
Supporting Adaptation of Web Applications to the Mobile
Environment with Automated Usability Evaluation

Luiz F. Gonçalves
POSCOMP

Federal University of Itajubá
luiz.felipe.lfg@gmail.com

Leandro G. Vasconcelos
National Institute for Space

Research
leandro.guar-
ino@lit.inpe.br

Ethan V. Munson
Department of EECS

University of
Wisconsin-Milwaukee

munson@uwm.edu

Laércio A. Baldochi
Institute of Mathematics and

Computing
Federal University of Itajubá
baldochi@unifei.edu.br

ABSTRACT
The year 2014 marked an important shift in the Web’s histo-
ry, as users started to spend more time surfing the web using
mobile devices than using desktop computers. However, to-
day, a large proportion of websites are still not designed
for good mobile device access. To tackle this problem, this
paper proposes a new approach to adapting desktop-based
web applications to the mobile environment. Our approach
is supported by a task-based usability evaluation tool called
MOBILICS, which is able to evaluate desktop-based web
applications used in mobile devices. Based on the evalua-
tion results, our tool provides detailed recommendations for
fixing the detected usability problems. We conducted an
experiment which demonstrates that our approach provides
useful support for the adaptation of a desktop-based web
application into a mobile version.

CCS Concepts
•Human Computer Interaction → Usability Testing;
Web Interfaces;

Keywords
Usability evaluation, touch interaction, desktop-to-mobile
adaptation

1. INTRODUCTION
The use of mobile platforms for web access is growing at a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851863

fast pace so that, today, more than half of web users access
the web via a mobile device [5]. The problem is that a si-
gnificant proportion of websites are not designed to match
the affordances of mobile devices. In spite of this, user ex-
pectations for mobile usage are high: they expect that web
applications will load just as fast as they do on desktops. In
fact, Hof [8] reports that a third of users surveyed said they
were likely to go to a competitor’s site if they got annoyed
while using a web application ill-suited to mobile access.

This scenario clearly shows that companies need to provide
mobile-friendly web applicaitons in order to avoid financial
losses. However, developing different versions of a web ap-
plication, or a single web application that supports both
desktop and mobile access, is costly and time consuming. In
order to tackle this problem, researchers have proposed dif-
ferent approaches for automatically adapting desktop-based
web applications to small form factor devices.

The first attempts to adapt web pages to small screens are
Digestor [2] and Power Browser [6]. By applying text sum-
marization, these tools build summary pages containing links
to different parts of the original pages. Each part is pre-
sented by itself, using the entire mobile device’s display.
Another approach to automatically adapting Web pages is
page fragmentation [7]. This technique breaks a web page
into fragments that can fit in the mobile device screen and
creates a two level hierarchy to navigate within the page.

There are other approaches that exploit scaling to better use
the limited screen space on mobile devices. Minimap [13], for
instance, scales down non-textual elements such as images
while maintaining the size of textual elements. Following
Minimap’s principle that some parts of the page are irrele-
vant, Baudisch et. al. [1] proposed Collapse-to-Zoom, a tool
that allows users to collapse the content of a page that is not
interesting, allowing the remainder of the page to expand.

In spite of these attempts, automatic adaptation of web
pages generally has undesirable side effects. Both summa-
rization and fragmentation techniques require the user to
move back and forth between a main summary page and
smaller content pages, which requires many actions from the

787

user and may lead to loss of context. On the other hand,
approaches based on content relevance, such as Minimap, re-
quire a means of determining what is irrelevant — an image
may be irrelevant to some, but relevant to others.

A drawback common to all these approaches is the fact that,
no matter how different two desktop web applications are,
the resulting, automatically adapted, mobile versions of the
two applications will function very similarly. This is not
interesting for business, because companies need to pro-
vide exclusive features to differentiate their websites from
their competitors. For this reason, businesses generally de-
velop mobile web applications from scratch, following design
guidelines for small form factor devices [12] and, more re-
cently, applying responsive design approaches, such as those
provided by Bootstrap (bootstrap.com) and WebFlow (web-
flow.com).

Developing a mobile web application from scratch, however,
may throw away all the effort that has been spent on the
development of a desktop version. We think that, at least,
some of this effort can be reused. In other words, we argue
that the desktop version of a web application can be a useful
starting point for the development of the mobile version. For
example, while some pages may require a complete rebuild,
others may only need small fixes in order to function well
and a few may even be used as is.

