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ABSTRACT

Support Vector Machine (SVM) is a method widely used
for image classification. The original formulation of this
method does not incorporate contextual information. This
study brings a new perspective regarding contextual SVM.
The main idea of the presented proposal consists on translates,
individually for each pixel using it contextual information, the
separation hyperplane originally designed by SVM. A case
study using ALOS PALSAR image shows that the proposed
method produces better results than traditional SVM.

Index Terms— Image classification, Support Vector
Machine, contextual information, hiperplane translation

1. INTRODUCTION

Image classification is one of the most important applications
of pattern recognition in remote sensing. Traditionally,
the image classification process has been conducted based
only on the pixels features, by the so-called “pixel-based”
classifiers. This approach may be unsatisfactory in some
cases, e.g., in the classification of images with high spatial
and spectral resolutions [1]. This problem has stimulated
the development of contextual classifiers, which exploit the
spatial relationships among the pixels as an additional source
of information.

Introduced by Vladimir Vapnik, SVM is a pattern recog-
nition method that has overcome many systems in a wide
variety of applications [2]. However this method is unable
to incorporate the contextual information in the classification
process. Different proposals to incorporate the contextual
information on SVM have been presented in literature.
Generally, these incorporations are made using stochastic
models [3, 4] or modifying the learning process [5, 6].

This work presents a new perspective on the development
of contextual versions of SVM. Different from the aforemen-
tioned approaches, statistical techniques or modification on
the learning process are not adopted, but displacements on
the separation hyperplane according to the pixels contextual
information.
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2. HYPERPLANE TRANSLATION FOR
CONTEXTUAL CLASSIFICATION

Formally, a classifier is represented by a function f : X 7→ Ω
that assigns elements from the an attribute space X to a class
of Ω = {ω1, ω2, . . . , ωc}. Image classification consists on the
application of f on the pixels that composes an imagem I,
defined on a support S ⊂ N2. Considering the image where
is conducted the classification process, I(s) = x denotes that
x ∈ X has coordinate s ∈ S of I. The neighbor positions of s
are elements of Vρ(s) = {t ∈ S : 0 ≤ md(s, t) ≤ ρ}, where
ρ is called neighborhood influence radius and md(·, ·) is the
maximum distance1.

SVM consists on distinguishing patterns based on a
maximum margin hyperplane. A hyperplane is a geometric
place where the following function is null:

fSVM (x) = 〈w,x〉+ b, (1)

where w is the orthogonal vector to fSVM (x) = 0, b is
a scalar such that |b|/‖w‖ is the distance between the
hyperplane and the originof the attribute space, and 〈·, ·〉
represents the inner product operation.

Considering D = {(xi, yi) ∈ X × Y : i = 1, . . . ,m} as
training set, with Y = {−1,+1}, a set of labels such xi
is assigned to ωc1 if yi = +1, or to ωc2 if yi = −1, the
parameters w and b that determines the maximum margin
hyperplane are obtained from the solution of the following
quadratic optimization problem [7]:

max
γ

(∑m
i=1 γi −

1
2

∑m
i=1

∑m
j=1 γiγjyiyj 〈xi,xj〉

)
subject to:

{
0 ≤ γi ≤ C, i = 1, . . . ,m∑m
i=1 γiyi = 0

(2)

where γ are Lagrangean multipliers up bounded by C, a real
parameter that acts as a penalty to misclassifications. A set
of support vector (SV ) is defined by pattern xi such γi 6= 0.
From this optimization, w =

∑
∀xi∈SV yiγixi and b is equal

to 1
#SV

(∑
xi∈SV yi +

∑
xi∈SV

∑
xj∈SV γiγjyiyj 〈xi,xj〉

)
.

When fSVM (x) is determined, xi is assigned to ωc1 if
fSVM (xi) ≥ 0, or to ωc2 when fSVM (xi) < 0. This decision

1Lets s, t ∈ N2 such that s = (s1, s2) and t = (t1, t2). The maximum
distance is defined by md(s, t) = max {|s1 − t1|, |s2 − t2|}.
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rule characterizes the SVM as a binary classifier. To apply
this method in problems with more than two classes it makes
necessary the use of multiclass strategies. One-Against-One
(OAO) is typical example of a multiclass strategy. The inner
product of (1), as in the quadratic optimization problem (2),
can be replaced by kernel functions. Linear, Polynomial and
Radial Basis Function are some typical examples of kernel
functions [8].

This paper introduces a new version of SVM that consists
in translate the hyperplane fSVM (x) = 0 as function
of the spatial context of each pixel. Such translation are
performed based on the classification reliability of the pixels
located within a certain neighborhood Vρ(s). One way
to compute the classification reliability according to the
hyperplane fSVM (x) = 0 and the separation margin, i.e.
fSVM (x) = ±1, is given by:

r(xi) = 1− |fSVM (h(xi))|, (3)

where:

h(xi) = xi + α(xi) ·
1

‖w‖
· w

‖w‖
· sgn(fSVM (xi)), (4)

α(xi) =

(
1

|fSVM (xi)|
− |fSVM (xi)|

)
. (5)

The equation (3) is used as a reability metric for xi, which
return values in ] − ∞, 1 ]. The equation (4) performs a re-
projection of each pattern xi taking into account its location
relative to fSVM (x) = 0. Function (5) is defined as re-
projection factor. In the re-projection process patterns near
to fSVM (x) = 0 are repositioned far from this hyperplane,
unlike the patterns initially far from fSVM (x) = 0.

