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Abstract: This paper examines the relative role of the Indian Ocean basin-wide (IOBW) mode and El
Nifio-Southern Oscillation (ENSO) in the atmospheric circulation and rainfall interannual variations
over South America (SA) during southern summer of the 1951-2016 period. The effects of the warm
IOBW and El Nifio (EN) events, and of the cold IOBW and La Nifia (LN) events are examined using
partial correlations. The ENSO and IOBW modes, through the associated large-scale and regional
anomalous circulation patterns, induce contrasting effects on the rainfall in northeastern SA. The
EN without the warm IOBW effect induces anomalously dry conditions over eastern Amazon and
part of northeastern Brazil (NEB) through anomalous sinking motions of the EN-related anomalous
Walker and Hadley cells and strong moisture divergence associated with a vigorous anticyclone over
tropical South Atlantic (TSA) and SA. The warm IOBW without the EN effect induces anomalously
wet conditions in NEB, which is marginally related to the anomalous Walker and Hadley cells
but is modulated by an anticyclone over SA between the equator and 20° S, and a cyclone in the
southwestern Atlantic between 20° S and 40° S. The results here might be relevant for climate
monitoring and modeling studies.

Keywords: climate variability; South America; rainfall; teleconnections; tropical Indian ocean; Rossby
wave train; ENSO

1. Introduction

As a natural climate forcing, the El Nifio-Southern Oscillation (ENSO) is the most
prominent phenomenon that modulates interannual climate variability on a global scale.
Particularly in South America (SA), ENSO drives rainfall anomalies in the tropical sector
through changes in the Walker cell and local Hadley cell [1,2] and in the subtropical and ex-
tratropical sectors through ENSO-induced Rossby wave train teleconnection patterns [3,4].
The El Nifio (EN) related eastward-shifted Walker cell reduces rising motions over equa-
torial SA, creating favorable conditions for droughts [5-7]. Meanwhile, a stronger than
normal subtropical jet stream over southeastern SA (SESA) [8], acting together with an
upper-tropospheric blocking in the region [6], is responsible for abnormal wetness in this
region during the southern spring and summer of the EN years. These atmospheric pat-
terns are also accompanied by an intensified South American Low-Level Jet (SALL]) along
the eastern side of the Andes Mountains, which transports moisture from the Amazon into
subtropical SA [1]. The rainfall in SA is also modulated by the EN-induced Rossby wave
train pattern in the Southern Hemisphere extending over the southeastern Pacific and SA,
which is called Pacific-South American (PSA) teleconnection pattern [3]. During early
summer, the low-level anomalous anticyclone in central Brazil, tropics, and subtropics
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associated with the PSA, Walker, and Hadley cells induces negative rainfall anomalies in
northern and central Brazil and positive rainfall anomalies in southern Brazil [9]. Addition-
ally, results of more detailed studies of the ENSO impacts on the South American rainfall
documented regional effects of surface-atmosphere interactions in central-eastern SA, with
reversed signs of the rainfall anomalies from spring to summer [10]. In general, the La
Nifia (LN) related atmospheric circulation and rainfall anomalies over SA show opposite
sign patterns as those documented for the EN [11]. For an extensive review of the ENSO
impacts on the South American rainfall, the reader is referred to Cai et al. [12].

Besides, ENSO might also modulate the sea surface temperature (SST) anomalies
in other tropical oceans through the atmospheric bridge and the oceanic processes [13].
Indeed, EN causes wind variations in the western Pacific and neighboring areas, with
anomalous anticyclonic wind stress on the eastern Indian Ocean, which intensifies the
net heat flux into the ocean, thus warming this side of the basin, and induces oceanic
downwelling Rossby waves, which propagate westward and warm the Indian basin
3—4 months later [14]. The uniform warming or cooling of the tropical Indian Ocean is the
dominant interannual variability mode in this basin [14] and plays an important role in the
regional and remote climate variations through changes in the tropical and extratropical
circulation anomaly patterns [15-17]. This mode, called the Indian Ocean basin-wide
(IOBW), shows its largest variability during southern summer and autumn [18,19]. It is
mostly ENSO-induced [18,19], with EN inducing a warm IOBW event and LN, a cold
IOBW event [20]. Taschetto and Ambrizzi [17] provided modeling and diagnostic evidence
on the warm IOBW events’ contribution to strengthening the EN-related atmospheric
circulation and rainfall anomalies over SA through the Walker cell and Rossby wave train
teleconnection pattern during southern autumn. They also argued that the warm IOBW
event is responsible for the persistent dryness over northeastern Brazil (NEB).

Another variability mode in the tropical Indian Ocean, called the Indian Ocean
dipole, features an east-west dipolar structure of the SST anomalies independent of the
ENSO [21,22]. It presents its largest variability during southern winter and spring and
its maximum intensity during spring [21]. This mode modulates rainfall in many regions
such as South Asia [23], eastern Africa [24], southeastern Africa [25], and eastern SA and
SESA [26,27]. The positive dipole excites a Rossby wave train pattern that connects the
tropical Indian Ocean and SA across the southern mid-latitude waveguide. It affects the
South American climate [26], through a low-level anticyclone in the southwestern subtropi-
cal Atlantic that channels moisture from central Brazil to the La Plata Basin, causing rainfall
deficits over the South Atlantic convergence zone area and excessive rainfall over the La
Plata Basin during southern spring [27].