In order to assist developers adapting desktop websites to
the mobile environment, we developed MOBILICS, an au-
tomatic usability evaluation system for mobile web applica-
tions. MOBILICS is an extension to USABILICS [14, 15],
which performs automated task-based usability evaluation
of conventional, desktop web applications.

Our approach to assist the adaptation of web applications
works in the following way: we define tasks for a given desk-
top web application using a desktop machine. Following,
we capture the interactions of end users performing these
tasks using mobile devices. The captured tasks are evalua-
ted, i.e., compared to the previously defined tasks. Based
on this evaluation, MOBILICS detects usability issues, poin-
ting out the tasks that presented problems and the interface
elements for which these problems were detected. Moreover,
it provides recommendations for improving the application’s
mobile usability.

Experiments performed with MOBILICS show that this ap-
proach is effective in assisting developers to adaptat desktop
web applications to the mobile environment. By following
our approach, developers are able to build a mobile web
application reusing a significant amount of code from its
equivalent desktop-based application, thus saving substan-
tial development effort. Moreover, the resulting mobile web
application retains the overall look and feel of the original
application.

This paper is organized as follows. Section 2 presents our
previous work on usability evaluation. Section 3 presents
the extensions we made in order to support the usability
evaluation for the mobile environment. Section 4 evaluates
our approach to support the generation of a mobile website
from a desktop website. Section 5 compares our approach to
related work. Finally, Section 6 presents our final remarks.

2. PREVIOUS WORK
The World Wide Web presents a clear structural pattern in
which websites are composed of a collection of pages that, in
turn, are composed of elements such as hyperlinks, tables,
forms, etc, which are usually grouped by special elements
such as DIV and SPAN. By exploiting this pattern, and
considering that interface elements are usually shared among
several pages, we proposed COP [14], an interface model
that aims at facilitating the definition of tasks.

The main concepts in COP are Container, Object and Page.
An object is any page element that the user may interact
with, such as hyperlinks, text fields, images, buttons, etc.
A container is any page element that contains one or more
objects. Finally, a page is an interface that contains one or
more containers.

Besides exploiting the fact that containers and objects may
appear in several pages, the COP model also exploits the
similarities of objects and containers within a single page.
In any given page, an object may be unique (using its id) or
similar to other objects in terms of formatting (i.e. border or
font type, color, etc.) and/or in terms of content (i.e.: texts
and images). The same applies to containers: a container
may be identified in a unique way, or it may be classified as
similar to other containers, but only in terms of formatting.

The COP model was the foundation for the development
of USABILICS, a task-oriented remote usability evaluation
system. USABILICS evaluates the execution of tasks by
calculating the similarity among the sequence of events pro-
duced by users and those previously captured by evaluators.
By using USABILICS, evaluators may benefit from the COP
model to define generic tasks, thus saving time and effort to
evaluate tasks. The approach provided by USABILICS is
composed by four main activities: (i) task definition, (ii)
logging, (iii) task analysis, and (iv) recommendations.

i) Task definition. One of the goals of USABILICS is
to perform usability evaluation with a minimum burden on
the application developer. To achieve this, we implemented
UsaTasker [16], a task definition tool that allows develo-
pers to define tasks by simply interacting with the appli-
cation’s GUI. UsaTasker provides a user-friendly interface
for the management of tasks, where the evaluator can crea-
te (record), view, update and delete tasks. For recording
a task, all that is required is to use the application as it
is expected from the end user. While the evaluator surfs
the application interface, she is prompted with generaliza-
tion/specialization options, as specified by the COP model.

ii) Logging. USABILICS embeds inWeb pages a Javascript
client application that recognizes all page elements using the
Document Object Model (DOM) and binds events to these
elements, allowing the gathering of user interactions such as
mouse movements, scrolling, window resizing, among oth-
ers. Events generated by the pages of the application, such
as load and unload are also captured. Periodically, the client
application compresses the logs and send them to a server
application, which stores the data in a relational database
for being used during the task analysis phase.

iii) Task analysis. USABILICS performs task analysis
by comparing the sequence of events recorded for a given

788

task and the corresponding sequence captured from the end
users’ interactions. The similarity between these sequences
provides a metric of efficiency. The percentage of complete-
ness of a task provides a metric of effectiveness. Based on
these parameters, we proposed a metric for evaluating the
usability of tasks called the usability index [15]. In order
to compare two sequences of events, USABILICS calculates
the similarity of each subsequence identified in the end user
interaction. The identification of the set of subsequences
that match a given task is performed comparing the genera-
lization options defined in the COP model applied both to
events produced by the end user interaction and to events
recorded during the definition of the correspondent task.

