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ABSTRACT
We propose a novel approach to obtain the growth rate of cosmic structures, f(z), from the evolution of the cosmic homogeneity
scale, RH(z). Our methodology needs two ingredients in a specific functional form: RH(z) data and the matter two-point correlation
function today, i.e. ξ (r, z = 0). We use a Gaussian Process approach to reconstruct the function RH. In the absence of suitable
observational information of the matter correlation function in the local Universe, z � 0, we assume a fiducial cosmology to
obtain ξ (r, z = 0). For this reason, our final result turns out to be a consistency test of the cosmological model assumed. Our
results show a good agreement between: (i) the growth rate f RH (z) obtained through our approach, (ii) the f�CDM(z) expected
in the fiducial model, and (iii) the best-fitting f(z) from data compiled in the literature. Moreover, using this data compilation,
we perform a Gaussian Process to reconstruct the growth rate function fdata(z) and compare it with the function f RH (z) finding
a concordance of <2 σ , a good result considering the few data available for both reconstruction processes. With more accurate
RH(z) data, from forthcoming surveys, the homogeneity scale function might be better determined and would have the potential
to discriminate between �CDM and alternative scenarios as a new cosmological observable.

Key words: Cosmology: Observations – Cosmology: Large-Scale Structure of the Universe.

1 IN T RO D U C T I O N

There is an increasing interest in measurements of the growth rate
of cosmic structures, f(z), because this function behaves differently
for cosmological models based on different theories of gravity (see
e.g. Huterer et al. 2015; Kazantzidis & Perivolaropoulos 2018; Basi-
lakos & Anagnostopoulos 2020; Linder 2020; Velasquez-Toribio &
Fabris 2020); notoriously, the concordance cosmological model
Lambda cold dark matter (�CDM) is based on the theory of general
relativity. In this scenario, precise measurements of f(z) from diverse
cosmological tracers measured at several redshifts would determine
if the �CDM model correctly describes the evolution of the function
f(z) (Pezzotta et al. 2017; Aubert et al. 2020; Bautista et al. 2021;
Avila et al. 2021), and to investigate classes of models based on
modified gravity theory (Alam et al. 2020; Ntelis et al. 2020). But
the interest in f(z) is more fundamental. In fact, since the early works
of Peebles (1965), Silk (1968), and Sunyaev & Zeldovich (1970),
the theory of cosmological perturbations searches to describe the
clustering evolution of the primordial density fluctuations, from the
earliest times to the currently observed universe, where the growth
rate of structures f(z) represents a measurement of such clustering
evolution.

The measurements of f(z) can be done with good precision using
the Redshift Space Distortions (RSD) approach, that is, studying the
peculiar velocities caused by local gravitational potentials that intro-
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duce distortions in the two-point correlation function (2PCF; Kaiser
1987). Calculating the 2PCF from a galaxy survey, more pre-
cisely, the anisotropic correlation function, ξ (s, μ) (Hamilton 1992;
Hamilton & Culhane 1995), one can constrain the product fσ 8,
where σ 8 is the variance of the matter fluctuations at the scale of
8 Mpc/h (Juszkiewicz et al. 2009; Song & Percival 2009). For fσ 8

data compilations, see e.g. Zhang & Li (2018), Sagredo, Nesseris &
Sapone (2018), and Alam et al. (2021).

The growth rate of cosmic structures, f, is defined as (Strauss &
Willick 1995)

f (a) ≡ d ln D(a)

d ln a
,

where D = D(a) is the linear growth function, and a is the scale
factor in the Robertson–Walker metric, based on general relativity
theory. Apply the above equation to a catalogue of cosmic objects
to measure f does not work, because what one can measure directly
from the data survey is the density contrast δ(r, a) and not the growth
function D(a). In this work, we propose a solution for this problem:
search for a cosmic observable function that depends only on cosmic
time (equivalently, on the redshift z or the scale factor a) instead
of D(a) in the above equation, being able to quantify the clustering
evolution to provide a measurement of the growth rate of cosmic
structures.

The Cosmological Principle is a fundamental piece in the con-
cordance model of cosmology (Peebles 1980). It claims that, at
sufficiently large scales, the universe is statistically homogeneous
and isotropic (regarding the statistical isotropy of the universe, see
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e.g. Bernui et al. 2007; Bernui, Oliveira & Pereira 2014; Pereira &
Pitrou 2015; Bengaly et al. 2017; Tarnopolski 2017; Dainotti, Del
Vecchio & Tarnopolski 2018; Marques et al. 2018; R̆ı́pa & Shafieloo
2019). Several teams analysed galaxy surveys to calculate the scale
where the transition from an inhomogeneous to a homogeneous
distribution occurs, termed the homogeneity scale RH (Scrimgeour
et al. 2012; Laurent et al. 2016; Ntelis et al. 2017). For recent
analyses, see e.g. Ntelis et al. (2019), Heinesen (2020), Pandey
(2021a), Pandey & Sarkar (2021b), Gonçalves et al. (2021), De
Marzo, Labini & Pietronero (2021), and Camacho & Gaztañaga
(2021). In addition, analyses of the angular scale homogeneity
have also been done to find the angular scale of homogenenity,
θH, (Alonso et al. 2015; Gonçalves et al. 2018a; Avila et al. 2018,
2019), considered model independent measurements because one
does not assume a cosmological model, as in the analyses of RH,
when one uses a fiducial cosmology to calculate 3D distances. At
present, diverse deep astronomical surveys map large volumes of the
universe, permitting to probe the evolution of RH, although it is not as
accurate as desirable. The next generation of surveys foresees a large
number of RH measurements with an improved accuracy (Amendola
et al. 2018; Ivezić et al. 2019).