From the abovementioned, the Indian Ocean SST variability modes affect rainfall of
equatorial and subtropical SA, where many socio-economic activities with high demand
on water availability take place. Notwithstanding, only a few studies can be found in
the literature on the teleconnections between the Indian Ocean variability and the South
American climate. Drumond and Ambrizzi [28] documented a relationship between the
subtropical Indian Ocean warming and rainfall increase in subtropical SA during southern
summer. Additionally, relationships between the tropical Pacific and Indian Oceans and
the rainfall in the western side of southern SA during austral winter were registered [29,30].
On the other hand, Berman et al. [31] found low-frequency linkages between the SST in
the Indian Ocean and rainfall in southern SA, in the decadal time scale for the eastern and
central subtropical Indian Ocean, and interdecadal time scale for the eastern tropical and
western subtropical Indian Ocean.

The SST variations in the Indian Ocean at decadal to interdecadal time scales were
confirmed later [32,33]. In addition to this, the Indian Ocean has shown a warming trend
since the 1950s [34-37], which has been attributed to anthropogenic forcing [32,33,36]. Thus,
studies focusing on the relations of the Indian Ocean and the South American climate
variations should consider the temporal variability and trend of the SST in the Indian
Ocean. Additionally, ENSO has a dominant effect on South American rainfall variability
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in relation to other variability modes. In this vein, to isolate the effect of individual
ocean basins, Taschetto and Ambrizzi [17] used numerical experiments in addition to
statistical methods.

The relationships of the IOBW mode and the South American rainfall variability
deserve further analysis. A question that was not answered yet is the relative role of the
IOBW and ENSO in South American rainfall during its rainy season. Since the rainy season
in large portions of SA peaks during southern summer [38], and the largest variability of
the IOBW mode [19] and ENSO mature stage [39] occur in this season, the present analysis
focused on southern summer. As the IOBW and ENSO modes are closely connected [18,19],
partial correlation analyses were used to examine the relative role of the IOBW and ENSO
modes in the rainfall and atmospheric circulation variations over SA.

2. Data and Methods

The SST data were extracted from the National Oceanic and Atmospheric Adminis-
tration extended reconstructed SST version V5 dataset [40,41]. The SST data are in a 2°
horizontal resolution grid. The rainfall data were obtained from the Global Precipitation
Climatology Centre Full Data Reanalysis V.8 version dataset [42,43]. In this reanalysis, the
rain gauge station coverage varies during the period with available data, with a dense
network after 1950 [42]. Considering this data limitation, the present analysis is for the
1951-2016 period, so all data were obtained for this period. The rainfall data on a 1°
horizontal resolution grid were used. The atmospheric variables were obtained from the
National Centers for Environmental Prediction/National Center for Atmospheric Research
Reanalysis-I Project dataset [44,45]. These data are in a 2.5° horizontal resolution grid
and at 11 standard surface pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250,
200, and 150 hPa). The zonal and meridional winds plus specific humidity at the first
eight lower levels and vertical velocity in pressure coordinates (VVEL) at the first 10 lower
levels were used. In the results, the 850 hPa zonal and meridional wind vector is referred
to as WND850. The streamfunction (PSI) data derived from the horizontal winds in a
Gaussian grid of 192 by 94 points at sigma levels 0.8458 and 0.2101 were also used. These
sigma levels correspond approximately to 850 and 200 hPa, respectively, so that the PSI at
these levels were referred to as PSI850 and PSI200. The asymmetric PSI data were used.
The vertically integrated moisture flux components and their divergence were calculated
using the equations after Peixoto and Oort [46]. In the results, this vector is referred to
as VIMEF. The vertical integration to calculate VIMF was done from surface to 300 hPa.
The vertical velocities averaged in the 5° N-5° S sector represent the Walker cell, and the
vertical velocities averaged in the 60° W-35° W sector, the regional Hadley cell. Before
anomaly calculations, the linear trends over the 1951-2016 period were removed from the
monthly data in each grid point.

Since analyses were completed for December—January-February (DJF), first, DJF
average values for all variables were obtained. Then, seasonal standardized anomaly time
series were calculated by considering the means and standard deviations of the 1951-2016
period. Finally, the interannual time scale in the anomaly time series was isolated by
applying a Morlet wavelet bandpass filter (2-7 year). The Morlet wavelet is a complex
exponential modulated by a Gaussian, elwo =1/ 2 with n = t/s, where t is the time, s is
the wavelet scale, and w, is a non-dimensional frequency [47]. The filtered time series
is calculated using equation 29 in Torrence and Compo [47]. Calculations were made
separately for each variable and grid point.

Taschetto and Ambrizzi [17] used the Nifio-3 SST index and defined the IOBW index
as the principal component (PC) time series of the first empirical orthogonal function (EOF)
mode of the monthly SST anomalies in the tropical Indian Ocean. For better representation
of the seasonality of the IOBW and ENSO modes, here, the EOF analysis of the filtered
summer SST anomalies over the 1951-2016 period was applied separately in each oceanic
sector. The tropical Indian Ocean is the area limited at 26° N, 26° S, 30° E, and 120° E,
and the tropical Pacific Ocean, at 30° N, 30° S, 110° E, and 70° W. It will be clear in the



Atmosphere 2021, 12, 1094

40f18

results that the main mode in the tropical Indian Ocean represents the IOBW mode, and
the main mode in the tropical Pacific, the ENSO mode. Then, the PC time series of the main
mode in each oceanic sector was used as an index. In the EOF analysis, the covariance
matrix and North et al. [48] criterium for examining the separation of the eigenvalues were
used. The eigenvectors were displayed as correlation patterns. The statistical significance
of these correlations was assessed with Student’s t-test for 66 degrees of freedom [49].
This test gives the threshold of 0.25, for the significant correlations at a 95% confidence
level. Since the warm IOBW relates to the EN, and the cold IOBW to the LN, whenever
necessary, the PC time series was multiplied by —1 so that the warm events in the two
tropical oceanic sectors were represented by positive values of the corresponding PC time
series. For conciseness, the oceanic indices are referred to as IOBW for the Indian Ocean
PC and TPO for the tropical Pacific Ocean PC.

