-
mensional spaces by providing them all available data. The design of the sits data
structures and API follows from our choice of doing land classification based on time
series analysis.

Plans for evolution of the sits package include supporting new deep learning classifiers
targeted for satellite image time series analysis. We plan to include manipulation
of data cubes, allowing mathematical operations to be performed. Another priority
is improving the training phase, using techniques such as active learning and semi-
supervised self learning. We also intend to include rule-based post-processing to
allow multiyear classification comparison. Given the global applicability of sits ,
we intend to support a user and developer community by providing guidance and
documentation.
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3 LAND USE AND COVER MAPS FOR MATO GROSSO STATE IN
BRAZIL FROM 2001 TO 2017

This Chapter1 presents a dataset of yearly land cover classification maps for Mato
Grosso State, Brazil, from 2001 to 2017. Mato Grosso is one of the world’s fast moving
agricultural frontiers. To ensure multi-year compatibility, the work uses MODIS
analysis-ready products and an innovative method that applies machine learning
techniques to classify satellite image time series. The maps provide information about
crop and pasture expansion over natural vegetation, as well as spatially explicit
estimates of increases in agricultural productivity and trade-offs between crop and
pasture expansion. Therefore, the dataset provides new and relevant information
to understand the impact of environmental policies on the expansion of tropical
agriculture in Brazil. Using such results, researchers can make informed assessments
of the interplay between production and protection within Amazon, Cerrado, and
Pantanal biomes.

3.1 Introduction

Brazil is one of the top agricultural producers and exporters, being the largest extent
of tropical rainforest and home to an estimated 15% to 20% of the world’s biodiversity.
Such unique position leads to the need for balancing agricultural production and
environmental protection (MARTINELLI et al., 2010). Without substantial investments
in productivity and strong land policies, the expansion of agricultural production in
Brazil can be a significant factor in environmental degradation. It is vital to under-
stand the impact of environmental policies on the expansion of tropical agriculture
in Brazil.

In Nationally Determined Contribution (NDC) to the United Nations Framework
Convention on Climate Change (UNFCCC) under the 2015 Paris Agreement, Brazil
aims for zero illegal deforestation and zero net emissions within the Amazon rainforest
by 2030. The forest emission balance will be achieved by restoring and reforesting 12
million hectares. Brazil’s NDC also makes a firm commitment to promote low-carbon
agriculture and to increase biofuel use for transportation. Overall, achieving the
emission reduction goals Brazil set in its NDC will highly depend on how the country
meets the targets associated with the land use sector.

1A version of this Chapter was published as a data descriptor in the Nature Scientific Data
journal, and was co-authored by Michelle C. A. Picoli, Gilberto Camara, Adeline Maciel, Lorena
Santos, Pedro R. Andrade, Alber Sánchez, Karine Ferreira, Alexandre Carvalho (SIMOES et al.,
2020).
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Since the election of current Brazilian president in late 2018, there is a growing
tension between the interests of Brazilian agricultural exporters and rural producers
mostly linked to extensive cattle ranching. While the export sector supports the
country’s pledges to the Paris Agreement, most cattle ranchers and smallholders do
not want to commit to environmental protection policies (GIBBS et al., 2015). Since
the traditional rural sector is one of the primary supporters of current government,
there are increasing concerns about whether Brazil will be committed to achieve
its NDC. Comparing the environmental impact of different agricultural sectors is
therefore important for all those interested in land policies in Brazil.

The legal basis for land policies in Brazil is the Forest Code. When created in 1965,
it established a proportion of rural properties that must be permanently maintained
as forest (legal reserve). It also prohibited clearing vegetation in sensitive areas such
as steep slopes and along riverbanks and streams. In 2012, Congress approved a
revision of the Forest Code. It stipulates that landowners, in the Legal Amazon,
must conserve 80% of their property in forest areas, 35% in cerrado areas, 20% in
general fields. To monitor compliance with the new Forest Code, Brazil has been
successfully using wall-to-wall satellite-based monitoring (TYUKAVINA et al., 2017).
Using satellite observations allows consistent monitoring of land use change, which is
necessary for assessing how effective have been the enforcement of public policies as
well as the new Forest Code (SOTERRONI et al., 2018).

One particular area of interest for understanding the balance between production
and protection in Brazil is the Mato Grosso State, one of the world’s most extensive
agricultural frontiers (ARVOR et al., 2011; SPERA et al., 2014; KASTENS et al., 2017;
PICOLI et al., 2018). Mato Grosso is the third largest state of Brazil, with an area of
90, 335, 700 ha. If it was a country, it would be the world’s 33rd largest one, being
almost as large as Venezuela and Nigeria. Mato Grosso also contains part of three
Brazilian biomes: Amazon, Cerrado, and Pantanal (Figure 3.1). From 1988 to 2018,
Brazil’s National Institute for Space Research (INPE) estimates that 14.5 million
ha of natural forests in the Amazonia biome in Mato Grosso have been clear-cut.
INPE also estimates that, from 2001 to 2018 in Mato Grosso, more 4.5 million ha of
natural cerrado vegetation have been removed.