In this work, we will show that it is possible to use information
from RH, more precisely from the homogeneity scale evolution
dRH/dz, to obtain the cosmic evolution of the growth rate of structures
f(z). From the theoretical point of view, the homogeneity scale can
be related to the 2PCF, ξ (r) (Peebles 1980; Ntelis et al. 2017).
From the linear perturbation theory, the redshift evolution of ξ (r)
is proportional to D(z)2 then, F[RH(z)]D(z)2 ∝ cte, where F is a
functional of the homogeneity scale function RH(z). As we shall see,
this proportionality leads to the growth rate f(z) through the redshift
derivative of ξ̄ (RH(z)), the volume-averaged 2PCF. The approach to
know the functional F needs to assume parameters that we determine
assuming a �CDM fiducial cosmology. In this sense, our analyses
should be considered as a test of consistency for the �CDM model.

The relationship between f and RH indicates that with precise
homogeneity scale data, RH(z), measured at several redshifts, one can
determine with good accuracy the growth rate of cosmic structures
f = f(z), which in turn can be used to discriminate between the con-
cordance �CDM and competing models based on modified gravity
theories. Additionally, these data could be used in statistical analyses
to find cosmological parameters. In other words, the homogeneity
scale data, RH(z), would indeed play the role of a novel cosmological
observable, as first discussed by Ntelis et al. (2019).

This work is organized as follows. In Section 2, we review the
main equations of the linear theory of matter perturbations. In
Section 3, we explain the methodology to obtain the transition scale
to homogeneity and, for the first time, the relation between RH(z) and
f(z). In Section 4, we explain the reconstruction procedure to obtain
a smooth curve of RH(z), and dRH(z)/dz, both used then to obtain f(z)
according to our procedure. In Sections 5, we show our results and
discuss them, while in Section 6, we present our conclusions.

2 G ROWTH R ATE O F C OSMIC STRUCTURES

To describe the structure formation in an isotropic and homogeneous
universe we used a perturbation approach: small deviation in the
early universe has a slow evolution that can be described by a linear
perturbation theory (Mukhanov, Feldman & Brandenberger 1992).
One defines the density contrast as

δ(r, t) ≡ ρ(r, t) − ρ̄(t)

ρ̄(t)
, (1)

where ρ(r, t) is the matter density at the comoving vector position r
at cosmic time t and ρ̄(t) is the average matter density measured in
the hyper-surface of constant t. In the linear and Newtonian regime,
the gravitational potentials are small and the perturbation scale is
smaller than the Hubble radius, λ � c/H0, where c is the speed of
light and H0 is the Hubble constant. Over this condition, the structure
formation is described with the fluid equations

δ̇ = − 1

a
∇ · v , (2)

v̇ + Hv = − 1

aρ̄
∇δp − 1

a
∇δ
 , (3)

∇2δ
 = 4πGa2ρ̄ δ , (4)

which are the continuity, Euler, and Poisson equations, respectively,
perturbed at first order in comoving space. The dot corresponds to a
partial derivative in cosmic time. The physical quantities v, δp, and
δ
 are the peculiar velocity, pressure, and the perturbed gravitational
potential, respectively.

Combining equations (2), (3), and (4), and assuming adiabatic
perturbations condition, we obtain the well known equation that
describes the linear density contrast evolution of the matter density

δ̈m + 2
ȧ

a
δm − 4πGρ̄mδm = 0 . (5)

In the linear approximation, the density contrast is a function of time
only, that is, δm ∼ D(t). From this, one can define the growth rate of
cosmic structures as

f (a) ≡ a

D

dD

da
= d ln D

d ln a
. (6)

In the �CDM model we have the following approximation (Lahav
et al. 1991)

f (z) � �0.6
m (z) + ��

70

(
1 + 1

2
�m(z)

)
, (7)

where �m and �� are the matter and dark energy cosmological
parameters, respectively. An alternative approximation is given
by (Linder 2005; Linder & Cahn 2007)

f (z) = �γ
m(z) , (8)

where γ is the growth index. In the �CDM model, γ = 6/11
� 0.55. This parameter assumes distinct values beyond �CDM
cosmology (Basilakos 2012).

3 TR A N S I T I O N SC A L E TO H O M O G E N E I T Y

The most used methodology to study the homogeneity of galaxy
or quasars distributions is to count the number of cosmic objects,
Ngal, inside a sphere of radius r, and divide for Nrand, the equivalent
count but for a random distribution, that has the same features as
the original one. Then, we can define the scaled counts-in-spheres,
N (< r) (Scrimgeour et al. 2012)

N (< r) ≡ Ngal(< r)

Nrand(< r)
, (9)

where for a homogeneous distribution, at large scales, it goes to 1.
It can be shown that N (< r) is related to the two-point correlation
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function ξ (r)1

N (< r) = 1 + 3

r3

∫ r

0
ξ (s)s2ds . (10)

From the function N (< r), one can define the correlation dimension
functionD2(r) (for details, see the appendix A in Ntelis et al. 2017),

D2(r) ≡ d lnN (< r)

d ln r
+ 3 . (11)

Despite the fact that most studies present both estimators, N (< r)
and D2(r), the result from the correlation dimension is considered
more robust, because it is less correlated for most scales (Scrimgeour
et al. 2012; Ntelis et al. 2017).