Finally, the partial correlation coefficients (PCC) between the oceanic indices and the
variable anomaly time series were calculated for the 1951-2016 period. The statistical
significance of the correlations was assessed using Student’s ¢-test at a 95% confidence
level. Henceforth, the word ‘interannual’ regarding the interannual variable anomalies is
omitted; the PCC of the oceanic index-1 and a given variable, while excluding the influence
of the oceanic index-2, is referred to as PCC of oceanic index-1 and the given variable.
Correlations might be interpreted as variable anomalies if the phase of the index, for which
the correlations are calculated, is specified. This approach is adopted when interpreting
correlation maps.

3. Results
3.1. EOF Modes of the SST Anomalies in the Tropical Indian and Pacific Oceans

The corresponding loading pattern and PC time series of the first EOF mode of the SST
anomalies in the tropical Pacific during summer are shown in Figure 1. This mode explains
41.1% of the interannual summer SST variances, and according to North et al.’s [48] criterion
is well separated from the other modes. This mode discloses the loading pattern similar
to the SST anomaly pattern previously registered during the EN mature stage [39,50]. For
positive PC values, this mode shows the largest positive SST anomalies in the central-
eastern tropical Pacific area limited at the 10°N-10°S band between the dateline longitude
and 120°W (Figure 1). The PC time series of this mode shows ENSO related interannual
fluctuations with the highest positive values during 1972-1973, 1982-1983, 1997-1998, and
2009-2010 EN summers, which were very strong events, and the highest negative values
during the 1970-1971 and 1988-1989 LN summers. Additionally, secondary positive PC
values occur during 1957-1958, 1965-1966, and 1987-1988 EN summers. The PC time series
is used as the ENSO index and referred to as the TPO index.

The loading pattern and the PC time series of the first EOF mode of the SST anomalies
in the tropical Indian Ocean during summer are illustrated in Figure 2. This mode explains
49.7% of the summer interannual SST variance, and according to North et al.’s [48] criterium,
itis well separated from the other modes. It reproduces the SST anomaly features previously
described for the warm IOBW mode [14]. Indeed, for the positive PC values, this mode
discloses positive SST anomalies in the tropical Indian Ocean with the largest loading
values in its eastern side between 10°N and the equator (Figure 2). The corresponding
PC time series show interannual fluctuations with the higher positive values coinciding
with EN occurrences and the higher negative values with LN occurrences. This result
confirms the close relations between the IOBW and ENSO modes [18,19], with EN relating
to a warm IOBW event, and LN, to a cold IOBW event [20]. These time series show
larger magnitudes of positive than negative values, with the largest positive values during
1972-1973, 1997-1998, and 2009-2010 EN summers, and the largest negative values during
the 1970-1971 and 2010-2011 LN summers. This result is consistent with the asymmetry
of the ENSO, such that EN events are stronger than LN events [51]. It is also noticeable
that the secondary largest positive values coincide with 1957-1958, 1963-1964, 1969-1970,
1982-1983 EN summers, with the latest summer marked by a strong EN event, and the



Atmosphere 2021, 12, 1094

50f18

others by moderate or weak EN events. The PC time series of the first mode is used as
the IOBW index, and hereafter referred to as the IOBW index. The correlation coefficient
between the TPO and IOBW indices is 0.9 and confirms the close relations between the
ENSO and IOBW modes.

Pacific SST EOF1 (41.1%)

120E _150E 180  150W  120W  90W
PCO1

72 1 1 1 1 1
1950 1960 1970 1980 1990 2000 2010

Figure 1. First EOF mode of the interannual SST anomalies in the tropical Pacific Ocean computed
for the southern summers of the 1951-2016 period: spatial loading pattern and principal component
(PC) time series. Continuous line encompasses the significant correlations at a 95% confidence level
using Student’s t-test.

In the next sections, the relationships between the oceanic indices and the variables
are investigated using PCC analyses. The positive values of the TPO and IOBW indices
correspond to the warm modes in the tropical Pacific and Indian Oceans, respectively.
Therefore, for the positive (negative) TPO values, the PCC of the TPO and a given variable
represent the relation of EN (LN) and a given variable without the warm (cold) IOBW
event effect. Conversely, for the positive (negative) IOBW values, the PCC of the IOBW
and a given variable represents the relation of the warm (cold) IOBW event and a given
variable without the EN (LN) effect. Therefore, for a given phase of the TPO or IOBW
indices, we may refer to anomalies of the variable instead of correlations.
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Figure 2. First EOF mode of the interannual SST anomalies in the tropical Indian Ocean computed
for the southern summers of the 1951-2016 period: spatial loading pattern and principal component
(PC) time series. Graphical display is the same as that in Figure 1.

