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Abstract: Energy and water exchange between the surface and the atmosphere are important drivers
to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical
mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian
Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern
Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter
(AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is
used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in
AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux,
H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding
the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among
the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond
more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance
show a substantial biophysical control in the ET process. The results obtained here allowed a
comprehension of the biophysical mechanisms involved in the energy partition process in natural
grassland. Therefore, this study can be used as a base for research on land-use changes in this unique
ecosystem of the Pampa biome.

Keywords: energy balance; evapotranspiration; surface conductance; aerodynamic conductance; grassland

1. Introduction

Understanding the main mechanisms responsible for the partitioning of net radiation
(Rn) energy used to heat the atmosphere (sensitive heat flux, H), the subsoil (soil heat flux,
G), and changing the water’s physical state (latent heat flux, LE, or evapotranspiration,
ET) is essential for climate studies and weather forecasts, as necessary on providing useful
information to improve water resources management. For example, the ET process is
linked directly to energy partitioning, stomatal conductance, carbon exchange, and water
availability through the water-use efficiency by the plants acting as a key regulator of the
ecosystems processes [1–3]. Grasslands are one of the most widespread vegetation types,
accounting for approximately 32% of the planet’s natural vegetation [4], making them
important when studying the global vegetation dynamics and responses of ecosystem
physiology to environmental change.

The Pampa biome, in southern Brazil, which is dominated by grasses, plays an essential
role in livestock industry in the region [5,6] and is responsible for over 90% of the feeding

Atmosphere 2022, 13, 23. https://doi.org/10.3390/atmos13010023 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13010023
https://doi.org/10.3390/atmos13010023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-1805-8126
https://orcid.org/0000-0002-8518-1271
https://orcid.org/0000-0002-2384-0630
https://orcid.org/0000-0003-1564-1014
https://orcid.org/0000-0002-3585-2022
https://orcid.org/0000-0002-1571-0916
https://orcid.org/0000-0002-3902-0952
https://doi.org/10.3390/atmos13010023
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13010023?type=check_update&version=3


Atmosphere 2022, 13, 23 2 of 21

source for cattle and sheep herds [7]. The areas have been used inappropriately, through an
excessive load of animals, which has caused environmental impacts due to vegetation cover
loss, invasion of exotic species, and soil erosion [8,9]. Studies have shown that pasture
ecosystem degradation not only alters its structure and ecosystem productivity but also
affects surface–atmosphere interactions, changing heat and water transport [10–13].

Studies have shown that grasslands are more vulnerable than other ecosystems
to warming climate changes [14,15]. Knapp e Smith [14] found that increases in pri-
mary productivity in wet years were much more pronounced than reductions in pro-
ductivity during drought years in grassland continental ecosystems in the United States.
Rajan et al. [16] showed that the variability of the energy balance partitioning is directly
affected by water availability, finding that LE consumed most of the available energy.
However, when the soil moisture remained low, H predominated the partition, which
resulted in less plant growth. The vegetation and climatic characteristics are determining
patterns for defining local seasonality and the partition of available energy in grassland
ecosystems [14–17].

Changes in the surface energy partitioning directly impact the water budget through
evapotranspiration [17–21]. The accuracy in estimating the energy balance component,
mainly LE, depends on effective measurements of the conductance parameters. Surface (Cs)
and aerodynamic (Ca) conductance represent a coupling factor between these processes,
allowing a better understanding of the energy and mass exchanges between ecosystems
and the atmosphere [22–28]. Some studies on vegetation conditions and environmental
variables have been reported, showing the relationship between the conductance and
meteorological variables [29–31] with different responses to changes in environmental
factors during the processes of stomatal opening and closing [32–34]. The more realistic
parameterizations of Ca and Cs have been highlighted from an observational and modeling
point of view [35–37]. Thus, to understand the process of water transfer in an ecosystem,
specific studies of Cs and Ca are necessary [38].

The Pampa biome is still not well characterized in terms of surface–atmosphere inter-
action [39]. Understanding the average and dynamic annual conditions across the biome is
essential to improve our knowledge of changes in vegetation and primary productivity due
to anthropogenic and/or climatic causes. Knowing the spatial and seasonal variation of
biosphere–atmosphere interactions, such as energy and water exchanges, becomes of great
importance. This study aims to advance in the understanding of the annual and seasonal
variability and the biophysical mechanisms that control the energy balance components in
natural pasture areas over the Pampa biome in southern Brazil. Thus, the scientific ques-
tions addressed in this work regarding the native field of the Pampa biome are: (i) what is
the energy partition in the ecosystem exchange processes? (ii) what are the meteorological
variables that control sensible and latent heat fluxes? (iii) what are the seasonal and annual
behavior of the surface and aerodynamic conductance? (iv) what are the most relevant
meteorological variables for the representation of aerodynamic and surface conductances?
To answer these questions, we used two years of data from two eddy covariance measuring
sites, both located in the Pampa biome, Santa Maria and Pedras Altas, approximately
300 km apart.