To finish this section, we discuss the arbitrary criterion used to
determine the scale where the transition to homogeneity occurs, RH.
Consider the following equation

D2(RH) = 3(1 − ε). (12)

In an ideal situation, one expects ε = 0, that is, when the homogeneity
scale is attained the value of ε should be ε = 0, such that the transition
to homogeneity occurs on the scale at which D2 calculated from data
achieve the value 3. However, due to systematic effects present in
the galaxy surveys, Scrimgeour et al. (2012) suggested to fix the
value of ε at, for example, 0.01, which gives us D2(RH) = 2.97,
that is, 1 per cent below 3. We assume this value because it is
commonly adopted in the literature, and allow us to study the scale
of homogeneity for different tracers in a large range of redshift.
Anyhow, as we will show next, our methodology is independent of
ε, due to the redshift derivative.

3.1 The growth rate of cosmic structures from the homogeneity
scale

As mentioned above, the scaled counts-in-spheres,N (< r), is related
to the two-point correlation function, ξ (r; z), at redshift z

ξ (r = |x − y|; z) = 〈δ(x; z)δ( y; z)〉 , (13)

that is, is the spatial average of the product of the density contrasts
evaluated at the arbitrary positions of a pair of galaxies, x, y, at
redshift z. The redshift evolution of ξ can be obtained assuming for
the equation (5) the solution δ(r; z) = δ(r; z = 0)D(z) (Schneider
2006). This leads to

ξ (r = |x − y|; z) = 〈δ(x; z)δ( y; z)〉
= D2(z)〈δ(x; z = 0)δ( y; z = 0)〉
= D2(z)ξ (r; z = 0) , (14)

where ξ (r; z = 0) is the two-point correlation function at z = 0. From
equation (14), one can rewrite the scaled counts-in-spheres as

N (< r, z) = 1 + D2(z)ξ̄ (r) , (15)

where

ξ̄ (r) ≡ 3

r3

∫ r

0
ξ (s, z = 0)s2ds (16)

is the volume average of the correlation function. From the equa-
tion (11), one has

D2(r, z) = rD2(z)

1 + D2(z)ξ̄ (r)

dξ̄ (r)

dr
+ 3 . (17)

1For applications of the two-point correlation function in clustering analyses,
see e.g. de Carvalho et al. (2018, 2021) and Carvalho et al. (2020).

It is useful to define the following quantity:

ζ (r) ≡ dξ̄ (r)

dr
. (18)

For the scale where the transition to homogeneity occurs, r = RH,
equation (17) becomes

RH(z)D2(z)ζ [RH(z)] = −3ε (1 + D2(z) ξ̄ [RH(z)]) � −3ε , (19)

where we consider only the first-order term. Now, taking the redshift
derivative of equation (19) we have

d

dz

(
RHD2ζ

) = 0 . (20)

This differential equation relates in a simple way RH(z) and D(z).
Finally, separating each term of equation (20), we have

− 2

D

dD

dz
= 1

RH

dRH

dz
+ 1

ζ

dζ

dz
. (21)

Using the equation (6) in equation (21), we have

f (z) = 1 + z

2

(
1

RH

dRH

dz
+ 1

ζ

dζ

dz

)
, (22)

which, explicitly, is independent of ε. To obtain f(z), in addition to
RH data, we must obtain ζ [RH(z)] from a correlation function in z =
0. Or, in a model dependent way, use an approximation, as we will
describe in the next section.

4 T E S T I N G TH E M O D E L

In this section, we describe our methodology, aimed to solve
equation (22), and apply it to a set of RH data to obtain the growth
function f(z). First, we present the data, and secondly, we detail
the approximation used to define ζ (RH). By last, we describe the
Gaussian Process methodology used to reconstruct RH and dRH/dz.

4.1 Data

Here, we use two sets of RH measurements. The first one is provided
by Ntelis et al. (2017), through the study of the CMASS galaxy
sample of the BOSS survey, they calculated the transition to ho-
mogeneity for 5 uncorrelated redshift bins in the interval 0.43−0.70.
The authors analysed separately the North (NGC) and South Galactic
Caps (SGC), at the same redshift bins, obtaining five independent
measurements for each of them (i.e. a total of 10 RH data). The second
RH data set comes from Gonçalves et al. (2018b), who analysed the
quasars sample from the fourteenth data release of the Sloan Digital
Sky Survey (SDSS-IV DR14) in the redshift interval 0.80−2.24.
They measured RH in each one of four uncorrelated redshift bins (i.e.
4 RH data) studied employing two estimators to calculate N (< r):
Landy-Szalay (LS) and Peebles–Hauser (PH) estimators, obtaining
similar results in both cases. In Table 1, we list these RH(z) data with
their respective redshifts.