Based on the above motivation, this Chapter describes a data set of yearly land use
and land cover maps for Mato Grosso from 2001 to 2017. These maps are temporally
consistent and provide information on deforestation and changes in natural vegetation,
crop and pasture expansion, a well as productivity increase. To ensure multi-year
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compatibility, the work uses the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor analysis-ready products and an innovative method that applies
machine learning techniques to classify satellite image time series. Using the results,
it is possible to make informed assessments of the interplay between production and
protection in the Amazon, Cerrado, and Pantanal biomes.

Figure 3.1 - Mato Grosso study area: a) location of Mato Grosso relative to South America
continent; b) location of Mato Grosso State relative to Brazil; c) Mato Grosso
State biomes.

3.2 Methods

In this section, we detail our approach to generate land use and cover maps of Mato
Grosso State. The main steps are depicted in Figure 3.2.

3.2.1 Input data

We based our work on Earth observation data cube, using data stored in a cloud
service (Amazon Web Services), over which we ran the classification. The input
data is a set of MOD13Q1 collection 6 images, provided by NASA/LPDAAC from
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2000-09-01 to 2017-08-31, covering Mato Grosso State. The MOD13Q1 images are
available every 16 days at a 250-meter spatial resolution in the sinusoidal projection
(DIDAN, 2015). For our analysis, we used normalised difference vegetation index
(NDVI), enhanced vegetation index (EVI), near-infrared (NIR), and mid-infrared
(MIR) attributes.

Figure 3.2 - Diagram depicting our methods.

Ground 
samplesEarth Observation Data Cube

Samples 
selection/analysis/reduction

Image time series classification

Smoothing Bayesian filterMasks (Sugar C., Water, Urban)

Land Use Change Calculus LULC Maps

The samples data set has 2, 115 samples containing longitude, latitude, start date,
end date, and label. We defined nine land use and cover classes: (1) “Forest”, (2)
“Cerrado”, (3) “Pasture”, (4) “Soy-Fallow” (single crop), (5) “Fallow-Cotton” (single
crop), (6) “Soy-Cotton” (double crop), (7) “Soy-Corn” (double crop), (8) “Soy-Millet”
(double crop), and (9) “Soy-Sunflower” (double crop). Our samples range from 2000
to 2015 and all samples are available at PANGAEA repository (CAMARA et al., 2019).
The crop and pasture ground data was collected through field observations and farmer
interviews provided by (KASTENS et al., 2017; SANCHES et al., 2018). Samples for
“Cerrado” and “Forest” were provided through fieldwork and high-resolution images.
Ground samples for “Soybean-Fallow” were provided through fieldwork, based on
previous work of (ARVOR et al., 2011). The classes are shown in Table 3.1.
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We retrieved time series data of the 2, 115 samples from the Web Time Series Service
(WTSS) (VINHAS et al., 2016), an R package available on CRAN (https://CRAN.R-
project.org/package=wtss)2. Each sample corresponds to one year of observations
that comprises 23 values of MOD13Q1 per band.

Table 3.1 - Samples used for training the classification model.

Class label Count Frequency
Cerrado 379 20.0%
Fallow-Cotton 29 1.5%
Forest 131 6.9%
Pasture 344 18.2%
Soy-Corn 364 19.2%
Soy-Cotton 352 18.6%
Soy-Fallow 87 4.6%
Soy-Millet 180 9.5%
Soy-Sunflower 26 1.4%

The temporal patterns of the ground samples (Table 3.1), using NDVI, EVI, NIR,
and MIR bands, can be seen in Figure 3.3, which uses a generalised additive model
to estimate the joint distribution of the samples data set for each class (MAUS et al.,
2016).

3.2.2 Pre-processing for sample quality control

One of the key challenges when using samples to train machine learning classification
models is assessing their quality. Noisy and imperfect training samples can have a
negative effect on classification performance (FRENAY; VERLEYSEN, 2014). Therefore,
it is useful to apply pre-processing methods to improve the quality of the samples and
to remove those that might have been wrongly labelled or that have low discriminatory
power. In this work, we applied a clustering method based on self-organizing maps
(SOM) neural network to test sample quality.

Self-organizing maps is a dimensionality reduction technique (KOHONEN, 1990). High-
dimensional data is mapped into two dimensions, keeping the topological relations
between data patterns. This allows users to visualise and assess the structure of the
input data set. For quality control of the training data, we used a SOM clustering

2Author note: by the time of this thesis edition, the WTSS package is not anymore listed in The
comprehensive R archive network (CRAN)
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method, whose input is a time series samples data set. The output layer comprises a
2D grid of neurons, each associated to a weight vector of the same dimension as the
input space.