3.2. SST Anomaly Patterns

The maps of the PCC of the TPO and SST and of the IOBW and SST are shown in
Figure 3a,b, respectively. As expected, for the positive TPO, the PCCs of the TPO and SST
(Figure 3a) reproduce the EN-related SST anomaly pattern in the tropical Pacific illustrated
above (Figure 1) and no consistent signature of the warm IOBW mode (Figure 2). It is also
interesting to note that the Indian Ocean Dipole (IOD), like the SST pattern, appears in the
Indian Ocean when the IOBW effect is removed from the SST anomalies (Figure 3a). The IOD
mode is the second mode of the SST variability in the Indian Ocean (figure not shown). Since
this mode is not the focus of the present analysis, it was not analyzed. On the other hand,
for the positive IOBW, the pattern of the PCC of the IOBW and SST (Figure 3b) resembles
the warm IOBW mode pattern disclosed above in the tropical Indian Ocean (Figure 2) and
does not show the EN pattern in the tropical Pacific (Figure 1). Therefore, the PCC analyses
efficiently isolated from each other the TPO and IOBW effects on the global SST in the tropics.
These results guarantee the robustness of the PCC analyses for other variables.

In the Atlantic, the PCC of the TPO and SST shows a correlation dipole with a negative
northern node in the sector between 10° N and 10° S and the positive southern node
between 10° S and 35° S (Figure 3a). The PCC of the IOBW and SST discloses approximately
a reversed sign dipole, but with a more extensive positive northern node (between 10° N
and 15° S) and a negative southern node in the 20° 5-40° S band (Figure 3b). For a given
phase of the TPO and IOBW indices, the corresponding SST anomaly dipole resembles
the previously discussed anomalous SST South Atlantic dipole (SAD) mode [52,53] but
is further north than the SAD mode. Similar to the SAD mode, the dipole identified here
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might significantly affect the summer rainfall in the adjacent South American areas. This
aspect is discussed below using other variables.

~ (a) PCC of TPO x SST

40N

20N 09
=Qp 0.6
208

408 |07
40N 10
20N K
EQ ‘ 0.6
208 R --

40 RN % 07

120E 180 120 60W 0

Figure 3. Partial correlations for SST during southern summer of the (a) TPO and SST; (b) IOBW and SST. Continuous line
encompasses significant correlations at a 95% confidence level using the level using Student’s {-test.

3.3. Atmospheric Circulation and Rainfall Anomaly Patterns

The longitude vertical cross-sections of the PCC of the oceanic indices and the
VVEL anomalies averaged in the 5° N-5° S band show distinct features (Figure 4a,b).
For the positive TPO, the PCCs of the TPO and VVEL describe an EN-related anoma-
lous eastward-shifted Walker cell with rising motions in the central and eastern Pacific
(160° E-80° W), flanked by sinking motions to the west (Indonesia—western Pacific) and to
the east (80° W-15° E) (Figure 4a). Meanwhile, for positive IOBW, the PCCs of the IOBW
and VVEL show a tripole with significant values in narrow longitudinal bands, with anoma-
lous rising motions in the eastern Indian Ocean-Indonesia (100° E-110° E), central Pacific
(170° W-160° W) and Atlantic (30° W-10° E), anomalous sinking motions in the
120° E-130° E band and mostly in the middle to upper levels of the 130° W-80° W band,
and nearly neutral VVEL anomalies along the other longitudes (Figure 4b). One of the most
relevant features for regional climate variability is the contrasting effects of the EN and
warm IOBW events on the VVEL anomalies along the equatorial SA-Atlantic sector, with
anomalous sinking motions for the TPO index and neutral to anomalous rising motions for
the IOBW index (Figure 4a,b).

The latitude vertical cross-sections of the PCC of the oceanic indices and the VVEL
anomalies averaged in the 60° W-35° W band disclose contrasting patterns (Figure 5a,b).
For the positive TPO, the PCCs of the TPO and VVEL show an anomalous meridional
circulation with sinking motions mostly in the 20° 5-12° N band flanked by rising motions
to the north of 25° N in all tropospheric levels and south of 25° S in the middle tropospheric
levels (Figure 5a). On the other hand, for positive IOBW, the PCCs of the IOBW and VVEL
depict anomalous rising motions approximately in the 22° 5-7° S band with significant
values limited to the 22° 5-18° S band in the middle and upper tropospheric levels and the
26° 5-22° S band in the low-levels, and anomalous sinking motions to the south of 25° S
and north of 10° N, with significant values in vertically and meridionally more reduced
areas (Figure 5b).
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Figure 4. Longitude vertical cross-sections of the partial correlations for the vertical velocity in pressure coordinate averaged
in the 5° N-5° S band (VVEL) during southern summer: (a) TPO and VVEL; (b) IOBW and VVEL. Continuous line
encompasses significant correlations at a 95% confidence level using Student’s t-test. The vertical pressure levels are in hPa.

The above results indicate that both the anomalous Walker and regional Hadley cells
associated with the ENSO induce consistent VVEL anomalies over NEB and adjacent areas,
with EN-related sinking motions, and LN-related rising motions. Meanwhile, for the IOBW
an anomalous east-west equatorial cell more efficiently induces consistent VVEL anomalies
over NEB with the warm IOBW mode related to rising motions and the cold IOBW mode
to sinking motions. Consequently, there are expected differential IOBW and ENSO effects
on the rainfall in SA, particularly in areas neighboring the equatorial Atlantic.