Following Ntelis et al. (2019), we combine the RH data from NGC
(j) and SGC (k) using a weighted average, defined as

Rw
H(zi) ≡

(
1

σ 2
j (zi)

+ 1

σ 2
k (zi)

)−1

×
(

R
j

H(zi)

σ 2
j (zi)

+ Rk
H(zi)

σ 2
k (zi)

)
, (23)

where σ j, σ k, and R
j

H, Rk
H are, respectively, the errors and data for

two independent measurements, j and k, in the same redshift, zi. At
first order, we can neglect the covariance between redshift bins. For
the Gonçalves et al. (2018b) data, we choose the data from the PH
estimator to optimize our analyses.
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Figure 1. Left-hand panel: Relative error between ζ [RH] as fitted using the DPL approximation (equation 24) and the expectation from the �CDM model.
Right-hand panel: Relative error of the cosmic growth rate f(z) calculated using equation (26) with respect to f(z) obtained using the equation (6) assuming the
same �CDM fiducial cosmology; one also observes the noisy pattern caused by the numerical derivative.

Notice that the RH we use here are already corrected by the
corresponding bias factor. The bias for each redshift bin have been
determined by the respective authors, which provided the bias-
corrected measurements. This is important because each homo-
geneity scale measurement is calculated for a specific tracer and
a proper combination of these data requires their conversion to the
corresponding transition scale for the underlying matter distribution.

4.2 Double power-law approximation for ζ (RH)

In order to use the selected RH data sample to calculate f RH (z) =
f (z), using equation (22), we need to define ζ (RH). For this we ap-
proximate ζ (RH) by a Double Power Law (DPL) function, similar to
that one used in the study of the AGN luminosity function (Kulkarni,
Worseck & Hennawi 2019)

ζ (RH) = − CR−1
H

(RH/R�)α + (RH/R�)β
, (24)

where C, R�, α, and β are the parameters to be adjusted. Taking its
redshift derivative

1

ζ

dζ

dz
= − (1 + α)(RH/R�)α + (1 + β)(RH/R�)β

(RH/R�)α + (RH/R�)β
1

RH

dRH

dz
, (25)

the growth rate can be written as

f RH (z) = 1 + z

2

⎡
⎢⎣1 −

(1 + α)
(

RH
R�

)α

+ (1 + β)
(

RH
R�

)β

(
RH
R�

)α

+
(

RH
R�

)β

⎤
⎥⎦ 1

RH

dRH

dz
,

(26)

where RH = RH(z).
We fit the four free parameters of the DPL approximation to

the theoretical expectation for ζ (RH), for RH corresponding the
redshift range 0 < z < 2, considering the �CDM model baseline
obtained from Planck Collaboration (2020), that is, h = 0.6727,
�ch2 = 0.1202, �bh2 = 0.02236, �mν = 0.0600, ns = 0.9649,
σ 8 = 0.8120, and ln (1010As) = 3.045. For this we employ the
public code cosmopit2 (Ntelis et al. 2017, 2018) to produce
ζ (RH)�CDM, which uses the public code CLASS3 (Lesgourgues 2011;
Blas, Lesgourgues & Tram 2011) as a background. We obtain for
these parameters [R�, α, β, C] = [46.16, 2.76, 1.12, 0.19], whose

2https://github.com/lontelis/cosmopit
3https://github.com/lesgourg/class public

Table 1. The RH(z) data used in the analyses.

z RH (Mpc h−1) Reference

NGC SGC

0.457 64.20 ± 1.30 66.70 ± 1.60 Ntelis et al. (2017)
0.511 65.40 ± 0.90 63.90 ± 1.50
0.565 62.60 ± 0.80 65.20 ± 1.60
0.619 60.40 ± 0.80 60.10 ± 1.10
0.673 59.00 ± 0.80 60.10 ± 1.80

PH LS

0.985 48.78 ± 3.82 52.93 ± 7.55 Gonçalves et al. (2018b)
1.350 40.56 ± 3.39 40.43 ± 5.64
1.690 36.19 ± 3.45 36.66 ± 4.80
2.075 27.91 ± 3.91 29.94 ± 3.35

error for each of them is less than 1 per cent. The plot on the left-
hand panel of Fig. 1 shows the relative error between the input
�CDM expectation and the fitted DPL approximation, where we
observe a good agreement on all scales. The maximum discrepancy
of 0.3 per cent appears at the largest RH scales considered here.
This occurs due to the effect introduced in ζ (RH) by the presence
of the BAO feature at ∼100h−1Mpc in the correlation function,
then the DPL approximation fails to model the large scales. See
Appendix A for more details. Notice that, although the methodology
does not depend on ε explicitly, as shown in equation (22), we
follow Scrimgeour et al. (2012) and fix this value to ε = 0.01 to
obtain the ζ [RH(z)]�CDM function and then calculate the best-fitting
parameters for the DPL approximation. In Appendix B, we test the
criterion for ε and the dependence of our methodology on some
cosmological parameters. Additionally, the right panel of Fig. 1
shows the relative error between the cosmic growth rate f RH (z)
calculated using the DPL approximation equation (26) and that
obtained from equation (6) assuming the �CDM fiducial model.
As observed, for almost the whole redshift interval, we observe a
maximum deviation of ∼ 0.5 per cent, again at low redshifts, where
we also notice the noisy pattern caused by the numerical derivative.
Note that, since we have a small set of RH data, we use a reconstructed
function from them to be able to appropriately calculate the derivative
dRH/dz in equation (26), a procedure detailed in the following section.