iv) Recommendations. When comparing the sequences
of events that compose a task it is possible to identify three
different situations that indicate the occurrence of incorrect
actions: (i) an action does not belong in the correct sequence
of actions, (ii) an action is omitted from the sequence, (iii)
an action within the sequence is replaced by another action.
USABILICS is able to identify these three types of wrong ac-
tions and the interface components associated to them. By
analyzing a set of different tasks presenting low usability, we
found out that wrong actions are mainly related to hyper-
link clicks, to the opening of pages, to the scrolling in pages
and to the interaction with forms. We defined 6 recommen-
dations for fixing these issues. An experiment showed that,
by following our recommendations, developers were able to
improve the usability of applications significantly [15].

3. MOBILICS
In recent years the web has become the universal medium
for the development of software applications. Today, web
developers can count on a wide variety of tools and frame-
works that aid the development of desktop web applications.
Desktop web browsers have also evolved significantly since
the inception of the web. Today, they are robust and reliable
pieces of software and, by adhering to W3C standards, they
simplify the creation of cross browser applications.

When compared to desktop versions, mobile web applica-
tions are still in their infancy. Although there are tools
and frameworks that aid the development of mobile web-
sites, mobile browsers are not yet mature, making cross-
browser development very difficult. In addition, there are
also cross-device and cross-platform issues. As a result, the
behavior of mobile web applications may vary substantially
among browsers, platforms and even mobile devices, making
it complex to evaluate their usability. Therefore, a substan-
tial amount of work is required to address these compatibi-
lity issues. The following subsections present the extensions
made in USABILICS in order to implement the MOBILICS
system and discuss how we dealt with these issues.

3.1 Touch Events
Other than the size of the display, the main difference be-
tween desktop and mobile applications is the input method.
While the first is mouse-oriented, the second is based on di-
rectly touching the screen. Moreover, a touch is not equiva-
lent to a mouse click, as there are different ways of touching
the screen (tap, doubletap, swipe, pinch, drag, etc). As a

result, instrumentation for touch events had to be imple-
mented from scratch in MOBILICS.

One important issue regarding the capture of events is the
fact that the Javascript client application in charge of the
capture may not impose an overhead to the loading of pages.
Thus, using third-party libraries for capturing events was
not an option, as it would impact the application perfor-
mance, affecting the loading time of the web application.
This is the reason why we mentioned that we had to imple-
ment the touch events from scratch.

The main challenge when implementing these events is how
to correctly detect them. This is because the basic events
that are triggered by the listeners are only three: touchstart,
touchmove and touchend. Therefore, to determine if an in-
teraction is a tap, a drag, a pinch or other, it is necessary to
analyze the sequence of basic events. Thus, a pinch event,
for instance, is detected when two simultaneous touchstart
events occur, followed by two touchmove events. It is also
necessary to analyze if the user is moving the fingers closer
together or further apart from each other in order to detect
if it is a zoom in or a zoom out.

Therefore, the Javascript client application, used both to
define tasks and to capture end user interactions, needed to
be extensively rewritten in order to deal with touch events.
Moreover, it was also necessary to extend the code in order
to process HTML5 tags correctly.

Another issue was related to the fact that mobile browsers
need to present a web application even when it is not de-
signed to be used in a mobile device. For this reason, for
each touch event, browsers also trigger equivalent mouse
events. For instance, when the user touches the screen, be-
sides triggering tap events, the browser also triggers click
events, which allow the application to function even if it
does not support touch events. Therefore, it was necessary
to filter the mouse events before sending the data to the
server.

3.2 Task Definition
As was true for desktop web applications, mobile applica-
tions also benefit from the COP interface model in order to
save work when defining tasks. By exploiting the features of
our interface model, a single task may be used to represent
several similar tasks. In order to achieve this goal, evalua-
tors need to identify which events need to be generalized.

In order to activate the generalization features in USABI-
LICS, we implemented a mechanism based on the usage of
the ctrl key. When the evaluator wants to generalize an
event — a click, for instance — all she needs to do is to press
the ctrl key before performing the click. In this way, she is
prompted for the generalization options after the click. This
same procedure is, of course, not feasible in mobile devices.