2. Materials and Methods
2.1. Site Description

In this study, we analyzed energy surface fluxes and environmental data obtained
from two experimental sites, Santa Maria and Pedras Altas, both in the Pampa biome,
located in the Rio Grande do Sul state, Brazil (Figure 1). The climate is classified as Cfa,
temperate, with hot summer and no dry season, according to the Köppen classification [40].
The vegetation in the Pampa biome is dominated by photosynthetic metabolism C3, but
co-exist with C4 species, being one of the distinct characteristics of the South Brazilian
grasslands. Both sites are within similar vegetation physiognomies in the Pampa, with a
high diversity of grass species used as pasture for cattle.
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Figure 1. Location of the study areas in the Pampa biome—Santa Maria (SMA) and Pedras Altas
(PAS). The footprint climatology (until 90%) of the flux measurements for both sites is presented in
the right panel. The image of the area was not obtained in the period of the experiments analyzed in
this study.

The Santa Maria site, SMA, (lat 29◦43′27.502” S; lon 53◦45′36.097” W, alt 88 m) is
located in the municipality of Santa Maria, in an area of 24 ha of natural vegetation. The soil
is classified as Eutrophic Haplossol, according to the exploratory soil map of the state of Rio
Grande do Sul [41]. The textural class of soil is clay loam (47.12% sand; 16.90% clay; 35.97%
silt), with field capacity, θFC = 0.34 m3 m−3; permanent wilting point θWP = 0.12 m3 m−3;
soil porosity, θs = 0.46 m3 m−3; and soil bulk density, ρs = 1397 kg m−3, measured at 0.5 m
depth. The vegetation found in the study area is natural pasture with a predominance of
Andropogon lateralis, Axonopus affinis, Paspalum notatum, and Aristida laevis [42], uniformly
distributed in the study area [43].

The Pedras Altas site, PAS, (lat 31◦43.556′ S; lon 53◦32.036′ W, alt 395 m) is located in a
private property in the municipality of Pedras Altas-RS. The soil is classified as Neosol and
Cambisol [41], with rocky outcrops, and a sandy loam structural classification (59.30% sand;
0.81% clay; 39.89% silt). The soil properties measured at 0.5 m depth are θFC = 0.31 m3 m−3;
θWP = 0.03 m3 m−3; soil porosity, θs = 0.44 m3 m−3; and soil bulk density, ρs = 1405 kg m−3.
The phytophysiognomy of the site has a predominance of grassland, mainly stoloniferous
and rhizomatous species, such as Axonopus affinis, Paspalum notatun, Aeristida laevis, and
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Iriantus angustifolium. More information regarding the soil type and vegetation for both
sites can be found in Rubert et al. [39].

The phenology of vegetation at both sites was estimated using the EVI (Enhanced
Vegetation Index) data time series with a spatial resolution of 250 m obtained from the
MODIS sensor (Moderate Resolution Imaging Spectroradiometer, is the instrument aboard
the NASA’s Terra satellite) through the product MOD13Q1. The surface albedo was obtained
from the MODIS sensor through the product BRDF/MCD43A (MODIS/Terra + Aqua BRDF
and calculated albedo (“shortwave actual”), with spatial resolution of 500 m. The selected
period was from 29 August 2014 to 15 October 2016, (every 16 days) for EVI and from
29 August 2014 to 7 October 2016, to surface albedo (every 8 days). These data comprise
the same period of energy fluxes analyzed in this work.

2.2. Energy Fluxes and Meteorological Measurements

PAS and SMA experimental sites were equipped with flux towers measuring at-
mospheric variables and surface fluxes. The flux towers were equipped with the sensors
described in Table 1. The eddy covariance method (EC) was used to estimate LE and H from
1 September 2014 to 1 September 2016, in both sites. Further details are described in [44–46].

Table 1. Sensors installed at the flux towers used in this study.

Variable Sensor Model and Manufacturer/Sensor Type Position (m)-Sites Frequency

Wind speed components and
air temperature

CSAT3, Campbell Scientifific Inc., Logan, UT, USA/3D
sonic anemometer 2.5-PAS 10 Hz

Wind Master Pro; Gill Instruments, Hampshire, UK/3D
sonic anemometer

3.0-SMA
(until 25 June 2016) 10 Hz

IRGASON, Campbell Scientific Inc., Logan, UT,
USA/Integrate 3D sonic anemometer and open path

gas analyzer

3.0-SMA
(after 25 June 2016) 10 Hz

H2O concentration

LI7500, LI-COR Inc., Lincoln, NE, USA/Open path
gas analyzer

2.5-PAS
3.0-SMA

(until 25 June 2016)
10 Hz

IRGASON, Campbell Scientific Inc., Logan, UT,
USA/Integrate 3D sonic anemometer and open path

gas analyzer

3.0-SMA
(after 25 June 2016) 10 Hz

Air temperature (Temp) and
relative humidity (RH) HMP155, Vaisala, Finland/Thermohygrometer 2.5-PAS

3.0-SMA 1 min

Precipitation TR525USW, Texas Electronics, Dallas, TX,
USA/Pluviometer

2.5-SMA
2.0-SMA 1 min

Net radiation (Rn)

CNR4, Kipp & Zonen, Delft, The Netherlands/
Net Radiometer 3.0-SMA 1 min

CNR2, Campbell Scientific Inc., Logan, UT, USA/
Net Radiometer 2.5-PAS 1 min

Global Radiation (Rg)