Figure 3.3 - Temporal patterns of NDVI, EVI, NIR, and MIR bands for the land use and
cover classes. The patterns are obtained using a generalised additive model on
time series of samples data set.
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Source: Picoli et al. (2018)

In the SOM algorithm, the 2D grid of neurons is initialised randomly. Then, for each
time series sample, the algorithm finds the neuron with the smallest distance to the
sample, based on its weight vector. After the match, the neuron’s weight vector and
those of its neighbours are then updated. After all training samples are associated
with neurons, each neuron is labelled using a majority vote, taking the most frequent
class from the samples associated with it. In this way, SOM splits the output space
into regions. It is expected that good quality samples of each class would be close
together in the resulting map.
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To increase the reliability of quality control procedures, SOM was executed several
times. Using this iterative procedure, we computed the probability of each sample
belonging to the resulting clusters. From these probabilities, we analysed the separa-
bility of samples with similar phenological patterns and decided which samples were
to be discarded. This allows using SOM to detect and remove outliers. Table 3.2
illustrates how this method works. It contains three samples of “Pasture”, identified
from 1 to 3. For sample 1, its original and clustered label matched 100% of the time.
For sample 2, only 52% of the original and cluster labels matched. Finally, sample 3
matched only 5% of the original label. We define good samples as those that match
at least 80% of the time. Thus, in this example, samples 2 and 3 were removed from
the data set.

Table 3.2 - Reliability of three pasture samples, identified as 1, 2, and 3.

Identifier Original class Cluster label Frequency
1 Pasture Pasture 100%
2 Pasture Pasture 52%

Cerrado 41%
Forest 2%
Soy-Corn 2%
Soy-Cotton 2%
Fallow-Cotton 1%

3 Pasture Cerrado 94%
Pasture 5%
Forest 1%

For Mato Grosso samples, the SOM-based clustering reduced the training data set
by 10.5%, from 2, 115 to 1, 892 entries. This filtered data set was then used to train
the classification model.

3.2.3 Image time series classification

To generate our maps, we used support vector machine (SVM) as a classification model.
Given a multidimensional data set, SVM finds an optimal separation hyperplane that
minimises misclassifications (CORTES; VAPNIK, 1995). For data that is not linearly
separable, SVM includes kernel functions that map the original feature space into a
higher dimensional space, providing nonlinear boundaries to the original feature space.
SVM is one of the most widely used algorithms in machine learning applications and
has been widely applied to classify remote sensing data (MOUNTRAKIS et al., 2011).
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In a recent review of machine learning methods to classify remote sensing data
(MAXWELL et al., 2018), the authors note that many factors influence the performance
of these classifiers, including the size and quality of the training data set, the
dimension of the feature space, and the choice of the parameters. With Mato Grosso
data, previous experiments by the authors have shown that the SVM classifier has a
better performance than other machine learning methods such as random forest for
MOD13Q1 time series data (PICOLI et al., 2018).

For SVM training, we used a 92-dimensional feature space, comprising four time series
for each pixel. Each time series contains 23 samples of one of the MOD13Q1 bands
NIR, MIR, EVI, and NDVI. The data set of 1, 892 labelled and quality-controlled time
series was used to train an SVM model using a radial basis kernel function (RBF),
with cost C = 1 and γ = 1/92 (HASTIE et al., 2009). We chose these parameters
based on a 5-fold cross-validation test. Parameter C is the cost used as a softened
parameter of hyperplane boundaries, while γ is a distance normalisation parameter
used in the RBF kernel. We used sits R package to train SVM and to classify all
MOD13Q1 tiles of Mato Grosso stored in an AWS S3 service.

3.2.4 Local smoothing by Bayesian filtering

One of the well-established methods in remote sensing image analysis is to combine
pixel-based classification methods with a spatial post-processing method to remove
outliers and misclassified pixels. Methods proposed in the literature include modal
filters (GHIMIRE et al., 2010) and probabilistic relaxation (GONG; HOWARTH, 1989).
Our method uses Bayesian smoothing to reclassify the pixels.

Usually, machine learning methods assign class probabilities to each pixel. Most
applications using this approach select the most probable class from the classifier
output to be the categorical result for each pixel. The proposed method uses all pixel
classes probabilities to compute the resulting confidence. When the magnitude of
the discrepancies among the pixel probabilities is high, we have a higher confidence
in the classification. Otherwise, when the probabilities have similar magnitudes, we
have a low confidence. This is a typical situation in borders and mixed pixels.

To change low confidence pixels, we followed well-established Bayesian smoothing
methods (CRESSIE, 1995): borrow strength from the neighbours to reduce the variance
of the estimated class for each pixel. The main rationale is to use Bayesian inference
considering the mean and variance of the pixel’s neighbours to calculate the posterior
Bayesian probabilities, then reevaluate the most probable class for the pixel. This
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procedure can change the class of pixels with low confidence to the neighbourhood
class with a higher confidence. When the local class variance of the neighbours
is high, the method gives more weight to the original pixel value. The smoothing
algorithm3 considers a global parameter σ2 that weighs the smoothness level by
increasing the influence of the neighbourhood. When σ2 = 0, there is no change in
the posterior Bayesian class probabilities. Positive values of σ2 indicate the influence
the neighbours in the posterior Bayesian probabilities.