According to the reliability of the patterns located in
the neighborhood of xi, a translations in the hyperplane
fSVM (x) = 0 is performed by adding the following term in
(1):

∆(xi) = λ · (Gp(s)−Gn(s))

‖w‖
; I(s) = xi, (6)

where λ ∈ R+ is a weigth parameter to the context influence
while Gp(s) e Gn(s) are defined by:

Gp(s) =
∑

xi∈Tp

r(xi); Tp = {xi : I(t) = xi; t ∈ Vρ(s);

0 ≤ fSVM (h(xi)) ≤ 1} ,
(7)

Gn(s) =
∑

xi∈Sn

r(xi); Tn = {xi : I(t) = xi; t ∈ Vρ(s);

−1 ≤ fSVM (h(xi)) < 0} .
(8)

Adding ∆(xi) in (1) is obtained the following modification
of fSVM (x):

fLocal(x) = 〈w · x〉+ (b+ ∆(xi)). (9)

The function (9) is redefined for each pixel of the image
and is applied only to produce the contextual classification of
this pixel. The term ∆(xi) is the amount which the original
hyperplane is moved. According to the formulation shown,
the hyperplane translation is determined by the classification
reliability of the patterns that belonging to different classes
inside a neighborhood. Because of intrinsic characteristics,
the proposed method was named “Competitive Translative
Support Vector Machine” (ctSVM).

A framework of the contextualization process of the
CtSVM method is show in Figure 1(a). A hypothetical
example is illustrated in Figure 1(b), where is show a neigh-
borhood behavior of F and the re-projection process of its
elements (h(xi) = x′

i) based on fSVM (x) = 0. From this
re-projection is computed ∆(xi) term and the translated hy-
perplane fLocal(x) = 0, as show in Figure 1(c). With this
new hyperplane the classification of F changes. It is worth
note that the local hyperplane does not guarantee maximum
separation margin.

The formalization presented in this section deal with
contextual classification of binary cases. The extension of
ctSVM to multiclass problems is linked to the usage of
multiclass strategies that decompose the original problem
into binaries sub problems. After this decomposition, each
binary sub problem is individually treated. After the contex-
tualization of each binary problem the results are analyzed
according to the multiclass classification rule initially adopted
to produce the contextual multiclass classification.

3. EXPERIMENTS AND RESULTS

This section presents a case study where a remote sensing
image is classified by the methods SVM and ctSVM. For this
purpose was used an image fragment of the ALOS PALSAR
sensor, with polarizations HH, HV and VV in amplitude,
acquired on March 13, 2009. This image refers to a region
of the Tapajós National Forest, Pará State, Brazil, where
were identified the following land cover classes: Primary
Forest, Pasture, Bare Soil and Agriculture. The mentioned
image fragment and the land cover samples used to train the
methods and validate the classification results are illustrated
in Figure 2.

In the classification process, the Linear kernel function
and penalty equals to 100 were used. The choice of this
kernel function and the penalty value were based on an Grid
Search procedure. To deal with the multiclasse problem the
OAO strategy was adopted. To set the parameter λ a binary
search procedure was conducted in order to select the value
which maximizes the classification accuracy on the training
set. The neighborhood influence radius (ρ), by the method
ctSVM, equals to 1, 2 and 3, which provides contextualization
windows of 3 × 3, 5 × 5 and 7 × 7 pixels, respectively,
were employed. The accuracy of the classification results
were quantified using Tau coefficient and the percentage
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(a) Steps of local contextualization.

(b) The initial configuration and re-projection of the neighborhood pixels
of F as a function of fSV M (x) = 0.

(c) Local hyperplane definition for context classification of F.

Fig. 1. A framework and an example of contextual
classification with ctSVM.

of individual class accuracy [9]. The validation samples
illustrated in Figure 2(b) were subsampled.

Figure 3 illustrates the classification results obtained.

(a) ALOS/PALSAR image
in R(HH)G(HV)B(VV) color
composition

(b) Training samples (solid circles)
and validation samples (empty
polygons)

Fig. 2. Image and samples adopted in the study case.

With the analysis of the classification results the improvement
produced by ctSVM, compared with SVM, was significant.
The elimination of isolated pixels were more notable in
Primary Forest areas. A better definition of the classes of
Pasture and Agriculture were achieved by the method ctSVM
when is adopted contextualization windows of 5 × 5 and
7 × 7 pixels, as shows the graph in Figure 4(a). Regarding
the accuracy of the results the Figure 4(b) shows that Tau
coefficient of the SVM classification result has improved by
20.5%, 25.6% and 27.8% when the ctSVM method is adopted
with contextualization windows of 3× 3, 5× 5, and 7× 7.

(a) SVM (b) ctSVM (3× 3)

(c) ctSVM (5× 5) (d) ctSVM (7× 7)

Fig. 3. Classification results obtained by the analyzed
methods.
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(a) Individual class accuracy

(b) Tau coefficient values

Fig. 4. Graphic comparison between the accuracy results.

4. CONCLUSIONS

This work presented a new contextual classification method
based on concepts of SVM. A comparative analysis with the
SVM method was performed. The results show superiority
of the proposed method. As future work, the development
of new study cases, analysis on the preservation of edges
and punctual regions and comparisons with other contextual
methods should be considered.
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