CNR4, Kipp & Zonen, Delft, The Netherlands/
Net Radiometer 3-SMA 1 min

Li 200S Pyranometer—LI-COR, Lincoln, NE,
USA/Pyranometer 2.5-PAS 1 min

Ground heat flux (G) HFP01, Hukseflux Thermal Sensors B.V., Delft, The
Netherlands/Thermopile

−0.10-PAS
−0.10-SMA 5 min

Soil moisture
(θ)

CS616, Campbell Scientific Inc., Logan, UT, USA/Water
Content Reflectometer

−0.10-PAS
−0.10-SMA 1 min

Soil Temperature
(Tsoil)

T108, Campbell Scientific Inc., Logan, UT,
USA/Thermometer

−0.05-PAS
−0.05-SMA 1 min
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The LE and H fluxes were estimated on a half-hour timescale using the EddyPro™ soft-
ware, version 6.1, Li-Cor (Lincoln, Nebraska, EUA). Turbulent fluctuations were obtained
in average per block and double rotation and correction for the effects of density [47]. The
high-frequency spectral correction was based on mathematical formulations to model the
flux and spectral properties that describe flux attenuations due to the instrumental configu-
ration [48]. High and low pass filter corrections followed the methodology described by
Moncrieff et al. [49] and Moncrieff et al. [50], respectively. Quality tests on fluxes followed
the methodology described by Mauder and Foken [51]. The angle of attack correction for
wind components was determined according to Nakai and Shimoyama [52]. For statistical
analysis, the removal of spikes followed the method described by Vickers and Mahrt [53].

Physically inconsistent data were filtered in post-processing. Gaps in the time series of
energy fluxes generated by the post-processing step or sensor malfunctions were filled using
the method proposed by Reichstein et al. [54] with the REddyProc package. More details
regarding the sensors, footprint measurement, surface flux processing, and gap-filling are
described in Rubert et al. [39].

2.3. Components of the Energy Balance

The relationship between available energy (Rn − G) and the turbulent fluxes (H + LE)
is often used as an indicator of the H and LE accuracy estimated by the eddy covariance
method [55–57]. The slope of the linear regression between (Rn − G) and (H + LE) for
the period evaluated was 0.75 for SMA and 0.72 for PAS, as analyzed and discussed by
Rubert et al. [39]. In this work, the energy balance closure followed the methodology
described by Foken et al. [57], in which the experimental Bowen ratio (β = H/LE) for each
site was used to distribute the residual energy, RES, (RES = Rn − G − H − LE) between
LE and H.

The evapotranspiration process is influenced mainly by the energy available on the
surface, atmospheric demand for water vapor, vegetation physiological factors, and resis-
tances imposed on the transfer of water vapor between the vegetation and the atmosphere.
The Food and Agriculture Organization (FAO) recommends using the Penman–Monteith
method to estimate evapotranspiration, according to the FAO Bulletin 56 [58]. The Penman–
Monteith equation combines aerodynamic and thermodynamic aspects to describe water
vapor transfer between the surface and the atmosphere. The latent heat flux using the
Penman–Monteith equation (LEPM) is defined by:

LEPM =

∆(Rn− G) + ρacp
(es−ea)

ra(
∆ + γ

(
1 + rs

ra

))
 (1)

where Rn (W m−2) is the net radiation, G (W m−2) is the soil heat flux, ρa (kg m−3) is the
mean air density at constant pressure, cp (J kg−1K−1) is the specific heat of air at constant
pressure, es (kPa) is the saturated water vapor pressure, ea (kPa) is the water vapor pressure
of the air, (es − ea) (kPa) is the air vapor pressure deficit (VPD),
∆ (kPa ◦C−1) is the slop of the saturation vapor pressure temperature relationship,
γ (kPa) is the psychometric constant; rs (s m−1) is the surface resistance, ra (s m−1) is
the aerodynamic resistance. Equation (1) results in hourly average values of LEPM (W m−2).
The conversion to daily evapotranspiration (mm d−1) (or hourly (mm h−1)) is done using
the daily average (hourly) of LEPM multiplied by the conversion factor of 0.0353 (0.0014).
The same procedure is performed with the experimental LE after the energy balance closure
to estimate the actual ET. In this work, the surface conductance was indirectly estimated by
inverting the Penman-Monteith model (Eq. 1) using LE obtained by EC method:

1
Cs

= rs =
ra

γ

[
∆(Rn − G) + ρacpCa(VPD)

LE
− (∆ + γ)

]
(2)
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Ca, which represents the intensity of vertical turbulence, close to the surface that
carries heat and water vapor between the soil surface and the overlying atmosphere, was
estimated according to Campbell and Norman [59], correcting the atmospheric stability.

1
Ca

= ra =
1

u∗ρak
[
ln
(

z−d
zom

)
+ Ψm

][ln
(

z− d
zom

)
+ Ψm

][
ln
(

z− d
zov

)
+ Ψv

]
(3)

where u∗ is the friction velocity, k is the Von Kármán constant (0.41), z is the height where
the wind speed was measured, d is the zero-plane displacement, zom (m) is the roughness
length governing momentum transfer, calculated as 0.1 of the grass height, zov (m) is
the roughness length governing the transfer of heat and vapor, calculated as 0.1 of zom.
Functions Ψm and Ψv correspond to the stability correction factors for the momentum and
sensible heat, respectively.