In our case, after some classification tests, we set σ2 = 10 for all classes, which
showed the best performance in the technical validation. Additionally, we used a
single neighbourhood rule, being all those pixels with Chebyshev distance equal to
one, which is the same as to consider a 3× 3 window around a pixel.

3.2.5 Post-processing: masks and land use change calculus

Three land cover classes that are not included in the training data set were introduced
as masks on all output maps: sugarcane, water, and urban areas. The sugarcane mask
from 2003 to 2016 comes from Canasat project (RUDORFF et al., 2010), which maps
sugarcane areas in the South-Central region of Brazil using Landsat series images
(ADAMI et al., 2012). The water mask comes from (PEKEL et al., 2016), who used three
million Landsat series satellite images to quantify changes in global surface water
over the past 32 years (1984 to 2015). Finally, the urban area mask was provided
by (SPAROVEK et al., 2015).

To prepare the base map (year 2001), we considered using the Deforestation Monitor-
ing Project (PRODES) Amazon (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS -

INPE, 2019b) and PRODES Cerrado (INSTITUTO NACIONAL DE PESQUISAS ESPA-

CIAIS - INPE, 2019a) data sets produced by Brazil’s National Institute for Space
Research (INPE). We used PRODES datasets to achieve a better consistency in our
base map, as our classification method is unaware of preceding land cover trajectories
before 2001. These data sets are the official Brazilian statistics on deforestation
(SHIMABUKURO et al., 2012). Table 3.3 lists the set of rules applied on the base map
using these data sets. We applied each rule comparing corresponding pixels of two

3Author note: this description refer to an early version of sits Bayesian filter implementation
where the inference was taken for each class, independently. In the current version of sits this
algorithm improved to a vectorial approach of Bayesian inference where all classes probabilities and
smoothing parameter are vector and matrices, just like presented in Chapter 2.
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maps. We denote Mi, Ai, and Ci as the classes of pixel i of Mato Grosso classification,
PRODES Amazon, and PRODES Cerrado maps, respectively. The result of each
rule is a new class for Mi, described in the right column.

Table 3.3 - Rules applied on the base map (year 2001).

Condition Resulting class for Mi

Ai = 〈Forest〉 〈Forest〉
Ai = 〈Non-Forest〉 and Mi = 〈Forest〉 Mi = 〈Cerrado〉
Ai = 〈Deforestation〉 and Mi = 〈Forest〉 Mi = 〈Sec-V egetation〉
Ci = 〈Non-Anthropized〉 and Mi = 〈Forest〉 Mi = 〈Cerrado〉
Ci = 〈Anthropized〉 and Mi = 〈Forest〉 Mi = 〈Sec-V egetation〉

Since our method produces maps independently, the results may have temporal
inconsistencies. For example, a natural forest area that was cut in one year may
regrow back to forest after being abandoned. In this case, it is useful to distinguish
pristine forest from secondary vegetation, which is also classified as a forest in later
years. Another example is the case when a pixel classified as “Forest” in one year is
classified as “Cerrado” in another year, which represents an impossible transition. To
handle these inconsistencies, we used the Land Use Change Calculus (LUC Calculus)
(MACIEL et al., 2019) over all produced maps as a set of land use trajectories from
2001 to 2017, using 2001 as a reference date.

Table 3.4 expresses the set of rules that describe when a particular class will be
replaced by another, using LUC Calculus. We considered four classes: “Forest” (F),
“Cerrado” (C), “Pasture” (P), and “Soybean” (any class with soybean) (S). The
rules were applied sequentially to ensure the temporal consistency among classes
over the years. The expressions indicate that trajectories on the left side of ‘→’ are
updated to the classes on the right side. The updated classes are those highlighted
with ‘∗’ symbol. All rules assume 2001 as the base map. Rules nine and ten create a
new class for secondary vegetation (SV). This class represents deforested areas that
regrew as a secondary forest after being abandoned.

Figure 3.4 displays an example of how post-processing was applied. It shows different
results for Sinop municipality in 2016. Figure 3.4-(1) illustrates the original SVM
output map, after applying water, sugarcane, and urban masks. Figure 3.4-(2) shows
the result after Bayesian smoothing on the original classification. Finally, Figure 3.4-
(3) shows the output map after LUC Calculus. This last map is the only one that
identifies secondary vegetation areas.
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Table 3.4 - Rules applied over all classified years. The classes labels: “Forest” (F), “Cerrado”
(C), “Pasture” (P), “Soybean” (S), and “Secondary Vegetation” (SV).