Figure 6a discloses the total correlation coefficients (TCC) map between the TPO index
and the precipitation. It is worth recalling that the IOBW influence on the precipitation was not
removed. The corresponding map of the TCC between the IOBW index and the precipitation
(Figure not shown) shows very similar patterns as those presented in Figure 6a. For positive
TPO, Figure 6a indicates rainfall deficits in most areas in northwestern and northern SA north
of 5° and west of 50° W and in a meridionally extended area from central-eastern Peru to
southwestern Bolivia, and excessive rainfall in SESA. This pattern closely resembles the EN-
related rainfall anomaly pattern over SA in January shown in Grimm [9] (their Figure 6). The
rainfall anomaly pattern inferred from Figure 6a was previously attributed to the EN-induced
atmospheric circulation anomalies with the anomalous sinking motions associated with an
eastward-displaced Walker cell justifying the rainfall deficits in equatorial SA [5-7], and an
intensified SALLJ, through the associated regional moisture transport, the excessive rainfall
in SESA [1,9]. Therefore, the TCC map of the TPO and rainfall (Figure 6a) describes the
combined IOBW and ENSO effects on the South American rainfall, which have been pointed
out as closely linked to the ENSO in earlier studies. Nevertheless, the IOBW and ENSO
modes, both in warm or cold phases, acting independently, have distinct effects on the South
American rainfall (Figure 6b,c).
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Figure 5. Latitude vertical cross-sections of the partial correlations for the vertical velocity in pressure coordinate averaged
in the 60° W-35° W band (VVEL) during southern summer: (a) TPO and VVEL; (b) IOBW and VVEL. Graphical display is
the same as that in Figure 4.

For the positive TPO, the map of the PCC of the TPO and rainfall discloses deficits in a
large area extending from the eastern Amazon into most of NEB, excessive rainfall in part of
SESA (Uruguay, southern Brazil, and northeastern Argentina), in addition to small areas with
alternating anomalously dry and wet conditions in Colombia (Figure 6b). The rainfall deficits
in the eastern Amazon and most of NEB are consistent with the anomalous sinking motions
associated with the anomalous Walker and Hadley cells (Figures 4a and 5a). Consistent
with this anomalous rainfall pattern and for positive TPO, the map of the PCC of the TPO
and VIMF features strong moisture divergence over northern SA and the adjacent tropical
North Atlantic (TNA), in areas from Colombia to northern Bolivia, in equatorial Atlantic and
along eastern SA from the equator to approximately 20° S, and moisture convergence over
eastern and southern Brazil, Uruguay and the adjacent oceanic areas, which are accompanied
by a vigorous anomalous anticyclone over TSA and SA east of 60° W (Figure 7a). The
flow associated with this anticyclone in the eastern Amazon splits into two branches, one
blows westward into southern Amazon and the other along the vortex western edge follows
southward in central-western Brazil and then southeastward into eastern and southern Brazil
and Uruguay (Figure 7a). This second branch likely intensifies the SALL]J, which transports
moisture from the Amazon southeastward into SESA, where convergent moisture flux and
excessive rainfall occur (Figures 6b and 7a). This result is consistent with the previous finding
regarding the EN effect on South American rainfall [1,2].

The map of the PCC of the IOBW and rainfall, for positive IOBW, presents a prominent
area with positive rainfall anomalies throughout NEB and extreme eastern Amazon, and
negative anomalies in small regions of Guiana, French Guiana, central-eastern Colombia,
southern Peru, northern Chile and southeastern Brazil (Figure 6¢c). The excessive rain-
fall over NEB and extreme eastern Amazon seems to be marginally modulated by the
anomalous Walker and Hadley cells, whose associated ascending branches are centered,
respectively, further east and south of the excessive rainfall area (Figures 4b and 5b). In
this case, moisture convergence is noted over the equatorial Atlantic and along eastern SA
between the equator and 20° S, and moisture divergence over coastal areas of southeastern
Brazil and the adjacent Atlantic, which are associated with an anticyclone over SA between
the equator and 20° S, and a cyclone in the southwestern Atlantic between 20° S and 40° S,
implying in the absence of the SALL]J (Figure 7b). These anomalous circulation patterns
and the associated moisture transport explain the dryness over part of southeastern Brazil
and the wetness over eastern NEB.
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Figure 6. Correlations for the precipitation (PRP) during southern summer: (a) TCC of the TPO and PRP; (b) PCC of the
TPO and PRP; (¢) PCC of the IOBW and PRP. Continuous line encompasses significant correlations at a 95% confidence
level using Student’s t-test.
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Figure 7. Partial correlations for the vertically integrated moisture flux (VIMF) components and their divergence (shades)
during summer of the (a) TPO and VIMF; (b) IOBW and VIMF. Shades encompass significant correlations at a 95% confidence
level using Student’s t-test. Vectors indicate the correlations with the VIMF components. Arrow in the right-lower corner
gives the vector base magnitude in correlation units. Bold arrows indicate vectors when at least one component has
significant correlation at a 95% confidence level.

The results here indicate that the rainfall anomaly pattern inferred from Figure 6a
reflects indeed the combined effects of the warm IOBW and EN events, which reinforce
and/or better organize the rainfall anomalies in northwestern and northern SA, counteract
in other areas such as in NEB and southeastern Brazil, but EN dominates the anomalous
rainfall signal in SESA (Figure 6a—c).