4.3 Gaussian process regression

To extract maximum cosmological information from the RH data
listed in Table 1 we perform a Gaussian Process (GP) Regression
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Figure 2. Left-hand panel: Reconstruction of the homogeneity scale function RH(z) using Gaussian Process (dashed line) and the RH measurements (red
squares) presented in Table 1 (see the text for details about the data set); the shadow represents the 95 per cent CL. Right-hand panel: Derivation of the growth
rate of structures f RH (z) (dashed line) using the reconstructed function RH(z), shown in the left-hand panel plot, and the equation (26), where the shadow
represents the 95 per cent CL. The solid line represents the expression expected in the �CDM model, f�CDM(z), obtained from equation (6) with �Planck

m = 0.315;
instead, the dot–dashed line shows the expected growth rate using equation (6) but with �m = 0.270+0.079

−0.073, a value obtained from the best-fitting analyses of
the f(z) data as shown in Fig. 4 (the red squares are the data listed in Table D1). Comparing the f RH (z) (dashed line) and the best-fitting f(z) (dot–dashed line)
functions we found an agreement of <2σ (considering the corresponding uncertainties, not shown in the figure to avoid excess of information).

method, obtaining in this way a smooth curve for RH(z) and, by
numerical derivation, for dRH/dz; this information is then used in
equation (26) to obtain the f RH (z) function. The GP consists of
generic supervised learning method designed to solve regression
and probabilistic classification problems, where we can interpolate
the observations and compute empirical confidence intervals and a
prediction in some region of interest (Rasmussen 2003; Pezzotta et al.
2017). The GP method design from machine learning techniques
is the state of the art to obtain statistical information and model
prediction from some previously known information or data. In the
cosmological context, GP techniques has been used to reconstruct
cosmological parameters, like the dark energy equation of state, ω(z),
the expansion rate of the universe, the cosmic growth rate, and other
cosmological functions (see e.g. Seikel, Clarkson & Smith 2012;
Shafieloo, Kim & Linder 2012; Zhang & Li 2018; Marques et al.
2019; 2020; ; Nunes et al. 2020a; Nunes & Bernui 2020b; Renzi &
Silvestri 2020; Bonilla, Kumar & Nunes 2021a; Bonilla et al. 2021b;
Colgáin & Sheikh-Jabbari 2021; Escamilla-Rivera, Said & Mifsud
2021; Sun, Jiao & Zhang 2021 for a short list of references).

The main advantage in this procedure is that it is able to make a
non-parametric inference using only a few physical considerations
and minimal cosmological assumptions. Our aim is to reconstruct a
function F(xi) from a set of its measured values F(xi) ± σ i, where xi

represent our data sample. It assumes that the value of the function
at any point xi follows a Gaussian distribution. The value of the
function at xi is correlated with the value at other point x ′

i . Thus, a
GP is defined as

F (xi) = GP(μ(xi), cov[F (xi), F (xi)]), (27)

where μ(xi) and cov[F(xi), F(xi)] are the mean and the variance of
the variable at xi, respectively. For the reconstruction of the function
F(xi), the covariance between the values of this function at different
positions xi can be modeled as

cov[F (x), F (x ′)] = k(x, x ′), (28)

where k(x, x
′
) is known as the kernel function. The kernel choice is

often crucial for obtaining good results regarding the reconstruction
of the function of interest.

The kernel most commonly used is the standard Gaussian Squared-
Exponential approach, which is defined as

k
(
x, x ′) = σ 2

F exp

(
−|x − x ′|2

2l2

)
, (29)

where σ 2
F is the signal variance, which controls the strength of the

correlation of the function F, and l is the length scale that determines
the capacity to model the main characteristics (global and local)
in the evaluation region to be predicted (or coherence length of
the correlation in x). These two parameters are often called hyper-
parameters.

It is well known that depending on the data set in analysis, the
kernel choice is an important point. We verify that our data set is
well modelled by the choice above, and that other kernels do not
produce major changes in our main results (see Appendix B). In
what follows, we discuss our results.

5 R ESULTS AND DI SCUSSI ONS

In this section, we present our main results. We performed a GP to
reconstruct the homogeneity scale, RH(z). From this, using the DPL
model, we can obtain f RH (z). Also, we perform the GP to our f(z)
data compilation. Finally, we study the parameter space H0 – �m

from the same data compilation.

5.1 Results of the reconstruction of f RH (z) and f(z)

In obtaining the results to be described in this section, we use
the Scikit-learn code (Pedregosa et al. 2011), which is a PYTHON

module integrating a wide range of state-of-the-art machine learning
algorithms, to model the GP described in the previous section.
The hyperparameters σ 2

F and l are optimized during the fitting by
maximizing the log-marginal-likelihood.

The left-hand panel of Fig. 2 shows the best-fitting prediction of
the reconstruction GP of the homogeneity scale function RH(z), at
95 per cent CL, from the data sample listed in Table 1 (represented by
red squares in this plot). As verified in this plot, the RH(z) data reveals
the expected behaviour in the evolution of the matter clustering in
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Figure 3. Comparison of the growth rate f RH (z) obtained from equation (26)
(dashed line) and the GP reconstructed function fdata(z) (dot–dashed line)
using the data compilation given in Table D1. Both reconstructed functions
show a significant overlapping of the respective 2σ regions (shaded areas).

Figure 4. The 68 per cent (dark shaded area) and 95 per cent (light shaded
area) CLs regions, respectively, on the parametric space H0 − �m from f(z)
+ Planck-H0 prior and f(z) + BAO joint analyses. The parameter H0 is
measured in the units of km s−1 Mpc−1.

the Universe, going from a nearly homogeneous situation at high
redshift to a non-linear clustered matter at low redshift where the
homogeneity scale is attained only at large scales.