In order to provide the same functionality for the mobile
environment, we extended the UsaTasker tool, making it a
tool that can be used to define tasks both in the desktop and
in the mobile environments. The new version of UsaTasker
is able to detect a mobile web application and, in this case,
it blocks the screen whenever an event is performed during
the capture of a task. The blocking was implemented by

789

displaying a translucent panel on top of the current win-
dow. As shown in Figure 1, this panel presents the genera-
lization options, allowing to generalize the event to objects
with same formatting and/or content. Moreover, it is also
possible to generalize the event to other objects within the
same container or in other containers. To make it easier
for identifying the existing containers, the application high-
lights the borders of the container when it is selected on
the panel. The option for the translucent panel was made
for making it possible to visualize the selected containers in
the application’s interface. As can be noticed on Figure 1,
buttons “+” and “-” are provided in order to allow users to
increase and decrease the opacity of the panel.

(a) Normal opacity (b) Lower opacity

Figure 1: UsaTasker displaying the options of the COP
model.

By finishing the configuration of the captured event, the
evaluator needs to touch the “ok” button in order to close
the translucent panel. After closing the panel, the Javascript
application triggers the intercepted event. For instance, if
the event is touching a link, the target page will be loaded
in the screen after the translucent panel is closed. During
the capture of tasks, a small panel on the upper left side of
the screen is displayed. This panel presents a “Close”button
that must be pressed when the capture of the task finishes.

When the evaluator finishes the task definition, UsaTasker
presents the captured events graphically, as shown in Figu-
re 2. This visual feedback is important because it provides a
way for verifying if each event that composes a task was cor-
rectly recorded. In Figure 2, each box represents an event,
and the red directed edges indicate the order of each event
within the task. Besides viewing the details of each event,
the evaluator may delete an event, if she considers that this
event is irrelevant in the optimal path of the task. To per-
form the deletion of an event, all the evaluator needs to do
is to click on the x icon on the top of the desired box.

Besides providing facilities for the visualization of captured
tasks, UsaTasker also allows the management of tasks, al-
lowing (i) the definition of sequence of events in which each
event may occur in any order; (ii) the definition of sequence

Figure 2: Captured events in MOBILICS

of events that may be repeated several times; and (iii) the
definition of optional events. In this way, it is possible to
specify, for instance, that the fields of a form may be filled in
any sequence (i), that certain steps of tasks, such as putting
products on a shopping cart may be repeated several times
(ii) and, finally, that a certain field of a form is optional and,
therefore, may be left blank (iii). UsaTasker’s management
tools are detailed in [16].

3.3 Logging
Logging in MOBILICS is quite similar to that in USABIL-
ICS. The main difference is related to the fact that mobile
browsers may trigger both mouse and touch events when a
touch is performed. Therefore, in order to reduce the vol-
ume of data that needs to be logged, the Javascript client
application filters out the mouse events and only logs touch
events. As in USABILICS, logs are compressed and sent to
the server.

3.4 Task Analysis
In Section 3.1 we pointed out that touch events are reported
differently among browsers and mobile platforms. We also
mentioned that, as mobile browsers need to present both
mobile-enabled websites and desktop-based websites, they
trigger both mouse and touch events. In addition, older
browsers report only mouse events, even when the web ap-
plication is mobile-enabled.

To deal with this problem, we had to define a set of similar
events. Therefore, if the next event in the optimal path of
the task is a tap and we find a click in the log, we must
consider this event as a correct one, because tap and click
are similar events. Drag and scroll are also similar events,
since mobile-enabled browsers triggers both drag and scroll
while older browsers only trigger scroll events. Finally, scroll
and swipeup/down are also similar for the same reason.

In order to explain how similar events are processed, we need
to recall the computation of the usability index, detailed in
[14]. When comparing an event performed by the user and
the corresponding event defined by the evaluator, USABI-
LICS produces a similarity value between 0 and 1. Our
approach to calculate this value is based on the importance
of each COP model concept associated to the event. There-
fore, we apply weights for these concepts: 0.1 for the page,
0.3 for the container and 0.5 for the object. We also apply
0.1 for the correctness in the type of the event. Therefore,
if the event is performed in the correct page, we compute

790

0.1, if it is performed in the right container, we sum 0.3, if
it is performed in the right object, we sum 0.5, and if the
type of event is correct, we sum 0.1. Thus, when an event
is correctly accomplished, the result is 1.

When the value of the comparison of an event is 0.9 and the
event was performed in the right page, everything is correct,
except for the event. In this case, we need to check if the
event is similar. If so, we correct the value of the comparison
to 1.0 as, in fact, the event is the same.

3.5 Recommendations
Early experiments with iPads performed by Nielsen anti-
cipated some of the problems of today’s mobile web ap-
plications [11]. In general, the interaction design varies
across mobile web applications, making it difficult for users
to transfer their skills from one application to the other. As
a result, users tend to have an exploratory behavior, espe-
cially when using an application for the first time.