The most used method to study atmospheric stability conditions is the stability pa-
rameter ζ, as described by Campbell and Norman [59], estimated from the convection rate
that produces mechanic turbulence in the air.

ζ = − kgzH

ρacpTemp(u∗)
3 (4)

where g (m s−2) is the gravity acceleration, Temp (◦C) is the air temperature, and others as
described above. Stable atmosphere corresponds to positive values of ζ, unstable to nega-
tive values of ζ, and atmospheric neutrality to values within the interval 0 < ζ<|0.0325| [60].

The equations for functions Ψm and Ψv to correct the atmospheric stability proposed
by Campbell and Norman [59] are:

- For atmospheric instability:

Ψv = −2 ln

[
1 + (1− 16ζ)

1
2

2

]
(5a)

Ψm = 0.6 Ψv (5b)

- For atmospheric stability:

Ψm = Ψv = 6 ln(1 + ζ) (5c)

3. Results and Discussion

The analysis of the results was separated into two parts: one based on the entire period
of data available and the second on two sub-periods, autumn-winter (AW), from April to
September, and spring-summer (SS), from October to March.

3.1. Meteorological and Surface Conditions

Daily cycle of Rg, Temp, VPD, and wind velocity (u) for SMA and PAS sites are shown
in Figure 2. The entire period (two years of data) for Rg is very similar for both sites, with
a slight difference in AW and SS, being the values greater in SMA in AW and smaller in
SS than PAS values (Table 2). SMA presents higher Temp and VPD throughout the daily
cycle than PAS (the same is seen in Table 2 for Temp). u is always stronger in PAS, mainly in
night periods; however, the wind speed presents the same pattern in AW and SS for each
site. During SS the values of Prec were greater in both sites. In the period 2015/2016 PAS
had the lowest accumulated annual precipitation. Despite an accumulated difference in
rainfall during some periods, Prec was well distributed throughout the year without water
deficit. The soil moisture measurements in SMA showed higher values than in PAS, except
for the SS period. As expected, Tsoil was greater in SS. When Tsoil was analyzed for the
entire period it presented the same value of 19.3 ◦C in both sites (Table 2).
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Figure 2. Daily cycles of meteorological variables: solar radiation (Rg, W m−2) (a–c); air temperature
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column for the entire study period, on central for SMA in the AW and SS periods, and the right for
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Figure 3 shows the surface albedo and the EVI. The mean albedo value was 0.15 for
both sites during the analyzed period, with lower values in AW. Maximum values occurred
in January, February, and March 2016 (in SS), reaching 0.18 for the SMA site. The average
EVI values for this period are very similar between both sites, with 0.39 for SMA and 0.38
for PAS. Seasonality for EVI was more pronounced, showing the influences of the canopy
and atmosphere, with minimum values observed in the AW, suggesting a slightly lower
photosynthetic activity.
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Table 2. Average of air temperature (Temp), solar radiation (Rg), accumulated precipitation (Prec), soil
humidity (θ), soil temperature (Tsoil), energy balance components (Rn, LE, H, G), and Bowen ratio (β)
for the Pampa biome, at the SMA and PAS sites.

Site Temp
(◦C)

Rg
(W m−2)

Prec
(mm)

θ
(m3 m−3)

Tsoil
(◦C)

Rn
(W m−2)

LE
(W m−2)

H
(W m−2)

G
(W m−2) β

AW
SMA 16.2 127.2 1813 0.24 16.6 69.7 48.4 26.1 −4.5 0.54
PAS 13.9 123.9 1359 0.20 15.7 57.2 44.1 19.0 −4.6 0.43

SS
SMA 22.6 226.3 2036 0.17 22.1 148.4 105.5 42.1 0.6 0.40
PAS 19.9 243.4 1919 0.20 23.2 145.1 108.8 35.2 2.2 0.33

Annual
2014/2015

SMA 19.8 183.1 1824 0.23 19.8 114.1 80.8 34.9 −1.6 0.43
PAS 17.6 192.4 1723 0.17. 19.8 105.9 78.4 28.9 −0.2 0.37

2015/2016
SMA 18.7 171.0 2025 0.21 18.2 104.4 73.2 33.2 −2.1 0.45
PAS 16.2 176.7 1555 0.19 18.7 97.2 75.6 25.3 −2.1 0.33

Entire period SMA 19.4 177.1 3849 0.22 19.3 109.4 77.1 34.1 −1.8 0.44
PAS 16.9 184.5 3278 0.18 19.3 101.6 77.1 27.0 −1.1 0.35
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3.2. Energy Balance Components

The seasonal and interannual variability of the energy balance components is pre-
sented in Figure 4 and Table 2. A well-characterized seasonal pattern is present in Rn, H,
and LE for both sites. Daily variability of Rn, LE, and H was lower in AW and higher in SS.
H presented a low amplitude of seasonal variation, while LE presented strong seasonality,
similar to Rn.
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Figure 4. Weekly average of the energy balance components: net radiation, Rn (W m−2); sensible heat
flux, H (W m−2); latent heat flux, LE (W m−2); and soil heat flux, G (W m−2) from 1 September 2014
to 1 September 2016, for the Pampa biome, at the (a) SMA and (b) PAS sites. The points represent the
average every six days. The hatched areas represent the autumn-winter (AW) periods.

