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Abstract 
     This work is focused on the formulation of fault diagnosis (FDI) by an inverse problem methodology. 

It has been shown that this approach allows diagnosing with an adequate balance between robustness and 

sensitivity. The main contribution of this paper is related to the diagnosis of incipient faults, which are 

time depending. The FDI problem is formulated as an optimization problem, which is solved with the 

stochastic algorithm Differential Evolution, and its variation Differential Evolution with Particle 

Collision. The proposed approach is tested using simulated data of the Two Tanks system, which is 

recognized as a benchmark for control and diagnosis. The results indicate the suitability of the proposed 

approach. 

 

Keywords: computational cost, differential evolution, fault diagnosis, inverse problem, sensitivity, 

robustness. 

 
1. Introduction 
    The automatic early detection, isolation, and identification of faults is named Fault diagnosis, FDI [1]. 

This is an important task for improving reliability and safety in the industry [1,2,3].  

The FDI methods should guarantee the fast detection of the faults, while rejecting false alarms 

attributable to different causes such as uncertainties in the measurements; external disturbances or 

spurious signal. It leads to the necessity of sensitive and robust FDI methods [1-3].  

An adequate balance of these properties is the key for practical applications of FDI methods [1,2]. 

Furthermore, it is still considered as a main limitation of the currents FDI methods [2-4]. 

Within the methods for Fault Diagnosis, we find the analytical model based methods [5]. The 

analytical model of the system can incorporate the dynamics of the faults that can eventually affect the 

system [6,7].  Such dynamics can be modeled by means of a fault vector. The determination of the fault 
vector, when the system outputs and inputs are measured, is an inverse problem [8].  

It has been previously shown that the formulation of the fault diagnosis by an inverse problem 

methodology, allows to obtain an appropriate balance between robustness and sensitivity [9,10].  In these 

papers, the FDI inverse problem is established as an optimization problem, which is solved with 

stochastic algorithms. In all these works, the faults keep a constant magnitude in time.  

   This work is also focused on the formulation of the fault diagnosis by an inverse problem methodology. 

The main contribution of this paper is the diagnosis of incipient faults, which are time dependent. The 

application of results from the diagnosis area, namely results related with structural detectability and 

structural separability of faults [11], allows obtaining information concerning the inverse problem under 

study [12].  

The optimization problem is solved with the stochastic algorithms Differential Evolution, DE [13] 

and its modified version Differential Evolution with Particle Collision, DEwPC [9]. The proposal is 
tested using simulated data of the Two Tanks system, which is recognized as a benchmark for control and 

diagnosis [14].  The test cases results show the suitability of the proposal. 
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    The remaining content of this paper is organized as follows. In Section 2, the FDI formulated as an 
inverse problem is presented. Differential Evolution and Differential Evolution with Particle Collision are 

briefly explained in Section 3. Afterward, Section 4 details the case of study and its simulations. The 

other sections present the Experimental Methodology and Results, following the same order. In Section 

7, some concluding comments and remarks are presented. 

 

2. Fault Diagnosis as an Inverse Problem 
     FDI based on model parameters requires online parameters estimation methods. These parameters can 

be determined with parameters estimation methods by measuring the input vector u(t) and the output 

vector y(t),  if the basic model structure is known [1]. 

The models used for describing the systems vary depending on the dynamics of the process, and the 

objective to be reached with the simulation. The typically used model is the linear time invariant (LTI) 
which has two representations: the transfer function or transfer matrix, and the state space representation.  

The state representation is also valid for nonlinear models. Thus in this paper, this representation is 

considered in order to decrease the uncertainties due the linearization. These nonlinear models can be 

described as: 

 

                    

                 

        

                                                                                                                              (1) 

 

   Where          is the state variables vector;    is the initial state;      is the parameter vector of 

the model and          . The input          and the output         are measured with sensors.  

   The faults affecting the system may eventually change the parameters values in the vector  . The main 

disadvantage of this approach is that the model´s parameters should have physical meaning, i.e., they 
should match with the parameters of the system. Furthermore, the fault isolation may become extremely 

difficult because model parameters do not uniquely match with those of the system [1,4]. 

Instead, it can be considered a model that directly includes the dynamics of the faults, by means of the 

fault vector   [6, 7]: 

 

                     

                    

        

                                                                                                                       (2) 

 

The fault vector             
 
         where       ;        and        are the faults 

affecting the actuator, process and sensors, respectively [6, 7]. These three parts establish the level of 

abstraction for the diagnosis.  