Land-use transition rules
1. C → F* =⇒ C → C*
2. C → C → P* → C =⇒ C → C → C* → C
3. C → C → S* → C =⇒ C → C → C* → C
4. P → P → C* → C* → P =⇒ P → P → P* → P* → P
5. F → C* → F → F =⇒ F → F* → F → F
6. F → F → C* → F =⇒ F → F → F* → F
7. F → C* → F =⇒ F → F* → F
8. F → C* =⇒ F → F*
9. F → F → P → F* =⇒ F → F → P → SV*
10. P → P → F* → P =⇒ P → P → SV* → P

Figure 3.4 - Detail of SVM classification for Sinop municipality in 2016. (1) Original map
with masks; (2) original map with Bayesian smoothing and masks; (3) final
map after applying the LUC Calculus and masks.

3.3 Data records

The data set provides annual land use and cover maps from 2001 to 2017 in sinusoidal
projection, which is the same cartographical projection used by the input MODIS
images. The archive available at PANGAEA (CAMARA et al., 2019) contains the
classified maps in compressed TIFF format (one per year) at MODIS resolution, as
well as a file with the training data set (1,892 ground samples) in CSV format and a
style file for displaying the data in QGIS.
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3.4 Technical validation

Quality assessment using a 5-fold cross-validation (WIENS et al., 2008) of the training
samples indicates an overall accuracy of 0.96. Table 3.5 shows the user’s and producer’s
accuracy for each land use and cover classes.

Table 3.5 - Summary of k-fold cross-validation accuracy estimation.

Labels User’s accuracy Producer’s accuracy
Cerrado 0.98 0.99
Fallow-Cotton 0.96 0.93
Forest 0.99 0.98
Pasture 0.97 0.98
Soy-Corn 0.91 0.93
Soy-Cotton 0.97 0.97
Soy-Fallow 0.98 0.98
Soy-Millet 0.90 0.89
Soy-Sunflower 0.77 0.65
Overall Accuracy: 0.96

The cropland area increased from 2001 to 2017. This trend is corroborated by (SPERA
et al., 2014; ARVOR et al., 2013; KASTENS et al., 2017). A decreasing on Soybean area
between 2005 to 2007 was also observed by (SPERA et al., 2014; ARVOR et al., 2012).
Moreover, the use of double-crop systems, involving soybeans in the first cycle and
some other commercial crops in the second cycle, also increased from 2001 to 2017.
This is in accordance with (KASTENS et al., 2017).

The correlation coefficient between the agricultural areas classified by our method
and the official crop statistics by the Brazilian Institute of Geography and Statistics
(IBGE) (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE, 2018), for
harvests from 2001 to 2017, was equal to 0.98. At the state level, soybean, cotton, corn,
and sunflower areas had a correlation equal to 0.97, 0.85, 0.98, and 0.80 respectively,
as shown in Figure 3.5.

Compared to the IBGE statistics, the classification slightly underestimates soybean
areas in most years. It also underestimates cotton areas until 2012 and overestimates
corn areas. IBGE statistics are based on questionnaires and not on systematic surveys,
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which might produce inaccurate estimates. Additionally, these differences may have
been caused by the spatial resolution of MODIS (250 meters), which generates
spectral mixing for different land uses within a single pixel (ZHONG et al., 2016).

Forest area has a correlation of 0.88 if compared with data of PRODES (ALMEIDA

et al., 2016). The classification method overestimated forest areas in Mato Grosso,
possibly because some cerrado areas are very dense and spectrally similar to forest.
We also compared the areas classified as forest with the Global Maps of 21st-Century
Forest Cover Change produced by (HANSEN et al., 2013), for the year 2000. We found
that 98% of the pixels classified as forest match the pixels above 25% of tree cover.

Our results show an expansion of pasture area in the Mato Grosso State between
2001 and 2017. We can observe in Figure 3.6 that pasture expansion occurred mainly
in the north, within the Amazon biome. A similar finding is observed by (PARENTE;
FERREIRA, 2018).

All these validation results show that our maps are consistent and reliable. However,
the spatial resolution of MODIS images (250m) have limitations to represent some
areas as small crop fields, water bodies, and urban areas.

Figure 3.5 - Comparison of land use areas from 2001 to 2017. Total area of a) soybean,
b) corn, c) cotton, and d) forest in Mato Grosso estimated by the proposed
classification method, together with IBGE cropland survey and PRODES.
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Figure 3.6 - Classified maps of Mato Grosso in 2001 (left) and 2017 (right), with sugarcane,
urban area and water masks.

3.5 Usage notes

The land use and cover data set contributes to understanding land use changes
and trends. It provides essential information for public policy, decision making,
environmental studies, territorial planning, and law and agreements enforcement. In
this section, we provide two applications examples of land use and cover data set.