The annual Rn average presented similar values for both sites (Table 2), Rn values for
AW being 47% and 39% smaller than SS in the SMA and PAS sites, respectively. Similar
behavior and results were observed for LE. The H values were 62% and 54% smaller in
AW than SS for SMA and PAS sites, respectively. Soil heat flux for both sites was generally
negative in AW, and close to zero in SS. Therefore, in AW the subsurface heats the surface,
while the opposite happens in SS. The smaller energy fluxes in AW are associated with
smaller solar radiation in this period (Figure 2 and Table 2), coupled with a decrease in
local vegetation (Figure 3) as also reported by Rajan et al. [16], Yunusa et al. [61] and
Trepekli et al. [62].

In all analyzed periods, LE was higher than H, being β < 1 for both sites (Table 2).
Lower values of β were found in the SS period for each site, while the highest values
were found in AW. The PAS presented smaller β values than SMA, with less interannual
variability. This difference in the flux partition may be related to the structure of the
grassland vegetation at each site. Although the grassland vegetation of the Pampa biome
is quite similar throughout the region, the SS is the highest biomass production period in
the Pampa [63,64], responding locally to factors such as climate and soil. Thus, vegetation
phenology in the Pampa biome also affects energy partitioning.

Figure 5 shows the average daily cycle of the energy balance components (Rn, H, LE,
and G) for the SMA and PAS sites. In an annual daily cycle, the net radiation has a daily
maximum of 425.0 W m−2 and 429.1 W m−2 for SMA and PAS, respectively. The values are
negative between 18:30 and 6:30 local time. Rn was higher in SS, reaching a maximum of
547 W m−2, while in AW, the maximum was 320 W m−2.
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LE reached a maximum of 226.3 W m−2 for SMA and 260.2 W m−2 for PAS in an
annual daily cycle. Negative LE values were obtained in both sites at night, with more
pronounced values for PAS, indicating the occurrence of condensation or dew formation
during the night over most of the periods [55,65]. In AW, lower maximum values for LE
were observed, reaching 48% and 61% of LE in SS, at the PAS and SMA sites, respectively.
LE reverses its signal shortly after Rn. VPD is generally lower during the night when the
air is colder, and increases during the day, when the air temperature is higher (Figure 2). LE
increases throughout the day, with the beginning of the atmospheric convective processes,
controlled by the net radiation. It reaches its maximum with higher air temperatures and
decreases from the hottest period of the day due to the vegetation’s biophysical conditions,
closing the stomata to avoid water stress to the plants.

H shows little difference between the sites in their maximum and minimum values
in the annual daily cycle. Its maximum was 147.6 W m−2 at noon, local time, for PAS and
182.9 W m−2 for SMA. In both sites, the H had a similar behavior between AW and SS. The
difference between sites shows little influence of the available energy (Rn − G) in the range
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of variation of H. Therefore, we can infer that the turbulence must be produced mainly by
mechanical actions in PAS due to the greater wind speed (Figure 2), and less intensity by
thermal convection, i.e., less air temperature (Figure 2). Comparing the AW and SS periods,
the difference in the maximum amplitude values of H was of the order of 20 W m−2 and
56 W m−2 for the PAS and SMA sites, respectively.

G is near zero through the day in both sites. PAS presents G values slightly higher
than the SMA site, possibly due to the soil type, which in PAS is sandy loam, allowing
greater soil thermal conduction [66].

3.3. Environmental Variables That Control the H and LE Fluxes

The relationships between the environment variables (Rg, Temp, RH, and VPD) and H
and LE for the SMA and PAS sites are shown in Table 3. The turbulent fluxes for both sites
had a better correlation to Rn. LE and Rg correlation coefficients for the SMA and PAS sites
have very similar values. The LE correlates better with Rg and VPD.

Table 3. Pearson’s correlation (r) coefficients between the LE and H with environmental variables
for the SMA and PAS sites, from 1 September 2014 to 1 September 2016, in a half-hour base with a
p-value of 0.001.

Pearson’s Correlation PAS SMA

LE vs. Rg 0.97 0.86
LE vs. VPD 0.66 0.65
LE vs. Temp 0.50 0.48
LE vs. RH −0.59 −0.64
H vs. Rg 0.92 0.90

H vs. VPD 0.48 0.44
H vs. Temp 0.36 0.30
H vs. RH −0.47 −0.50

The correlation between energy fluxes and air temperature showed different values for
each flux analyzed in this study. For LE, the PAS site showed a better correlation with air
temperature when compared to the SMA site, unlike the H, which has a small correlation
and very close values for both sites. These results support that air temperature is an indirect
controller of evapotranspiration through its effect on the VPD [67].

The results of this study for the Pampa biome showed that local microclimate plays
an important role in the energy partition. The increase in Rn increases both H and LE.
However, any increase is controlled by water vapor, since the values of Pearson’s correlation
coefficients showed that H and LE tend to increase with high evaporative demand (high
VPD). Likewise, H and LE raise with the increase in air temperature. Unlike the Pampa
biome, Majozi et al. [68], in a similar study over the Savannah biome, reported that the
increase in VPD results in an increase in H and a decrease in LE.