    In such cases the diagnosis can be directly obtained from the estimation    of the fault vector. This 

inverse problem of parameter estimation can be formulated as an optimization problem: 
 

                                      
  

   

                      

                                                                                        (3) 

 

where   is the number of sampling instants,                 is the estimated vector output in each instant 

of time  and it is  obtained from the  model  (2) and using the measurements of the output     ;        is 

the output vector, which is measured by the sensors at the same time instant t.  

    In recent works, this approach has been applied to FDI [9, 10]. In these previous works, the faults were 

assumed constant throughout the process. The main contribution of this paper, and its difference 

comparing with these works, is that faults considered are time dependent. This intends to include the 

faulty situations that affect systems in practical situation.  

    For this purpose it has been assumed that the dynamics of a fault     can be described by means of the 

well known ramp function: 



4th Inverse Problems, Design and Optimization Symposium (IPDO-2013) 

Albi, France, June 26-28, 2013 

 

                                                                                                                                                          (4) 

 

   Being the optimization problem: 

 

                                
   

                     
                                                                                                 (5) 

 

   Where             are functions of           , respectively. This problem is similar to other 

parameters estimation inverse problems. Furthermore, considering the reported applications of stochastic 

algorithms to this kind of problem [15], we are also interested about solving problem in Eq. (5) by means 
of stochastic algorithms. 

 

2.1 Structural Analysis 

      For obtaining some prior information about the uniqueness, or not, of the set of fault vectors that can 

justify the observed behavior of the system, some results related with sensor placement for faults 

detectability and separability are applied [11].   

     These results are based on the structural representation of the model, and on the Dulmage- 

Mendelsohn decomposition. In [12] it is shown how it can be understood as an alternative sensitivity 

analysis for parameter estimation inverse problems, when the model of the systems is represented by 

ordinary differential equations. 

 
3. Differential Evolution and Differential Evolution with Particle Collision 
    Differential Evolution, DE, was proposed in 1995 for optimization problems [13]. Some of the most 

important advantages of DE are: simple structure, simple computational implementation, speed and 

robustness [13]. 

    DE is based on three operators: Mutation, Crossover and Selection [13]. These operators are based on 

vector operations, which is the main difference comparing with Genetic Algorithms. 

    The algorithm generates at each iteration      a new population of   feasible solutions 

     
       

       
  with the application of the three operators on the current population. This mechanism 

can be summarized with the notation: 

 

          
                                                                                                                                              (6) 

  

where   indicates the number of pair of solutions of the current solution to be used for the perturbation of 

the current solution        
 ;   represents the distribution function to be used during the crossover. In this 

work was applied the scheme               , being     a notation for the binomial distribution 
function and the Mutation is described by: 

 

      
                     

          
          

          
                                                                    (7) 

 

where               
          

          
          

       are solutions of the current population and       is 
a parameter of the algorithm, called Scaling factor. In the other hand, the Crossover and Selection 

operator can be described as:  

 

 Crossover:  

 

         
   

         
                   

           
                    

                                                                                         (8) 

 

where          
   are the components of the vector       

              is another parameter of the 

algorithm: crossover factor; and         is a random number which is generated by means of the 

distribution represented by  . 
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 Selection: The vector      
 ,  to be part of the new population, is selected following the rule: 

  

     
   

      
               

            
  

       
                                  

                                                                                    (9) 

 

       A general description of the algorithm for DE is given in Fig. 1. 

 

Algorithm for  DE 
Inputs:                        
Outputs:       

1. Generate an initial population of   solutions. 

2. Select the best solution          
3. for        to              do 

4. Apply the Mutation. 
5. Apply the Crossover. 
6. Apply the Selection. 

7. Update         
8. Verify stopping criteria. 

9. end for 

10. Solution:       

Fig. 1. Algorithm for DE 

 

     The more successful variants of DE are focused on variations of the Mutation operator and in the self 

adaptation of the parameters        and      . 
 

3.1 Differential Evolution with Particle Collision 

     The new algorithm Differential Evolution with Particle Collision, DEwPC [9], has the objective to 

improve the performance of DE based on the incorporation of some ideas of the Particle Collision 

Algorithm, PCA [16], in order to improve its capacity of escaping from local optimum. 

     DEwPC keeps the same structure of the operators Mutation and Crossover in DE, while introduces a 

modification in the Selection operator [9]. This modification adds a new parameter         .  

    The new Selection operator takes the ideas of Absorption and the Scattering from PCA. The adaptation 

of this operator to the DEwPC has been called Selection with Absorption- Scattering with probability and 

can be established as: 
 

    Selection with Absorption- Scattering with probability  

- If         
            

   then the operator Absorption is applied to       
  

. 