Even experienced mobile device users face difficulties using
mobile web applications. Touching a target, for instance,
may be very challenging for users with large hands using
small form factor devices. Even finding a target may be
hard in these type of devices. MOBILICS can detect pro-
blems in finding or interacting with a target by analyzing
the events before the interaction. Unexpected zooming or
scrolling before a touch event may indicate difficulties with
finding and/or touching a target.

We also analyze the finger footprint in order to detect pro-
blems. If the user is touching a container — which is obvi-
ously not a target object — it may be possible that s/he is
experiencing difficulties touching a target. In this case, the
target (a link or button, for instance) needs to be enlarged.

Table 1 presents detected usability issues and the recommen-
dations provided by MOBILICS in order to fix the problems.
For each problem, we also present the expected event and
the actual performed event (wrong action).

The recommendation procedure in MOBILICS was redesi-
gned in order to be extensible, making it possible to add new
recommendations by defining a problem and its solution. A
problem is an action that does not belong to the optimal path
of a task, as the ones shown in the second column of Table
1. A solution is a recommendation that fixes the problem.
Examples of solutions are shown in the third column of the
table.

After analyzing a task and presenting its usability index,
MOBILICS provides a report containing the recommenda-
tions, when fixes are needed. Besides the recommendations
shown in Table 1, the report also presents links to content
available on the web addressing good programming practices
that improves the usability of web and mobile applications.

4. EVALUATION
A common procedure for assessing the effectiveness of usa-
bility evaluation tools is recruiting users to perform specific
tasks. This approach has some drawbacks. First of all,
as recruited users are normally graduate or undergraduate
students, they have a better education background than the

general public. Moreover, these students are familiar with
web and mobile applications, which is not the case for the
average user. Lastly, they receive specific instructions about
the task they have to perform, which does not happen with
the real user, who has to browse the website to discover how
to perform a task. Therefore, we think that studies that rely
on recruited users may provide unreliable results.

Instead of recruiting users, we decided to evaluate MOBI-
LICS using a popular website called Living in Truth — Viver
em Verdade, in Portuguese (www.viveremverdade.com.br)
— which is a biblical studies website that has more than
1,700 visits per day. This website has been designed for
desktop access, but we were aware that, as happens to many
websites as of today, a number of users visit the site using a
mobile device.

In order to evaluate if MOBILICS could help adapting Li-
ving in Truth to be a mobile friendly web application, we
first chose a task available on the site. The chosen task is
called Testimony, in which the user publishes a testimony
about his/her faith. We chose this task because although it
is easy to perform, it requires several different user intera-
ctions across 5 different pages. Therefore, we can evaluate
if all 5 pages need to be fully adapted or if, as we advocate,
less effort is necessary to adapt the task.

For this experiment, we used MOBILICS to collect user logs
over 14 days. In order to avoid privacy problems, the website
displayed a message in the first page warning the users about
the fact that their interactions were being captured “to im-
prove the quality of the website”. Except for this warning
message, the website was exactly the same as before.

The logs showed 265 attempts to execute the task — i.e.
the task was initiated 265 times. However, only 66 of these
265 attempts were fully completed. As the website is open
to the public, it is expected that people explore the site at
will, so the number of interrupted tasks is normal. Of the
66 completed tasks, 41 were performed using a PC and 25
using a mobile device.

For the 41 tasks performed using a PC, MOBILICS com-
puted an usability index of 0.8, which suggests that the site
has good usability for this task in the desktop environment.
Results above 0.75 and below 0.9 indicate that while there
is room for improvement, usability is good overall [15]. On
the other hand, when MOBILICS analyzed the 25 tasks per-
formed using mobile devices, the usability index was only
0.5. This result was expected, as the tested website was
designed for desktop use.

When MOBILICS detects usability issues, it provides recom-
mendations in order to fix them. To explain the rationale
behind each recommendation, it is worth to understand the
steps of the task being evaluated. To publish a testimony,
the user selects the “Testimony” button on any page of the
website. Next, she is asked to provide her state and city us-
ing combo boxes, and her name and email using text boxes.
Then, the user is asked to select the type of testimony. Cure,
conversion, and family are some of the options. Finally, a
text area is displayed so that she can fill in her testimony.

Next, we present the events of the optimal path for this task.
It is worth noticing that an event may be explicitly triggered

791

Table 1: MOBILICS recommendations

(E)xpected (P)erformed Detected action Recommendation

E: Tap on component X.
P: Tap on component Y.