Consistent with the abovementioned moisture transport, the map of the PCC of the
TPO and WND850/SST (Figure 8a), for positive TPO, describes anomalous circulations
in the tropical Atlantic, with anticyclones straddling the equator, one centered in the
southeastern TNA and the other in the central TSA, this latter representing an intensified
subtropical South Atlantic high (SASH) pressure system (Figure 8a). The associated SST
correlations indicate a significant negative center in the western equatorial Atlantic and
the positive one in the central TSA (Figure 8a). For positive IOBW, nearly antisymmetric
patterns of circulation and SST anomalies are noted in the map of the PCC of the IOBW
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2) PCC of TPO x WNDSS0/SST  (b) PCC of IOBW x WND850/SST r
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and the WND850/SST (Figure 8a,b). The relationships between the SST and low-level
wind anomalies are likely to involve wind-evaporation-SST (WES) effects and Ekman
transport due to the wind variations. For positive TPO, the map of PCC of the TPO and
WNDB850/SST features strengthened easterlies in the equatorial Atlantic associated with
the anticyclones straddling the equator, which enhance the evaporation and induce the
surface waters cooling in the western equatorial Atlantic; meanwhile, the intensified SASH
pressure system in the TSA intensifies the Ekman pumping causing downwelling and
warming up this area (Figure 8a).
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Figure 8. Partial correlations for the SST (shades) and 850 hPa horizontal winds (WND850) during summer of the
(a) TPO and WND850/SST; (b) IOBW and WND850/SST. The continuous line encompasses significant correlations at a 95%
confidence level using Student’s ¢-test. The arrow in the right-lower corner gives the vector base magnitude in correlation

units. Bold arrows indicate vectors when at least one component has a significant correlation at a 95% confidence level.

Conversely, for the positive IOBW, the map of PCC of the IOBW and WND850/SST shows
weakened easterlies (or equivalently westerly anomalies) in the equatorial Atlantic, which
reduce evaporation and induce warming there, and the weakened SASH pressure system
intensifies the Ekman suction causing upwelling and cooling down this area (Figure 8b). In
both cases, the SST anomaly pattern creates a meridional thermal contrast between the TSA and
the equatorial Atlantic, which induces an anomalous thermally direct meridional cell discussed
above (Figure 5). As mentioned above, the SST anomalous dipole in the Atlantic sector, except
for its further north location, resembles the SAD mode previously associated with variations
in the rainy season in western and southeastern Brazil [52]. Considering positive TPO and
positive IOBW, the anomalous low-level wind patterns obtained from the PCC of the TPO and
WND850 and PCC of the IOBW and WND850 are similar to Bombardi and Carvalho’s [52]
results regarding the low-level circulation composites in January, respectively, for the negative
and positive SAD modes (their Figure 5¢,d). The difference is that the circulation in the TSA
in the present analysis features closed anomalous vortexes, which represent intensified and
weakened SASH pressure systems (Figure 8a,b).

The abovementioned low-level circulation anomaly patterns are part of the tropical
heat induced large-scale circulation anomaly patterns, which can be inferred from the PCC
maps for the asymmetric streamfunction (Figure 9). For positive TPO, the map of the
PCC of the TPO and PSI200 suggests a Matsuno-Gill-type atmospheric response to the
EN-related heating [54,55] and describes anomalous vortex couplets between 35° N and
30° S straddling the equator, which are anticyclonic in the central-eastern Pacific and cyclonic
in the Indo-Asian and the South American—Atlantic—African regions (Figure 9a). The PSA
pattern is quite evident, and an anomalous anticyclone is settled in the subtropical TSA. The
Rossby wave train pattern associated with the equatorial central Pacific’s warming follows a
circumglobal waveguide path along the Southern Hemisphere midlatitudes and extratropics
obtained from barotropic model experiments [56]. This path starts in the central equatorial
Pacific, with an anticyclone, turns southward into the Bellingshausen Sea, and flows east-



Atmosphere 2021, 12, 1094

12 of 18

y

of TPO x PSI200

ward across the Weddell Sea, South Indian Ocean, and east of Australia returns to tropics
(Figure 9a; Figure 13 in Hoskins and Ambrizzi [56]). The PCC map of the TPO and PSI850
also shows anomalous vortex couplets straddling the equator, which are zonally and merid-
ionally more extensive, particularly in the Indo-Asian and Pacific sectors. These vortexes
present a baroclinic structure in the tropics and a nearly equivalent barotropic structure in
the extratropics and subtropics (Figure 9a,b). It is worth noting that the pairs of vortexes
straddling the equator in the South American-Atlantic-African region, which are anticyclonic
at 850 hPa and cyclonic at 200 hPa are consistent with the anomalous cooling in the equatorial
Atlantic (Figures 8a and 9a,b). The anomalous nearly equivalent barotropic anticyclone in
the TSA contributes to intensify the SASH pressure system and holds the abovementioned
relationships with the rainfall in SESA (Figures 6b, 7a, 8a and 9b).