- If          
            

     then the operator Scattering with probability is applied to       
 . 

 

  The Absorption- Scattering with probability operator, as well as the algorithm for DEwPC are 

represented in Fig. 2. 
  The operator Small Search indicates a small stochastic perturbation around a solution. The Search 

indicates a stochastic perturbation around a solution [16]. 
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Algorithm for Absorption 

Input:         

Output:       

1.               
2. Small Search (     ) 

 

Algorithm for DEwPC 

Inputs:                                 

Output:       

1. Generate an initial population of   solucions. 

2. Select the best solution          
3. for        to              do 

4. Apply the Mutation. 

5. Apply the Crossover. 

6. for j=1 to j=Z 

7. if rand<0.7 do 

8. Apply the operator Absorption-Scattering with 

probability  to       
   

 

9. else 

10. Apply  Selection  to       
   

  

11. end if 

12. end for 

13. Update       
14. Verify stopping criteria. 

15. end for 

16. Solution:       

Algorithm for Scattering with probability 

Inputs:       ,          
Output:       

1. Compute           

2. Compute            
        

         
  

3. Generate a random number   

4. if             then 

5.               
6. Search (     ) 

7. else 

8.                

9. end 

Fig. 2. Algorithms for the Absorption and Scattering with probability operators and DEwPC 

 
  

4. Two Tanks system 
     The Two Tanks system is a simplified version from the Three Tanks system [14]. Both are 

benchmarks for control and diagnosis. The system is formed by two tanks of liquid that can be filled with 

two similar and independent pumps acting on tanks 1 and 2, respectively. The tanks have the same cross 

section              . The pumps deliver the flow rate q1 in tank 1 and q2 in tank 2. The tanks are 
interconnected to each other through lower pipes, see Fig. 3. All the pipes have the same cross section 

         . The liquid level L1 and L2  at tank 1 and tank 2, respectively, are the outputs of the system. 

The control variables q1 and q2 are chosen to control the levels of tank 1 and tank 2 (            and  

            
 

 
Fig.3. Two tanks system 

 

   The system can be affected by two faults             and             which model a leak in Tank 1 and in 

Tank 2, respectively. Both faults are under the following restrictions: 
 

                                                                                                                               (10) 

 

   The model of the system can be derived from the application of fundamental laws, along with 

Torricelli’s law: 
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   The model is nonlinear;            , with      , are set as                   
 
   . It has 

been designed a PID controller with parameters            ,                 and              . 

  We considered that the faults are incipient and change on time following a ramp function: 
 

                                     
 

  
       

 

  
                                                           (12) 

 

    The inverse problem of estimating the fault vector is formulated as an optimization problem:  

 

                                                   
 

 
    

 

                                       

  
                       

                   

  

                                                 (13) 

 

where                 and            . The optimization problem is solved with the 
application of stochastic algorithms. In this case, we applied DE and DEwPC. 

 

4.1 Structural Analysis 

     The structural representation of the model and its Dulmage-Mendelsohn decomposition are 

represented in matrix in Eq. (14). It has been used the notation               for the equations 1, 2, 3 

and 4, respectively from model (11).  The equations    and    are directly affected for the faults        

and       , respectively. The equations    and    are within the over-determined part of the model. 

Results related with structural separability and detectability [11,12], indicate that in this case the two 

faults can be estimated at the same time with the available measurements of the system.  

 
  

    

  
  
  
  

        
 
 
 
 

     
  
 
 
 

                                                                                                                                         (14) 

 

 

5. Experimental Methodology 
     With the aim of analyzing the feasibility of the inverse problem methodology for diagnosing time 

dependent incipient faults, three criteria have been considered: quality of the estimations, robustness and 

computational cost.  

     The dynamics of the faults are described by Eqs. (11-12). In Table 1 are represented the different 

cases to be diagnosed during the experiments. Cases 1, 3, 5, 7 and Cases 2, 4, 6, 8 represent the same 

fault situation, respectively, but with dissimilar level noise in the measurements of     and     (up to 2%, 
5%, 8% and 10%) in order to evaluate robustness. The faulty situations are intended to simulate incipient 

faults, which means that at the end of the sample time,         , the value of the fault is small, and its 

effect on the outputs of the test system may be masked by the effect of noise. 
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Table 1. Cases considered in the numerical experiments 

Case 1 2 3 4 5 6 7 8 

    0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

    0 0.004 0 0.004 0 0.004 0 0.004 

Noise % 2 2 5 5 8 8 10 10 

 

   The computational cost is compared taking as criterion the number of objective function evaluations. 