We use these RH(z) data to obtain the evolution of the growth rate
of cosmic structures, f RH (z), according to equation (26) following
the procedure described in Section 3.1. Our result can be observed on
the right panel of Fig. 2, where f RH (z) is plotted as a dashed line and
the current measurements of f(z), listed in the Table D1 in appendix
D, as red squares. It is important to mention that f RH obtained
through our procedure does not represent a direct f(z) measurement,
but a non-parametric inference that can describe the evolution of the
growth rate function from minimal cosmological assumptions. We
also show for comparison the �CDM expected growth rate using
equation (6) in two cases: using �Planck

m = 0.315 (continuous line)
from the Planck cosmological parameters, and using �m = 0.26
(dot–dashed line) from the best-fitting data analyses shown in Fig. 4.

On the other hand, it is interesting to compare the growth rate of
cosmic structures f RH (z) from the evolution of the cosmic homo-
geneity scale, with the fdata(z) resulting from a GP reconstruction
using the current f(z) data listed in Table D1. Notice that, the
reconstruction procedure of f RH (z) is performed in the redshift
interval with RH(z) data, namely z ∈ [0.457, 2.075], while the
reconstruction procedure of fdata(z) is done with f(z) data in the
interval z ∈ [0.013, 1.4]. Then, for the comparative analysis we
consider the common redshift interval: z ∈ [0.457, 1.4] shown in
Fig. 3, where we observe that both functions agree well (<2σ level),
overlapping significantly.

One should notice that a plausible systematic present in the RH

data, listed in Table 1, is sourced by the necessity to assume a
fiducial cosmology to calculate the 3D distances to the cosmic objects
(galaxies or quasars), so that one can determine the 3D separation
distance between each pair of them, information used to measure RH.
As a matter of fact, the RH(z) measurements are model dependent
and one should be cautious with this. For instance, the analyses done
by Ntelis et al. (2017) assumed a fiducial cosmology different to that
assumed by Gonçalves et al. (2018b), a fact that helps to explain why
in the left panel of Fig. 2 one data set appear slightly over and the
other slightly under the reconstructed function (dashed line).

5.2 Validation test of H0 – �m plane estimates from the current
compilation of growth rate data

As a final discussion of this section, we will check what our
compilation of f(z) data, shown in Table D1, can tell us about the
�CDM baseline. Let us perform an analysis in three steps:

(i) To constrain �m we consider f(z) data (see Table D1) only.
(ii) A combination f(z) data plus a Gaussian prior on H0 using the

Planck-CMB best fit. Note that we are within a �CDM baseline, so
to use Planck-CMB information in �CDM itself context is just to
improve the constraint on �m.

(iii) We consider the joint analysis f(z) + BAO. In this work, we
consider the most recent BAO data compilation comprised of the
DV(z)/rd, DM(z)/rd, and DH(z)/rd measurements compiled in Table 3
in Alam et al. (2021).

We use the Metropolis-Hastings mode in CLASS + Mon-
tePython code (Lesgourgues 2011; Blas et al. 2011; Audren et al.
2013; Brinckmann & Lesgourgues 2019) to derive the constraints
on cosmological parameters from the data sets described above,
ensuring a Gelman–Rubin convergence criterion of R − 1 < 10−3.

Fig. 4 shows the parameter space in the H0−�m plane at 68 per cent
and 95 per cent CL from f(z) + Planck-H0 prior and f(z) + BAO
joint analyses, where f(z) data refers to the measurements presented
in Table D1. The summary of the main results of our statistical
analyses at 68 per cent CL are: �m = 0.27+0.079

−0.073 (f(z) data only),
�m = 0.279+0.066

−0.067 (f(z) + H0-Planck) and �m = 0.291+0.033
−0.030 and

H0 = 67.4+2.1
−2.0 km s−1 Mpc−1 from f(z) + BAO combination.

As well known, there is a growing tension for low z measurements
of f(z) and it is weaker than the Planck-�CDM predictions (see Di
Valentino et al. 2021; Perivolaropoulos & Skara 2021 and reference
therein for a review and the recent discussion presented in Nunes &
Vagnozzi 2021). Our results here also confirm that growth rate data
based on the measurements in Table D1 predict a suppression on the
amplitude of the matter density perturbation at low z due the low �m

estimation in comparison with that from the Planck-�CDM, �m =
0.315 ± 0.007 (Planck Collaboration 2020). On the right-hand panel
of Fig. 2, we also show the theoretical curve assuming our constraint
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on �m. Despite predicting a low �m best-fitting value in our analysis,
the error bar estimates are in agreement with Planck CMB at <1σ .

6 C O N C L U S I O N S

Measurements of the growth rate of cosmic structures, f, have the
potential to differentiate between the theory of general relativity, that
supports the concordance model �CDM, from alternative scenarios
based on modified gravity models. Besides the efforts, the current
uncertainties in such measurements do not allow to discern between
competing models of modified gravity.