In relation to the maps of the PCC of the TPO and stream function in upper and lower
tropospheric levels, the corresponding maps of the PCC of the IOBW index show smaller
magnitudes of the correlations and more horizontal structure at the 850 hPa (Figure 9). For
the positive IOBW, the map of the PCC of the IOBW and PSI850 shows pairs of anomalous
vortexes straddling the equator in the western Pacific-Indonesian-Australian sector (anti-
cyclones), eastern SA-Atlantic sector (cyclones), central Pacific (anticyclones), and western
Indian Ocean (cyclones), with the northern center of the pairs in the two latter regions
extended into the subtropics (Figure 9d). Additionally, for the positive IOBW, the map of
the PCC of the IOBW and PSI200 suggests a Matsuno-Gill-type atmospheric response to
the anomalous heating in the equatorial Atlantic with one anticyclone over eastern tropical
SA and its counterpart in western TNA (Figures 8b and 9c; Matsuno [54]; Gill [55]). This
anomalous heating source induces a Rossby wave train pattern identified at 200 hPa that
starts in tropical SA with an anticyclone, turns southeastward into South Atlantic with a
cyclone, reaches the Weddell Sea, then follows approximately the theoretical circumglobal
waveguide path along the Southern Hemisphere midlatitudes and extratropics and east
of Australia it returns back to tropics (Figure 9a; Figure 13 in Hoskins and Ambrizzi [56]).
The vortex shows a baroclinic structure over tropical SA with upper-level anticyclone and
low-level cyclone, and a dipole-like equivalent barotropic pattern with an anticyclone in
the extratropical South Atlantic and a cyclone in the TSA, which concurs to the circulation
anomalies in the South American—Atlantic region (Figures 8b and 9¢,d). Additionally, both
maps of the PCC of the IOBW and PSI200 and the PCC of the TPO and PSI200 present a
Rossby wave train pattern that follows the theoretical path in the southern midlatitudes
and extratropics, what indicates modulations by the austral summer southern jet.
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Figure 9. Partial correlations for the asymmetric streamfunction during summer of the (a) TPO and PSI200; (b) TPO
and PSI850; (c) IOBW and PSI200; (d) IOBW and PSI850. Continuous line encompasses significant correlations at a 95%
confidence level using Student’s t-test.
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4. Discussion and Conclusions

The EN in the tropical Pacific and the warm IOBW in the tropical Indian Ocean co-exist
and affect the climate in regions distant from their action centers. Previously, Taschetto
and Ambrizzi [17] studied the warm IOBW event’s effect on autumn rainfall in SA while
excluding the EN effect. The focus here is on the relative role of the two events in the
summer rainfall in SA during the 1951-2016 period. The PC time series of the first EOF
modes of the SST anomalies in the tropical Pacific and the tropical Indian Ocean calculated
separately referred to as the TPO and IOBW indices, were used to represent the temporal
variations of the ENSO and IOBW modes, respectively. The analyses here are mostly based
on the PCC of a given oceanic index (TPO or IOBW) and the variables.

The map of the TCC of the TPO and rainfall describes the combined IOBW and
ENSO effects on the South American rainfall and depicts a dipole like pattern between
the northwestern—northern SA and SESA (Figure 6a). For the positive TPO, this dipole
features a dry—wet pattern. It was previously attributed to the EN-induced atmospheric
circulation anomalies with the anomalously eastward-displaced Walker cell justifying the
rainfall deficits in equatorial SA [5-7], and an intensified SALLJ, through the associated
regional moisture transport, the excessive rainfall in SESA [1,9]. Nevertheless, the IOBW
and ENSO modes, both in their warm or cold phases, independently have distinct effects
on the South American rainfall (Figure 6b,c).

The EN without the warm IOBW effects induces an anomalous dry—-wet dipole be-
tween the eastern Amazon-most of NEB and part of SESA (Uruguay, southern Brazil
and northeastern Argentina) (Figure 6b). The northern dry node is consistent with the
EN-related anomalous sinking motions of the Walker and Hadley cells and strong mois-
ture divergence over northern SA, adjacent oceanic areas, equatorial Atlantic and along
eastern SA north of 20° S, and the southern wet node is consistent with moisture con-
vergence over eastern and southern Brazil, Uruguay and the adjacent oceanic areas
(Figures 4a, 5a, 6b and 7a). The moisture divergence—convergence pattern is associ-
ated with a vigorous anticyclone over TSA and SA east of 60° W whose northwestern—
southeastern edge likely intensifies the SALL], which transports moisture from the Amazon
southeastward into SESA, where convergent moisture flux and excessive rainfall occur
(Figures 6b and 7a). This result is consistent with the previous finding regarding the EN
effect on the South American rainfall [1,2]. On the other hand, the warm IOBW without
the EN effects drives an anomalous wet-dry dipole between NEB and part of southeastern
Brazil (Figure 6¢). This anomalous rainfall dipole seems to be more closely modulated
by the regional atmospheric circulation anomalies with an anticyclone over SA between
the equator and 20° S, and a cyclone in the southwestern Atlantic between 20° S and
40° S. These regional circulation anomalies lead the moisture convergence over equatorial
Atlantic and along eastern SA between the equator and 20° S and moisture divergence over
coastal areas of southeastern Brazil and the adjacent Atlantic (Figures 4b, 5b and 7b).