3.4. Aerodynamic and Surface Conductances
3.4.1. Average Daily Cycles

The average daily cycle of Cs and Ca for the entire study period and AW and SS
periods in the Pampa biome are shown in Figure 6. Cs curve pattern has a maximum before
noon, of 11.9 mm s−1 and 17.5 mm s−1, in SMA (9:00) and PAS (10:30), respectively. Alves
and Pereira [69] reported that the sharp increase of Cs in the early morning hours is due to
the stomatal opening caused by solar radiation incidence. In the afternoon, the decrease in
Cs is presumably due to stomatal closure, associated with other microclimate variables that
directly influence Cs, higher temperatures, and VPD (Figure 2). In a study in the Amazon
Forest, Goulden et al. [70] reported a fall in Cs in the afternoon attributed to stomatal closure
caused by a high-temperature effect on photosynthetic biochemistry, an intrinsic circadian
rhythm, or a combination of the three effects. In the average daily cycle, the highest surface
conductance value for PAS is 32% higher than Cs at the SMA site. Krishnan et al. [71]
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found maximum daily values for surface conductance of 14 mm s−1 in a pasture area in
North America. Liu and Feng [72] reported maximum daily values for Cs of 28.3 mm s−1 in
degraded pasture areas in China. Wang et al. [73] also found similar Cs values in Australia,
15 mm s−1. Cs was also studied in some Brazilian biomes. Rodrigues et al. [74] obtained a
maximum Cs value of 12.6 mm s−1 in the Cerrado. Da Rocha et al. [31] obtained maximum
daily values of 25 mm s−1 in a forest biome while Tan et al. [75] suggested for the maximum
Cs of tropical forest a value of 24.8 ± 13.8 mm s−1. Marques et al. [76], for Caatinga biome,
found a similar behavior for the daily cycle of Cs, but with maximum values (3 and 5 mm s−1)
lower than those obtained here (10 and 20 mm s−1).
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Figure 6. Average daily cycles of surface conductance (Cs, mm s−1) (a–c) in top panels and aerody-
namic conductance (Ca, mm s−1) (d–f) in bottom panels for the Pampa biome, at the SMA and PAS
sites, on the left column for the entire study period, on central for SMA in the AW and SS periods,
and on right for PAS in the AW and SS periods.

Negative Cs values were observed before 6:30 and after 18:30 at the SMA site. For the
PAS site, Cs has a longer interval, between 07:30 and 17:30, with negative values. According
to Groh et al. [77] and Phillips and Oren [78], we assumed that Cs is zero for a wet canopy
during the night period. Thus, water evaporates freely at its minimum rate, that is, without
resistance to water vapor. When the canopy is dry, Cs is positive. When calculated using
flux data from the eddy covariance method, Cs showed greater fluctuations during the day
because the data obtained with this method exhibit relatively large fluctuations, especially
when the local stability of atmospheric stratification changes in the early morning and late
afternoon [57,79].

On average, for the entire study period, Ca reaches its maximum value at 11:00 at the
SMA site and 15:00 at the PAS site. There is a significant difference in the peak hours of
Ca, which is directly associated with the friction velocity that reaches its highest values
at noon at the SMA site and 15:00 in PAS. The maximum values obtained for SMA and
PAS are 37.7 mm s−1 and 53.5 mm s−1, respectively, which represents a 30% difference
between both sites. The differences in Ca between the sites can be attributed to the different
wind speeds (Figure 2) since this variable is the main component in the calculation of
aerodynamic conductance.

The analysis of Cs in the AW and SS periods (Figure 6) shows maximum values at the
SMA site of 13.5 mm s−1 and 11.6 mm s−1, respectively. In PAS, the values are higher, with
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15.5 mm s−1 in AW and 19.7 mm s−1 in SS. Thus, the difference in Cs between the SMA and
PAS sites is 13% in the AW period and 42% in the SS period. However, Ca differs between
the SMA and PAS sites by 35% and 24% in the AW and SS periods, respectively. The
maximum values obtained for Ca at the SMA site are 36.6 mm s−1 and 39.2 mm s−1 in the
AW and SS periods, respectively. In PAS, the maximum values obtained are 56.1 mm s−1 in
the AW and 52.0 mm s−1 in the SS. These values show a clear seasonal trend related to the
weather and climate conditions of the study sites since both have native field ecosystems in
the Pampa biome.

Patterns of seasonal variability in Cs and Ca have been observed in other studies,
such as in the Amazon Forest [31] and Pantanal [29]. In the Cerrado, Cabral et al. [30]
reported that Cs presented a strong seasonal variation of approximately 20 mm s−1 and
2 mm s−1 in rainy and dry seasons, respectively. However, Ca showed relatively small
seasonal variation and the average between the dry and rainy seasons was 129 mm s−1.
Krishnan et al. [71] reported a significant seasonal and interannual variation in Cs similar
to the changes that occurred in ET for pastures in North America.

In the AW and SS periods, Cs and Ca were directly related to the wind intensity, as
verified by comparing Figure 6 and the different atmospheric variables presented in the
average daytime cycle in Figure 2. Cs, which can be considered analogous to stomatal
conductance, on a large scale, provides a useful measure of the effect of energy exchanges
on plant physiology. Cs at the SMA site was higher in the AW period (Figure 6), which
suggests that seasonal changes in Cs are strongly associated, in part, with changes in the leaf
area index (LAI) or leaf physiology. The water flux between the leaf and atmosphere is high
since the AW period tends to show no water restrictions at the site and the environmental
conditions for the exchange of gases in the stomata are favorable.