The data set can provide information to assist in the fulfilment of Brazilian NDC,
which commit to reduce greenhouse gas emissions (GHG) by 37% below 2005 levels
in 2025 and 43% until 2030. Actions comprising land use, renewable energy, and
low carbon agriculture sectors compose key elements of the Brazilian commitments.
Land use and cover maps are fundamental for monitoring land use change trends.
These maps can also be used as input to complex models for GHG inventories to
verify if the Brazilian NDC has been fulfilled for climate mitigation.

The demand for agricultural land is one of the main drivers of land use change in
Brazil. There are already public political aggravations to slow down the expansion,
especially of soybeans (whose Mato Grosso is the largest producer state in the world)
and encourage the intensification of agriculture, as for example soybean moratorium
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(signed in 2006) and the new Forest Code (NFC) (signed in 2012). Another potential
usage of the data set is to track the agriculture intensification in Brazil, and on which
land use agriculture has expanded. It is also possible to verify compliance with the
soybean moratorium and the NFC policies.
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4 RSTAC: AN R PACKAGE TO ACCESS SPATIOTEMPORAL ASSET
CATALOG SATELLITE IMAGERY

This Chapter1 presents the rstac an R package that implements a client for the
SpatioTemporal Assets Catalog (STAC) API, a simple and extensible document-
based easy-to-read specification adopted by important players of Earth observation
data providers. STAC API enables query and access to a growing set of global satellite
imagery providers. The adoption of common protocols is critical to interoperability
of systems in an heterogeneous cloud computing environments and allows automated
access to petabytes of images of a several Earth observation satellites. Here, we
demonstrate how rstac can be used in an application of land use and land cover
mapping.

4.1 Introduction

Only in 2019, 5 PB of terrestrial surface images were produced by Landsat, MODIS,
and Sentinel series satellites (SOILLE et al., 2018). The majority of these images were
stored in cloud computing platforms by most space agencies that have adopted an
open data policy. Cloud computing are changing how all these big Earth Observation
data is being distributed. One of the main challenges is to organise, access, and
process these huge data sets in an automatic and interoperable way (GIULIANI et al.,
2019).

A key piece to solving part of this challenge are protocol standards to catalogue,
search, and access these data sets. The STAC is a simple and extensible specification
of JSON documents based on OGC OAFeat core (OPEN GEOSPATIAL CONSORTIUM

- OCG, 2019) that is being well accepted by important EO data providers like
USGS, AWS, and Microsoft. The rstac is the first package related to the STAC API
specification written in the R language. It intends to facilitate the usage of STAC
API technology by the R community.

This Chapter aims to present the rstac package, describing its software design and
demonstrate one application. The document is organised as follows: first, we present
the context of the STAC specification and its main elements; second, we describe

1A version of this Chapter was accepted as a conference paper in the 2021 International
Geoscience and Remote Sensing Symposium (IGARSS 2021), and was co-authored by Felipe Souza,
Matheus Zaglia, Gilberto Queiroz, Rafael Santos, Karine Ferreira.
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how the package implements the access to the STAC API; finally, we show how the
technology can be used in an EO data cube context by describing an example of
land use and land cover classification.

4.2 The STAC specification

Often, the adoption of complex specifications can hinder the development of appli-
cations. This is the case for some of the traditional OGC Web services like WFS
2 (OPEN GEOSPATIAL CONSORTIUM - OCG, 2014). To keep things running at a
minimum, developers need to read hundreds of specification pages. One of the main
features of the STAC specification is its simplicity and extensibility. The standard
defines a basic core structure in JSON (BRAY, 2017) and GeoJSON (BUTLER et al.,
2016) that can be easily extended. It follows the recommendations of good practices
for web spatial data (TANDY et al., 2017), which includes the adoption of a metadata
format that can be easy to be read by humans, the description of satellite images
and web links to access them, the possibility to browsing the catalogue entirely by
following web links so that static catalogues can be defined without the need for an
API service, and a search API to retrieve the same documents dynamically. These
principles can be observed in the two components of the specification, the STAC
documents and the STAC API.

Figure 4.1 - The hierarchical structure of the rstac package, composed of functions (boxes),
endpoints (text below boxes), and classes (horizontal bars).
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The documents “STAC Catalogs” and “STAC Collections” are regular JSON files used
to organise the catalogue hierarchically and provide some general information of the
collections. They help split many catalogue items into small groups to facilitate users
to browse into extensive static catalogues. The documents “STAC Item Collection”
and “STAC Item” are extended GeoJSON files that describe and provide links to
access spatiotemporal assets. The former lists a set of items matched by a query, and
the latter represents a single item, the core unit of the catalogue. Besides the static
catalogues, STAC documents can be dynamically obtained by the search API. The
API is defined in OpenAPI 3 (OPEN API INITIATIVE - OAI, 2020) and adheres to the
core principles of RESTful applications (TANDY et al., 2017).