D1: User is tapping a wrong compo-
nent.

R1: Increase the space between components.
Highlight component X in the page.

E: Tap on component X.
P: Tap within the container of
component X.

D2: User is tapping the container
area.

R2: Increase the component and/or the tapping
area associated to the component.

E: Tap on component X.
P: Pinch or double tap within
the container of component X.

D3: User is magnifying the region
where a component is located.

R3: Increase the tapping area of the component,
the size of the component and/or the space be-
tween this component and others.

E: Tap on component X.
P: Drag within the container
of component X.

D4: User is searching for a compo-
nent.

R4: Place the component in a visible area of the
page.

E: Tap on an input field.
P: Drag within a container
that contains an input field.

D5: User is searching for an input
field.

R5: Place the input field in a visible area of the
page.
Use visible labels, increase the size of labels and
fields.

E: Page load in normal time.
P: Page load slow.

D6: Page is taking too much time to
load.

R6: Supress figures or use media queries to load
images with less resolution.
Compress Javascript and CSS files.
Remove plugins.

P: Horizontal dragging. D7: Horizonal scrolling. R7: Adjust the layout of the page in order to use
only the available viewport.
Use responsive layout in order to automatically
adapt the page to the size of the screen.

P: Vertical dragging. D8: Vertical scrolling. R8: Diminish and condense the contents of the
page or break the page in two.

P: Pinch after a page load. D9: User needs to magnify the
screen as soon as it loads, probably
because she is not able to read the
contents of the page.

R9: Change viewport properties so that the page
scales correctly.

by the user – by clicking or touching an interactive element
– or triggered by the system as a response to an user event
(open/load a page, for instance). The optimal steps are:

1. Open page (any page of the website);

2. Load page;

3. Click/tap the “Testimony” button of the menu;

4. Close page;

5. Open page “Testimony”;

6. Load page “Testimony”;

7. Click/tap the “State” combo box;

8. Select a state in the combo box;

9. Click/tap the “City” combo box;

10. Select a city in the combo box;

11. Click/tap the “Next” button;

12. Click/tap the text field “Name”;

13. Fill in the text field “Name”;

14. Click/tap the text field “email”;

15. Fill in the text field “email”;

16. Click/tap the “Next” button;

17. Click/tap one of the buttons that represent the type
of testimony;

18. Click/tap the text area for the testimony;

19. Fill in the text area;

20. Click/tap the button “Submit testimony”;

21. Form is closed (data is sent).

By comparing the sequence of each recorded task to the opti-
mal path of the task, MOBILICS is able to detect the wrong
actions performed by the end users. When the website first
loads, the user is supposed to click or tap the ”Testimony”
button (event 3). If this event is not present in the sequence
of events of the end user, it might be a problem. So we have
to analyze the logged events before the click/tap event in
order to find wrong actions. In the case of our example, the
logs report that most users performed dragging (zoom) and
horizontal scrolling. This is because the page was formatted
for desktop access. When the user opens the page using a
mobile device, the page is ”squeezed” to fit in the viewing
area, making each component too small to see or to tap.
Therefore, the user needs first to drag (zoom) in order to
see the component she is looking for (detected action D3 in
Table 1). But, as the buttons get bigger, they do not fit in
the viewing area, so users need to use horizontal scrolling in

792

order to view all the buttons (D7 in Table 1). Considering
the detected wrong events for page 1, MOBILICS recom-
mendations for fixing the problems are R3 and R7.

The layout of the second and third pages are almost the
same. Both of them collect information in two combo boxes.
MOBILICS reports the wrong actions D2, D3 and/or D7
before the events 7 and 12 for at least half of the recorded
interactions. Bearing in mind that these pages were designed
for the desktop, and considering that the combo boxes are
located in the middle of the page, when the user opens the
page in a small screen device, she will be able to see the first
combo box. However, it appears fairly small, so she can miss
the tap (D2). After that, she may decide to pinch (zoom)
for enlarging the component (D3). If the zoom is excessive,
the component may stay outside of the viewport, therefore it
might be necessary to do some horizontal scrolling (D7). Of
course, these three wrong actions do not appear in this order
in every interaction that presented problems. In some cases,
the user missed the tap several times, until she was able to
do it, so D3 and D7 do not appear in the log. In other cases,
the user noticed from the begining that the target is too
small, so she starts zooming the page. In this case, we see
no D2 in the log. To solve the detected usability problems
in pages 2 and 3, recommendations are R2, R3 and R7.