Cs at the PAS site had its highest value in the SS period, which is consistent with
the higher wind velocity in the AW and SS periods. The transfer of steam inside the
canopy depends on the intensity of the wind, or indirectly on Ca, which, according to
Grelle et al. [80], is a function of turbulence parameters. Higher values in the wind velocity
are also favorable to the increase of evapotranspiration since the water vapor transfer
process is facilitated due to the increase in Ca [81]. High wind velocity decreases the
thickness of the boundary layer, allowing the stomatal resistance to control water loss. If
the water in the soil (soil moisture) is less abundant, as is the case in PAS all year (Table 2),
the stomata will open less or even remain closed on a sunny morning. Finally, the theory
used to estimate the conductances, the “big-leaf” theory, combined with the method of
estimating turbulent fluxes, eddy covariance, couples the plant surface with the atmosphere.
Thus, vegetation cover near surface perceives the direct effects of turbulence during the
day. Therefore, there is a need to develop empirical models that contemplate not only plant
physiology (through stomata) but also a model that responds to all factors that control
stomatal conductance.

3.4.2. Hysteresis Loops in the Surface Conductance

Cs responses to the main environmental variables (Rn, VPD, and Temp) for the average
daily cycle throughout the study period are shown in Figure 7. These relationships form
hysteresis loops, which had the directions followed in a clockwise direction for the three
meteorological variables in both sites. The Cs values increased linearly in the morning,
with an increase in Rn, VPD, and Temp at both sites. Table 4 shows the hour in which the
hysteresis loops occurred for the meteorological variables at the maximum peak of the
surface conductance. When reaching the maximum Cs peak, the available energy had not
yet reached its maximum value. In other words, Cs decreased at midday with the increase
in Rn. Cs decreases linearly with the decrease in Rn to its lowest value in the afternoon,
reaching negative values at night.
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Figure 7. Hysteresis loops between surface conductance (Cs, mm s−1) and the environmental variables
of net radiation (Rn, W m−2); vapor pressure deficit (VPD, kPa), and air temperature (Temp, ◦C) for the
(a,c,e) SMA and (b,d,f) PAS sites, from 1 September 2014 to 1 September 2016.

Table 4. Maximum values and respective hour for the surface conductance Cs (mm s−1), net radiation
(Rn, W m−2), air temperature (Temp, ◦C), and vapor pressure deficit (VPD, kPa) occur for the Pampa
biome, at the SMA and PAS sites, in the average daily cycles, from 1 September 2014 to 1 September 2016.

Variables Site Max Value (Pick) Hour Values at Max Cs

Cs
SMA 11.9 mm s−1 10 h 30 min 11.9 mm s−1

PAS 17.5 mm s−1 9 h 17.5 mm s−1

Rn
SMA 424.9 W m−2 12 h 30 min 181.0 W m−2

PAS 429.1 W m−2 12 h 30 min 328.4 W m−2

VPD
SMA 1.182 kPa 15 h 30 min 0.40 kPa
PAS 0.96 kPa 15 h 30 min 0.52 kPa

Temp SMA 23.94 ◦C 15 h 30 min 16.5 ◦C
PAS 20.92 ◦C 15 h 18.1 ◦C

The regressions between Cs and the environmental variables (Rn, VPD, and Temp)
were determined to identify the main influencing factors on the surface conductance on a
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daily scale throughout the study period. The Pearson’s coefficients are presented in Table 5.
Rn was the main influencing factor controlling Cs in the morning (P1—Table 5). However,
the significant influence of air temperature on the surface conductance in the P1 period
must be considered. The VPD and morning temperature directly influence the surface
conductance in the afternoon. Therefore, we can infer that the behavior of opening or
closing stomata can also contribute to the emergence of hysteresis.

Table 5. Pearson correlation (r) between the surface conductance Cs (mm s−1), and the net radiation
(Rn, W m−2), air temperature (Temp, ◦C), and vapor pressure deficit (VPD, kPa) for the Pampa
biome, at the SMA and PAS sites in periods P1 (06 h 30 min–11 h 30 min) and P2 (12 h–17 h), with a
p-value of 0.001.

Variables
P1 (Morning) P2 (Afternoon)

Cs Cs

SMA PAS SMA PAS

P1
(morning)

Rn 0.71 0.90 −0.98 −0.98
VPD 0.65 0.82 −0.99 −1
Temp 0.70 0.87 −0.98 −0.99

P2
(afternoon)

Rn −0.49 −0.73 0.98 0.98
VPD 0.96 0.92 −0.63 −0.56
Temp 0.97 0.85 −0.61 −0.42

The gaps between the meteorological variables and Cs of the Pampa biome were
more prominent at the PAS site. Cs in the afternoon (P2) was more linearly correlated
with VPD and Temp, r = −1 and r = −0.99, respectively, which provides us with another
important relationship to verify the limiting causes of Cs. While VPD or Temp increases, Cs
tends to decrease since stomata must regulate their opening to prevent dehydration [82].
This fact is already known. However, the factors and intensities of these responses still
require investigation. If there is a stomatal response to VPD, the mechanism that causes
this response is still controversial [83]. According to Streck [83], two hypotheses proposed
for this mechanism are discussed in the scientific community. The first, feedforward, is
that stomatal conductance (Ce) decreases directly with the increase in VPD, with abscisic
acid as the signal for the response. In the second hypothesis, feedback, Ce decreases with
the increase in VPD due to the increase in leaf transpiration, which decreases the water
potential in the leaf. Kelliher [84] reports that vegetation with LAI > 3 m2 m−2 has minimal
soil evaporation, allowing Cs to be a good approximation of the physiological parameter
Ce. Thus, in this work, it was possible to verify the effect of VPD on the daily cycles of
surface conductance and, in turn, the stomatic response to atmospheric demand.