The API consists of URL paths known as endpoints, to which HTTP requests are
made, and JSON documents returned according to provided query parameters. STAC
API is a superset of OGC API Features (OAFeat) (OPEN GEOSPATIAL CONSORTIUM

- OCG, 2019) specification and hence, adopts all its endpoints. It also extends the
OAFeat by proposing a new endpoint, /search. This endpoint enables the searching
for items across multiple collections and makes complex queries to filter items to
be returned by the service. Different from static catalogues, users can browse the
matched items through a pagination mechanism.

4.3 Software design

The rstac package was developed entirely in R , following the principles discussed in
(WICKHAM, 2019b). The document specifies four principles: the re-usability of native
R functions, communication between operations, usage functions involving functional
programming, and design for the general public. The first one is implemented by
taking advantage of the S3 object model and extending base R functions like print().
Also, all rstac documents are S3 subclass of ordinary lists, and all functions developed
for this type can be applied to them either. The remaining three principles define the
design of rstac , which can be divided into three main components: query, request, and
documents. The query component consists of building the set of parameters passed to
the STAC service through an HTTP request. The next component, request, defines
the HTTP protocol parameters, i.e., HTTP verb, headers, and content-encoding.
Some of the STAC API behavior depends on these parameters. Finally, the document
component starts when a response is retrieved and parsed. The document can then
be consumed, items browsed, and assets downloaded.
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The query construction in rstac is based on a hierarchy of endpoint function calls. To
simplify its creation and make the process user-friendly, the functions calling order
resembles the endpoints paths. Figure 4.1 shows a tree denoting the order in which
query functions (boxes) can be called and the resulting rstac object representing the
document returned by the server (horizontal bars). The corresponding endpoints are
shown below in the functions boxes. Every new query starts from stac() endpoint
function (at the top of the hierarchy) and, using a Unix-like pipe operator (%>% in
R ), one can make successive calls to other endpoint functions to form the desired
query.

Besides providing full support for all endpoints from the STAC specification,
rstac offers extra functions that can be used on documents returned from a re-
quest. For example, for STAC Item Collection documents, it is possible to check the
object’s length and how many items were returned according to the search criteria,
using the functions items_length() and items_matched(), respectively. Since some
servers have a maximum limit of items to be returned per search, the rstac package
offers a paging function that returns all search items, using the items_fetch()
function. Furthermore, the user can download all the search assets through the
assets_download() function.

All these components are put together by a command chain designed to be used
in a functional programming way: the query can be progressively built before the
request by calling rstac endpoint functions; the request concerns only with service
communication, such as authentication and content-encoding; the resulting document
passed to further operations. An example of this use is illustrated in the Listing 4.1.

Listing 4.1 - Extracting time series from a a data cube.

1 # BDC stac service
2 stac("http://brazildatacube.dpi.inpe.br/stac") %>%
3 collections("CB4_64_16D_STK-1") %>% # cube CBERS
4 items(bbox = c(-45.661502, -12.534252, -45.426156, -12.390242)) %>%

# delimit extent
5 items(datetime = "2018-09-01/2019-08-28") %>% # delimit date range
6 get_request() %>% # do request
7 items_fetch() # retrieve all matched entries

This design based on the R S3 object model enables rstac to be extended at different
levels, either by adding new endpoints, new query parameters, or new document
operations. These extensions facilitate the package to be up-to-date according to
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specification developments and allow the implementation of new applications on
it. The rstac provides a set of functions and complete documentation to help the
development of new extensions.

4.4 Application

To demonstrate an application of STAC technology, we describe an example of land
use and land change classification that uses machine learning and satellite image
time series. The time series data were retrieved from the Brazil Data Cube (BDC)
project (FERREIRA et al., 2020a). The BDC project aims to create multidimensional
data cubes ready for analysis from remote sensing images of medium resolution (10 to
64-meters) of CBERS, Landsat, and Sentinel satellites series, for the entire Brazilian
territory. One of these data cubes’ main applications in the project context is the
generation of thematic maps of land use and land cover classifications from Brazilian
biomes (FERREIRA et al., 2020a).

4.4.1 Land use and land cover classification of satellite image time series

The classification is performed by the sits 2 R package. Once we have trained a
machine learning classifier, the mapping is done by reading multiple images from
an area of interest to reconstruct the time series and pass them to the classifier,
which gives back the land use and land cover classes for each time series. Figure 4.2
illustrate how the integration between sits and rstac works.

The process starts by defining an area and an interval of interest. This area can be
represented by a bounding box and the interval by two dates queried by rstac to the
BDC STAC server. The metadata returned is used by sits to retrieve the time series
for each pixel classified and then generates a land use and land cover map. Here, we
defined our region of interest inside the Bahia State, Brazil (see Figure 4.3-(c)). The
region has approximately 40,000 ha and is bounded by the coordinates (long, lat)
−45.7564,−12.6708, and −45.3207,−12.2626 (in the EPSG:4326 reference system).