When posting a testimony, the user is asked to select its
type. The website presents the types in six large buttons in
page 4. These buttons fit well in a desktop screen. However,
when using a small screen device, users needed to make both
horizontal (D7) and vertical (D8) scrolling before making
their choice (event 17 of the task). Therefore, the recom-
mendations for fixing the problem are R7 and R8. The user
logs for the last page (page 5) did not show usability pro-
blems. Therefore, this page may be used as is in the mobile
verson of the website.

The detected wrong actions point out that the usability
problems are not widespread. Some pages present several
usability issues, while other present few or even no issues.
Therefore, this experiment backs up our argument that a
website designed for the desktop does not need to be recons-
tructed from scratch in order to present a good usability in
mobile devices.

As MOBILICS is able to identify an usability issue and the
component or components associated to this issue, it is very
straight forward for the developer to fix the pointed pro-
blems. So, following the provided recommendations, we
built a new version of the website and, once again, per-
formed the same test. At this time, we decided to wait until
25 completed tasks were made using mobile devices. After
achieving this total, we performed again the log analysis.
As expected, the index has risen significantly, reaching 0.75.
This value is very close to the usability index computed for
the desktop version of the website, which was 0.8. There-
fore, we claim that our adaptation approach based on the
recommendations provided by MOBILICS was successful.

5. RELATED WORK
As discussed in the Introduction, existing approaches for
automatically adapting desktop-based websites for mobile
devices are limited to specific adaptation scenarios. These

techniques usually change the navigational model of the exis-
ting applications [2, 6, 7], or change its contents [13, 1].
Therefore, the resulting mobile website is significantly dif-
ferent from its desktop version, both in terms of appearance
and functionality.

Another work that is based on changing the contents of the
website is PageTailor [3]. However, instead of automatically
trying to define irrelevant elements, this approach lets end
users adapt the layout of Web pages by removing, resizing
and moving page elements. PageTailor records the user cus-
tomizations and automatically reapplies them on subsequent
visits to the same page, or to similar pages, on the same web-
site. A problem of this approach is that it requires signifi-
cant effort from the end user in order to adapt a web page.
The customization process takes about 10 minutes per page,
which may be too much for a website containing dozens of
pages. Moreover, page changes can cause customizations to
break.

Following PageTailor’s concept that the user may guide the
adaption process, Highlight [10] allows users to demonstrate
interactions with a web page that are then used to create a
version of the original page adapted to mobile devices. This
approach exploits a remote control metaphor in which the
mobile device controls a fully functional browser that is em-
bedded within a proxy server. The main drawback of this
approach is that it does not allow users to customize ele-
ments themselves, only the interactions with them. There-
fore, the customization process is limited.

Another tool that exploits the end user customization of web
pages is Chickenfoot [4]. The goal of this work is to create
an opportunity for end-users who want to automate and
customize their web experiences. This tool aims at suppor-
ting end users to script common web interactions within and
across web sites based on the visual appearance of DOM ele-
ments using keyboard pattern matching. In spite of being an
interesting approach in order to allow web page customiza-
tions, this work does not offer any support for adapting in-
terfaces to mobile devices.

Among all related work, W3Touch [9] is specially relevant
because it exploits usability evaluation techniques to auto-
mate the desktop-to-mobile migration of websites. W3Touch
instruments websites using Javascript applications in order
to perform logging of the end users interactions. The col-
lected information is then used to assess usability metrics,
such as the amount of zooming events and missed clicks.
Based on these metrics and on configurable thresholds, ada-
ptation rules may be written in order to solve detected usa-
bility problems.

W3Touch logging approach is very similar to what we use in
MOBILICS. However, our usability metric is task-oriented,
while W3Touch use an event-oriented approach for defining
metrics. We advocate that our approach is more efficient
in order to assure the evaluation of the functional require-
ments of a web application. W3Touch approach only checks
if an atomic event, such as touching a link, is happening as
expected. On the other hand, our approach is able to verify
if a whole task is being executed as expected. By evalua-
ting all the existing tasks of a website, we are able to say
that all functional requirements of the web applications were

793

exercised, which is an important feature for any application
evaluation toolkit.

Finally, it is worth to compare our work to responsive design
tools such as Boostrap and Webflow. There is no doubt
that responsive design is the way to go in order to make
adaptable websites. However, in order to use these tools, the
developer needs to build new applications from scratch. Our
approach, instead, allows the developer to benefit from an
existing desktop-based web application in order to build its
mobile-enabled version, thus saving time and development
effort.