The plant can undergo water stress with high VPD. Therefore, the stomata close in
response to VPD as a self-protective mechanism to avoid high transpiration rates [85]. The
Pampa vegetation, which had good water availability throughout the period [39], presented
a decrease in Cs throughout the day just after 9:00 when Rn, Temp, and VPD have not yet
reached their maximum values. In other words, the period in which the stomatal opening
became narrower (Cs decreasing) was before the decline in meteorological variables. This
was also reported in other studies [86–88], showing what directly caused the hysteresis
loops between Cs and the weather variables during the day. Even so, explaining the causes
of this phenomenon seems to be fraught with complex interactions between exogenous
and endogenous factors for the plant system [89,90]. The stomatal response to VPD is still
a subject of research in plant physiology [83].

3.5. Biophysical Control of Evapotranspiration

The relationships between Cs and Ca also formed hysteresis loops with ET in the
average daily cycle and are shown in Figure 8. The relationship between Ca and ET for
the PAS site showed a different behavior from the other relationships. In this cycle, the ET
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response to Ca increase is high in the early morning. The same occurs after 17:00 when the
ET drop ratio shows a quick response due to the Ca decrease. In other words, the hysteresis
cycle may be negligible during these periods. Between 9:00 and 17:00, the formation of
hysteresis loops between ET and Ca is counterclockwise and shows ET response to Ca
when aerodynamic conductance values are already reducing. At 9:00 and 17:00, the ET
reaches close values, ending the hysteresis cycle. At the SMA site, the relationship between
aerodynamic conductance and ET forms clockwise hysteresis loops, showing that the ET
response to Ca is high earlier in the day. At 13:00 (local time), the maximum ET value
begins to drop the Ca, thereby decreasing ET. However, in this period, the ET response to
Ca is lower when compared to the morning period. Therefore, between 13:00 and 15:00,
ET shows less Ca dependence, showing high biophysical control in the evapotranspiration
rate. Mallick et al. [91] report hysteresis loops between the Cs and Ca with evaporation and
transpiration in the Amazon Basin. The authors reported significant hysteresis between the
transpiration component and Cs during the dry season for sites with pasture vegetation.
The evaporation component was significantly influenced by Ca for all sites.
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1 September 2016.

The relationships between ET and surface conductance for both sites formed hysteresis
loops in a counterclockwise direction, showing a low ET response in the morning. In this
period, ET increases as Cs increases until reaching their maximum value at 9:00 at the
SMA site and 11:00 in PAS. After this time, Cs begins to decrease with the increase in ET.
Therefore, ET responds to Cs in this interval since evapotranspiration does not reduce
instantly, even after the stomata have closed. In summary, the decrease in ET is mainly
caused by the Cs reduction response due to the increase in VPD and air temperature.
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The areas of the hysteresis curves were estimated to verify the intensity of ET response
to Cs and Ca. Hysteresis was weaker in the ET-Ca ratios when compared to ET-Cs. The
largest area obtained was for the ET-Cs ratio at the SMA site (0.0657), 33% higher than for
the PAS site. The ET-Ca ratio was weaker at the PAS site, representing only 7% of the area’s
value for the same ratio at the SMA site. On average, ET responds more strongly to surface
conductance, about 86%, compared to the Pampa biome ET-Ca ratio.

4. Conclusions

In this work, we assessed the patterns and controls in the turbulent energy exchanges
of the Pampa biome in southern Brazil from two grassland sites. Rn presented a strong
seasonality, with AW being 47% and 39% smaller than SS in the SMA and PAS sites,
respectively. LE was the main component of the energy balance in AW and SS periods, but
with similar results of H during AW in both sites. Global radiation was the main controller
of the LE and H. G was a smaller component of the energy partition, with greater values
in PAS.

Cs and Ca for both sites did not show seasonality. Cs and Ca were highly influenced
by u and turbulence conditions in each site. Rn was the main driving factor controlling Cs
in the morning. VPD and morning air temperature directly influenced Cs in the afternoon.
Cs presented a similar daily cycle for both sites, with Ca showing a higher magnitude in
PAS, mainly because of higher u. The hysteresis cycles formed by ET and the conductances
showed substantial biophysical control in the ET process complex.

Cs and Ca are considered complex variables and have fundamental importance in
most land surface models. In addition, the Pampa biome is a complex ecosystem where
the surface–atmosphere interactions depend on weather and climate, soil, and vegetation
phenology. Thus, the results presented in this study should guide numerical modeling
simulations and public water use policies for Pampa biome ecosystem.
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