This motivated us to search for a cosmological observable that
depends only on the cosmic time t, or equivalently on the redshift
z. We propose to use the transition scale to homogeneity, RH(z), to
know the evolution of the growth rate f = f(z). As shown in the
Section 3.1, the relation between RH and f is not direct and one needs
two ingredients: (i) a set of {RH(zi)} data – in the redshift interval of
interest – to reconstruct the continuous function RH(z) and to perform
its redshift derivative; and (ii) the matter two-point correlation
function at z = 0, ξ (r, z = 0), that analyses distance scales of the order
of the homogeneity scale. However, there is no observational data to
construct ξ (r, z = 0), and one has to assume a fiducial cosmology
to obtain it. For this reason, our analyses and results are actually
consistency tests of the cosmological model assumed.

Using GP, our reconstruction of the homogeneity scale function
RH(z) done in Section 5 shows the expected behaviour, although the
current data set is small and with large errors (see Table 1). With the
functions RH(z) and ξ (r, z = 0), and following our procedure, we use
them in equation (26) to obtain the growth rate of cosmic structures
f RH (z). Our results, displayed in the right-hand panel of fig. 2, show a
good agreement between: (i) the growth rate f RH (z) obtained through
our approach, (ii) the f�CDM(z) expected in the fiducial model, and
(iii) the best-fit f(z) from the set of {f(zi)} measurements available in
the literature. Moreover, using this compilation of {f(zi)} data (see
Appendix D), we perform a GP to reconstruct the growth rate function
fdata(z) and compare it with the function f RH (z) obtained from our
approach, finding a concordance of <2σ as observed in Fig. 3 (notice
the significant overlapping of their 2σ regions). This is a good result
considering the few data available for both reconstruction processes.

It is worth to note that our approach to find the growth rate of
cosmic structures, f(z), from the evolution of the cosmic homogeneity
scale, RH(z), relies on the definition of the homogeneity scale which
is not unique (see e.g. Pandey 2021a; Pandey & Sarkar 2021b); in
our approach, the homogeneity scale is provided by the estimator D2

through the analyses of the universe fractal structure (Scrimgeour
et al. 2012).

The relationship found between f and RH indicates that with precise
homogeneity scale data, RH(z), measured at several redshifts from
forthcoming surveys (see e.g. Amendola et al. 2018; Ivezić et al.
2019), one can determine with good accuracy the growth rate of
cosmic structures f = f(z), which in turn can be used to discriminate
between the concordance �CDM and competing models based on
modified gravity theories. Moreover, these data could be used in
statistical analyses to find cosmological parameters. In summary, the
homogeneity scale data, RH(z), would indeed play the role of a novel
cosmological observable, as first discussed by Ntelis et al. (2019).
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APPEN D IX A : BARYO N ACOUSTIC
OSCILLATION S INFLUENCE ON THE D PL
APPROX IMATION

In Section 4.2, we have seen a discrepancy of 0.3 per cent between
the fiducial model and the DPL model for RH � 80 Mpc h−1. This
small deviation in the fit can be attributed to the Baryon Acoustic
Oscillations (BAO) signature, present around the scale 100 Mpc h−1.
To test this hypothesis, we perform our fit for the DPL approximation
considering two estimates of the correlation function: one from the
CLASS code and another for the case of absence of the BAO feature.
For the last case, we use the fitting model given by Eisenstein & Hu
(1998) and implemented in the code nbodykit4 to obtain ξ (r).

Fig. A1 shows the relative difference ζ DPL/ζ�CDM − 1 obtained
calculating the correlation function with and without the BAO
feature. It is evident the improvement in the fitting of ζ obtained

4https://nbodykit.readthedocs.io/en/latest/
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Figure A1. The relative difference ζDPL/ζ�CDM − 1 obtained calculating
the correlation function with and without the BAO feature.

from the correlation function without the BAO feature for RH < 40
Mpc h−1, with more significant effect for RH � 55 Mpc h−1 when
compared to the correlation function with BAO.

A P P E N D I X B: ST U DY I N G TH E PA R A M E T E R
D E P E N D E N C E O F T H E G ROW T H R AT E

In Section 3.1, we found a relation between f(z) and RH(z) that is, in
principle, explicitly independent of the ε parameter. However, when
measuring RH(z), one needs to fix ε. Then, it is important to check if
this criterion affects the f(z) estimate. Here, we investigate the impact
of fixing ε, as well as whether our choice of cosmological parameters
might affect the f(z) obtained.

We compare the result obtained from our fiducial model, ffiducial(z),
using the input parameters{

ε, ln
(
1010As

)
, �K,�ch

2
} = {0.01, 3.045, 0.0, 0.1202}, (B1)

with the f(z) resulting from the same fitting procedure but now
varying these four parameters one at a time. The comparison is
performed through the relative difference f(z)/ffiducial(z) − 1.

Fig. B1 displays the relative difference between our input model
and the 3 cases studied where ε = {0.02, 0.05, 0.001}. These
values correspond to different definitions of the homogeneity scale,
RH, where this scale is obtained when the data in analysis reaches
2 per cent, 0.5 per cent, and 0.1 per cent below the limit value 3,
respectively (Scrimgeour et al. 2012). We show that for the redshift
interval of interest, 0 < z < 2, the error is below 0.5 per cent, which
makes our approach robust with respect to ε. For the case ε = 0.001, a
divergent behaviour is observed around z ∼ 1.4, where the function
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Figure B1. The relative difference for f(z) between our fiducial model, i.e.
ε = 0.01, and the cases investigated with ε = {0.02, 0.005, 0.001}.
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Figure B2. The relative difference, f(z)/ffiducial(z) − 1, considering the variations, one at a time, of three cosmological parameters: ln (1010As), �K, and �ch2.
The left-hand panel shows the results for As, which is basically noise. The middle panel shows the outcomes for �K where the relative difference is less than
6 per cent for the whole interval of interest. The right-hand panel shows the dependence on �ch2 which is � 4 per cent, with the largest values for low z.

explodes up and come back from below. However, we notice that
such small ε is unpractical when investigating RH due to the statistical
errors (and other systematics) inherent to the data analyses.