We used 922 samples from the same region. These samples were collected by experts
using high-resolution images and were provided by the BDC project. The samples
comprise four land use and land cover classes: “Crops”, “Shrublands”, “Other vegeta-
tion”, and “Pasture”. We used rstac to extract the Normalized Difference Vegetation
Index (NDVI) time series of each sample from CBERS-4 satellite data cube. This

2Note: package discussed in Chapter 2

47



EO data cube is formed by 16-days of composite images from the AWFI sensor with
64-meters of spatial resolution. We defined the time series interval from 2018-09-01
to 2019-08-28, which matches the Brazilian annual crop calendar.

Figure 4.2 - rstac and sits integration. Data flows downward: (a) region and interval of
interest; (b) STAC query; (c) time series retrieving; (d) machine learning
classification; and (e) land use and land cover map.

We trained a 1000-trees Random Forest (BREIMAN, 2001) model using sits . The
trained model produced a one-year thematic map that is shown in Figure 4.3-(b). The
full methodology is described in (SIMOES et al., 2020). To accomplish this classification,
we accessed 24 NDVI images that formed all the observations for the period. All-time
series were extracted using GDAL virtual file system driver by HTTP requests. The
classification process took less than a minute.

4.5 Conclusions

One of the main challenges for EO technology developers is the interoperability. To
achieve an automation level capable to query and access a variety of repositories
located in different platforms, an abstraction layer of protocols must be adopted.
STAC is becoming an feasible candidate to support the interoperability required
to access EO data cubes. This is even more critical considering the trends of EO
community to use cloud computing from different vendors or public organisations.
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Figure 4.3 - Land use and land cover classification using rstac and sits: (a) false-color
composition formed by NDVI on different dates (R: 2018-09-14, G: 2018-09-30,
B: 2018-10-16); (b) land use and land cover map; (c) region (little dark gray
rectangle) located in western Bahia State, Brazil.

Based on a REST+JSON solution, the STAC provides only basic features but is easy
to extend. Following the same principle, the rstac package is designed to be extensible
at many levels of specification, facilitating the development of new applications based
on the protocol. The rstac was the first implementation concerning STAC in the R
language, which can leverage STAC-based technologies in the R community, such as
sits , that have been enabled to access different EO data repositories, which facilitates
the process of environment preparation in any cloud computing platform.

Here, we provided one little example that shows how STAC protocol can be used
to integrate software and EO data cubes. We presented a land use and land cover
classification using time series by accessing the CBERS-4 data cube from the BDC
cloud environment. All processes involved the integration between rstac and sits in
the client side and STAC Web service in the server side.

49





5 FINAL REMARKS

Developers of analytical software for big EO data face several challenges. The
sits software makes the hypothesis that image time series provide an adequate
description of land use and land cover change. Instead of using phenological or
temporal metrics, we use machine learning to find the patterns that discriminate the
labels. Our results on generating good quality maps are supportive of this hypothesis.

Our method faces challenges because of the massive use of data. The parallel
processing design of the package considered this issue. It is scalable and exploits the
available computational resources, achieving good computational performance.

The design of sits prioritised the support to the different computing environments
such as AWS and Azure. In our vision, the emergent scenario in the EO community
is that there will be multiple data cube providers making use of different cloud
computing services. This heterogeneity of data and computational environment
imposes interoperability challenges if we want the same software to work in different
cloud services with similar results. Another relevant decision was to use the STAC
protocol to describe the contents of image cloud services.

Future steps for sits include supporting to new machine learning classifiers, optimising
the access to EO data cubes over ARD image collections, including arithmetic over
data cubes. One important improvement is in the training phase, by supporting
techniques such as active learning and semi-supervised self learning. We also intend
to include into sits multiyear classification post-processing by native sits instructions.
Given the global applicability of sits , we intend to support a user and developer
community by providing guidance and documentation.
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APÊNDICE A - CODE AVAILABILITY

The code scripts that support the findings of Chapter 2 are openly available in
sitsdata repository at GitHub (https://github.com/e-sensing/sitsdata).

The code scripts that support the findings of Chapter 3 was published by (SIMOES

et al., 2019) and is available at https://doi.org/10.5281/zenodo.3354400 under
the GNU General Public Licence v3.0. Unfortunately, the code refer to an earlier
version of sits and the MOD13Q1 collection 6 images repository referred therein are
no more open for the public access. Adaptations in the code script may be required.

The sits package is available at Github (https://github.com/e-sensing/sits)
under the GNU General Public License v3.0. Full documentation of the package is
available at https://e-sensing.github.io/sitsbook/ Web book.

The rstac package is available at the Comprehensive R Archive Network (CRAN)
in the address https://cran.r-project.org/package=rstac. The software is li-
censed under the MIT License. The development version of the package is available
at BDC project repository in GitHub (https://github.com/brazil-data-cube/
rstac)
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