The abovementioned differential anomalous atmospheric circulation patterns over SA
and neighboring areas associated with the isolated effects of the EN and warm IOBW events
are part of the large-scale circulation anomalies associated with the differential positions
of the tropical heat sources (Figure 3). In the case of the isolated EN effect, the warming
in the equatorial Pacific is the only heat source nearly symmetric about the equator in
the tropical sector. Consequently, the Matsuno-Gill-type atmospheric response to the EN-
related heating induces anomalous vortex couplets between 35° N and 30° S straddling the
equator, which in the upper tropospheric levels are anticyclonic in the central-eastern Pacific
and cyclonic in the Indo-Asian and the South American—Atlantic-African regions and vice
versa in the lower tropospheric levels (Figure 9a,b). The baroclinic vortex, anticyclonic
at 850 hPa and cyclonic at 200 hPa over the tropical SA-Atlantic sector, is consistent with
the abovementioned low-level anticyclone associated with dryness over eastern Amazon
and NEB (Figures 6b, 7a, 8a and 9a,b). In the subtropical TSA, the anomalous barotropic
equivalent anticyclone associated with the PSA pattern explains the moisture transport
into SESA (Figures 6b, 7a and 9a,b).
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Nevertheless, under the isolated influence of the warm IOBW, two tropical heat
sources coexist one in the tropical Indian Ocean, which is not symmetric about the equator,
and the other symmetric about the equator in the Atlantic (Figure 3b). It is interesting
to note that the atmospheric response to the Indian Ocean heat source is much weaker
than for the Atlantic heat source. Indeed, the anomalous ascending motions along the
vertical-equatorial plane are relatively weak over the Indian Ocean longitudes and strong
over the Atlantic longitudes (Figure 4b). Consequently, the Matsuno-Gill-type atmospheric
response to the equatorial Atlantic heating induces pairs of anomalous vortexes strad-
dling the equator in the South American-Atlantic sector, which are cyclonic over tropical
Atlantic and eastern SA in lower tropospheric levels and, anticyclonic over tropical SA
and western TNA in upper tropospheric level. The 850 hPa cyclone over tropical SA is
consistent with the anomalous wetness over NEB (Figures 6¢, 7b, 8b and 9¢,d). Additionally,
an anomalous barotropic equivalent cyclone is settled in the subtropical TSA in associa-
tion with the Rossby wave train that emanates from the equatorial Atlantic heat source
(Figures 8b and 9c,d). This cyclone is consistent with the anomalous dryness over south-
eastern Brazil (Figure 6c).

The results here indicate that the relationship between the tropical Indian Ocean
warming and rainfall variability in SA during austral summer does not occur through
a Rossby wave train pattern connecting that oceanic region and SA, but indirectly by
means of the SST variations in the Atlantic, which are, in turn modulated by the regional
atmospheric circulation alterations associated with the Indian Ocean warming. One reason
seems that the main warming in the Indian Ocean does not induce a strong atmospheric
response. In fact, a weak low-level cyclone south of the equator in the western Indian Ocean
forms a pair with the cyclone over the North Arabian Sea, Pakistan, and northwestern India
(Figure 9d). Since the circulation associated with the IOBW shows a barotropic structure
in southwest Asia (Figure 9¢,d), our results are consistent with previous findings on the
Rossby wave generated by the tropical Indian Ocean warming with an upper-level trough
over southwest Asia [57,58]. Our results are also consistent with Liao and Wang [59],
who documented a connection between the warming in the tropical Indian Ocean and a
warming in the equatorial Atlantic during the austral summer. Another possibility is that
the southern jet during summer plays a crucial role in capturing the Rossby wave train
patterns along the theoretical path [56] in the South Indian Ocean, such that after Australia
the wave train turns back to the tropics (Figure 9¢,d).

Since the correlation analysis implies linear relations, composite analysis was per-
formed for precipitation to examine some nonlinear relations between the TPO and IOBW
indices and the precipitation over SA. Firstly, the effect of one index in the other was
removed using linear regression (least squares method), and the residual TPO and residual
IOBW indices were constructed. Additionally, the residual precipitation anomalies without
the TPO or IOBW effects were obtained. Then, composites of the residual precipitation
anomalies without IOBW effects for residual TPO > 0.5, TPO < —0.5 (Figure 10a,b), of
residual precipitation anomalies without the TPO effects for residual IOBW > 0.5 and
IOBW < —0.5 (Figure 10c,d) were obtained. Figure 10a,b shows, in general, antisym-
metric rainfall responses to TPO > 0.5 and TPO < —0.5, except in eastern SA east of
50° W and between approximately 5° S and 25° S, with a larger meridional extension of
the significant negative precipitation anomalies for the TPO > 0.5 composite than of the
positive ones for the TPO < —0.5 composite. On the other hand, better organized signifi-
cant negative precipitation anomalies are found over NEB and central-eastern SA for the
IOBW < —0.5 composite (Figure 10d) than the positive ones in this same area for the
IOBW > 0.5 composite (Figure 10c). The asymmetries between negative and positive pre-
cipitation anomalies for the TPO > 0.5 and TPO < —0.5 composites and for the IOBW > 0.5
and IOBW < —0.5 composites indicate the nonlinear rainfall responses to these two oceanic
modes. These figures also illustrate similar magnitudes of the precipitation anomalies for
the TPO and IOBW composites. Therefore, these analyses validate our conclusions based
on the correlation analyses.
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Figure 10. Composite analyses of residual precipitation anomalies for (a) TPO > 0.5; (b) TPO < —0.5;
(c) IOBW > 0.5; (d) IOBW < —0.5. Continuous line encompasses the significant values at a 95%
confidence level using Student’s ¢-test.

The correlation analyses above refer to the EN and warm IOBW events. However, for the
LN and cold IOBW events, the opposite patterns of the rainfall and atmospheric circulation
anomalies can be inferred. The approach adopted here by isolating the EN and warm IOBW
event effects on the rainfall over SA provided useful information for monitoring tasks during
ENSO neutral years. The independent responses to the TPO and IOBW modes show spatial
variability of the rainfall, with the modes reinforcing each other their effects in regions north
of the equator and counteracting each other in some regions like southeastern Brazil and NEB,
but the TPO has a dominant effect in SESA (Figures 6 and 7). The contrasting effect over
eastern Brazil areas (southeastern and northeastern) could be the thermodynamic response to
the contrasting SST anomalies in equatorial and TSA induced independently by the Indian
and Pacific Oceans (Figure 8). Since large portions of SA experience the rainy season during
austral summer, the results here strongly suggest that monitoring the tropical Indian Ocean
during the ENSO developing phase might be very important for practical purposes.
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