Fig. B2 shows f(z)/ffiducial(z) − 1 for analyses obtained with the
variation of three cosmological parameters one at a time: ln (1010As),
�K, and �ch2. For ln (1010As) we use {2.9, 3.1, 3.2}, which is a large
enough interval when we compare with the Planck best fit, namely,
ln (1010As) = 3.045 ± 0.016. Our results, displayed in the left-hand
panel of Fig. B2, show nothing but statistical noise, indicating that
our model is independent of ln (1010As) values. For �K, we consider
{ − 0.1, −0.01, 0.1} (see Fig. B2, middle panel). Also well beyond
2σ uncertainty for the Planck best fit �K = −0.044 ± 0.0165. For all
these cases, we observe a maximum of 6 per cent deviation, for the
whole redshift interval. For all purposes, our approach has a small
dependence on �K considering a large interval of possible values.

For the analyses of the last parameter, �ch2, we consider {0.11,
0.125, 0.13}. In these cases, we also find a slight dependence in
our results, � 4 per cent, and decreasing for high z (see the right-
hand panel of Fig. B2). As in the previous analyses, this result was
somehow expected, because we are not modifying the meaning of
f(z), we just found an alternative way to find it. We already knew
that the growth rate has a strong dependence in the matter density
parameter, as seen in the parametrization f(z) = �m(z)γ , where γ

depends only on the constant of the equation of state, ω = −1, for the
�CDM case, or modifications according to the gravity model used.

APPENDIX C : C ONSISTENCY TEST FOR
DIFFER ENT KERNELS

Our main result, i.e. the reconstruction of the homogeneity scale
function, which, in turn, we use to derive the growth rate of structures,
is based on the SE kernel. The SE kernel is a smooth covariance func-
tion that can reproduce global characteristics, although sometimes it
cannot reproduce local characteristics.

As our data sample is nicely distributed, this kernel works
smoothly. In order to test for possible systematic effects on the kernel
choice, we examine our main results using this time the Matérn class
kernels. The Matérn kernel can be written as

KMν
(τ ) = σ 2

f

21−ν

�(ν)

(√
2ν τ

l

)ν

Kν

(√
2ν τ

l

)
, (C1)

where Kν is the modified Bessel function of second kind, �(ν) is
the standard Gamma function and ν is a strictly positive parameter.
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Figure C1. The reconstruction of the growth rate of structures f RH (z) using
two different kernels, namely, kernel 1 (the SE kernel) and kernel 2 (the
Matérn kernel).

Here, the hyper-parameters σ f and l are also optimized during the
fitting.

Fig. C1 shows the best-fitting prediction and the GP reconstruction
of the f RH (z) function using the SE and the Matérn kernels. We do not
find significant differences between both reconstructions; therefore,
we conclude that they are statistically equivalent.

APPENDI X D : MEASUREMENTS O F THE
G ROW T H R AT E F U N C T I O N

The literature reports diverse compilations of measurements of the
growth rate of cosmic structures, f(z) (see e.g. Basilakos 2012;
Nunes et al. 2016; Sagredo et al. 2018), which we update here.
Our compilation, shown in Table D1, follows three criteria in order
to avoid or minimize possible data correlations, we consider: (i) f(z)
measurements obtained with cosmic tracers from different astronom-
ical surveys or from disjoint redshift bins; (ii) direct measurements
of f, and not measurements of fσ 8 that use a fiducial cosmological
model to eliminate the σ 8-dependence; (iii) the latest measurement
of f when the same astronomical survey performed two or more
measurements corresponding to several data releases.
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Table D1. Data compilation of f(z) measurements that shares important features, as explained in the Appendix D.

Survey z f Reference Cosmological tracer

ALFALFA 0.013 0.56 ± 0.07 Avila et al. (2021) H I extragalactic sources

2dFGRS 0.15 0.49 ± 0.14 Hawkins et al. (2003), Guzzo et al. (2008) Galaxies

GAMA 0.18 0.49 ± 0.12 Blake et al. (2013) Multiple-tracer: blue & red gals.

WiggleZ 0.22 0.60 ± 0.10 Blake et al. (2011) galaxies

SDSS 0.35 0.70 ± 0.18 Tegmark et al. (2006) Luminous red galaxies (LRG)

GAMA 0.38 0.66 ± 0.09 Blake et al. (2013) Multiple-tracer: blue & red gals.

WiggleZ 0.41 0.70 ± 0.07 Blake et al. (2011) Galaxies

2SLAQ 0.55 0.75 ± 0.18 Ross et al. (2007) LRG & QSO

WiggleZ 0.60 0.73 ± 0.07 Blake et al. (2011) Galaxies

VIMOS-VLT Deep Survey 0.77 0.91 ± 0.36 Guzzo et al. (2008) Faint galaxies

2QZ & 2SLAQ 1.40 0.90 ± 0.24 Da Ângela et al. (2008) QSO
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