This aspect is important because it determines the diagnosis time, which is a requirement for on line 

processes. For this analysis the algorithms are executed under two stopping criteria: maximum number of 

iterations and error of the estimations. For each case were executed 25 independent runs of each 

algorithm. The indicators Success Rate, SR, and Success Performance, SP, were computed. The first 

indicate the percent of successful runs while    
               

  
 (               is the average of the number of 

objective function evaluations for the successful runs). A successful run is the one that finished because 

the error on the estimations of both parameters are      , being R  the real value of the parameter.  

 

Implementation of DE: It is based on the algorithm in Fig. 1. The parameters values are:     , 

           and          . The stopping criteria are             or                      
Implementation of DEwPC:  It is based on the algorithm in Fig. 2. The parameters values are:       
          ,          ,              The stopping criteria are             or            
        . 
 

6. Results 
    In Fig.4 are shown the average of the relative error for the estimations obtained by each algorithm, at 

Cases 1, 3, 5 and 7. The results indicate that with the increase of the noise level, both algorithms leads to 

false alarms due to over estimation of the fault parameters. In all tested cases, the algorithms 

reached        . Therefore, we decided to study the values of the objective function for different levels 

of noise when the parameter estimations are correct. 

 

  
Fig. 4. Results of the estimations for the Cases 1,3,5 and 7 

 
    In Fig. 5 are shown the values of the objective function at different levels of noise. It was considered 

that no faults are affecting the system.  This allows to change the stopping criterion            and 

makes it dependent on the noise affecting the system                    . This implies the necessity 

to have some prior information concerning the noise level affecting the measurements. 
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Fig. 5. Values of the objective function at different noise levels and correct parameters estimation 

 

       With the adjustment of the stopping criterion           , the experiments were repeated. The results 

are shown in Figs. 6 and 7. In this case, the false alarms have decreased; it means that the robustness has 

been increased. For a noise level up to 8%, the relative error in the average of estimations is kept under 

10%. For a noise level up to 10%, the relative error is kept under 13% for DE and near to 10% for 
DEwPC. These results indicate that for higher noise environments, the DEwPC estimations are more 

accurate, which implies that the diagnosis is more robust.  

 

 
 

Fig. 6. Results of the estimations for the Cases 1,3,5 and 7 

 

 

  
Fig. 7. Results of the estimations for the Cases 2, 4, 6 and 8 

 

   Concerning the computational cost, Table 2 shows the indicators SR and SP. In all tested cases, the best 

SP is observed for DEwPC. It is also shown that SR is decreasing with the increment of the noise level. 

For the case of noise level up to 10%, SR is around 64% for DEwPC but less than 60% for DE. This 
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indicates that for such level noise, the diagnosis of the incipient faults that change on time is not very 
reliable. Due to the design of the stopping criterion for these experiments, the SP provides a hint for the 

number of objective function evaluations needed for reaching an error less than 2% in the estimation of 

each parameter. In all cases, the SP from DEwPC is the lowest, which means that the computational cost 

of DEwPC is lower than DE. 

 

Table 2. Results of the comparison for the computational cost 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

DE SR 92 100 80 92 72 72 56 54 

SP 1913 1829 2375 2045 2756 2626 3571 3703 

SP/SPbest 1.46 1.51 1.78 1.52 1.47 1.68 1.41 1,40 

DEwPC SR 92 100 92 96 80 80 64 64 

SP 1304 1211 1336 1344 1875 1561 2534 2656 

SP/SPbest 1 1 1 1 1 1 1 1 

 

  In Fig. 8. (a-b) is shown the evolution of the average of the objective function that DE and DEwPC  

achieves for Case 4, respectively. DEwPC reaches a smaller value of the objective function. DEwPC 

achieves the better estimations in a lower number of iterations than DE. 

 

(a) DE (b) DEwPC 

Fig. 8.  Evolution of the average of the objective function, Case 4 

 

7. Conclusions 
   This paper presents the formulation of FDI with an inverse problem methodology. The principal 

contribution of the paper is to consider incipient faults that change with time, which is a more realistic 

description of practical situations.             

    In that sense, the experiments confirmed the suitability of the inverse problem methodology, in 

particular its formulation as an optimization problem, for developing robust and sensitive methods. 

Moreover, the results have also shown that the diagnosis of incipient faults that change on time is also 

possible.   

   The comparison of the results for the benchmark Two tanks has also shown that DEwPC allows 

reducing the computational cost required by DE. 
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