6. CONCLUSION
This paper presents a new approach for supporting the ada-
ptation of web applications to the mobile environment. Our
approach builds on the hypothesis that significant portions
of code from a desktop-based web application can be used
to create a mobile-enabled version of this application, thus,
saving time and effort from building a mobile version from
scratch.

The challenge of reusing content from desktop-based web
applications is determining which parts can be reused and
which parts need fixes. Moreover, support for making the
needed fixes is crucial, otherwise the effort for fixing issues
may be as time consuming as building a new mobile-enabled
website.

In order to provide a cost-effective solution for supporting
the desktop-to-mobile migration of web applications, we de-
veloped MOBILICS, a system that supports the usability
evaluation of mobile websites. MOBILICS’ task-based eva-
luation procedure allows the detection of usability problems
in the execution of tasks and points out the interface ele-
ments that presents usability issues. Based on this proce-
dure, the system provides detailed recommendation on how
to fix the pointed usability problems.

We used our approach for creating a mobile-enabled ver-
sion of an existing desktop-based web application. This ex-
periment allowed us to confirm our hypothesis that signif-
icant amount of code can be reused in the adapted mobile
web application. The experiment also demonstrated that
our recommendations were effective in order to support the
adaption of the desktop-based application to the mobile en-
vironment.

7. ACKNOWLEDGMENTS
The authors would like to thank the Brazilian National Coun-
cil for Scientific and Technological Development (CNPq) for
the financial support.

8. REFERENCES
[1] P. Baudisch, X. Xie, C. Wang, and W.-Y. Ma.

Collapse-to-zoom: Viewing web pages on small screen
devices by interactively removing irrelevant content.
In Proc. of the 17th ACM Symp. on User Interface
Software and Technology, pages 91–94. ACM, 2004.

[2] T. W. Bickmore and B. N. Schilit. Digestor:
Device-independent access to the world wide web. In

Selected Papers from the Sixth International
Conference on World Wide Web, pages 1075–1082.
Elsevier Science Publishers Ltd., 1997.

[3] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. de Lara. Pagetailor: Reusable end-user
customization for the mobile web. In Proc. of the 5th
International Conference on Mobile Systems,
Applications and Services, pages 16–29. ACM, 2007.

[4] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered
web pages. In Proc. of the 18th Annual ACM
Symposium on User Interface Software and
Technology, pages 163–172. ACM, 2005.

[5] D. Bosomworth. Mobile marketing statistics 2015.
http://www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/
mobile-marketing-statistics.

[6] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and
T. Winograd. Power browser: Efficient web browsing
for pdas. In Proc. of the SIGCHI Conf. on Human
Factors in Comp. Systems, pages 430–437. ACM, 2000.

[7] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting web
page structure for adaptive viewing on small form
factor devices. In Proc. of the 12th Intern. Conf. on
World Wide Web, pages 225–233. ACM, 2003.

[8] R. Hof. Google research: No mobile site = lost
customers.
http://www.forbes.com/sites/roberthof/2012/09/25/
google-research-no-mobile-site-lost-customers.

[9] M. Nebeling, M. Speicher, and M. Norrie. W3touch:
Metrics-based web page adaptation for touch. In Proc.
of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2311–2320. ACM, 2013.

[10] J. Nichols, Z. Hua, and J. Barton. Highlight: A
system for creating and deploying mobile web
applications. In Proc. of the 21st Annual ACM
Symposium on User Interface Software and
Technology, pages 249–258. ACM, 2008.

[11] J. Nielsen. ipad usability: First findings from user
testing. http://www.nngroup.com/articles/
ipad-usability-first-findings.

[12] J. Nielsen. Mobile site vs. full site. http:
//www.nngroup.com/articles/mobile-site-vs-full-site.

[13] V. Roto, A. Popescu, A. Koivisto, and E. Vartiainen.
Minimap: A web page visualization method for mobile
phones. In Proc. SIGCHI Conf. on Human Factors in
Comput. Systems, pages 35–44. ACM, 2006.

[14] L. G. Vasconcelos and L. A. Baldochi. USABILICS:
remote usability evaluation and metrics based on task
analysis (in portuguese). In Proc. of the 10th Brazilian
Symposium on Human Factors in Computing Systems,
pages 303–312. Brazilian Computer Society, 2011.

[15] L. G. Vasconcelos and L. A. Baldochi. Towards an
automatic evaluation of web applications. In Proc. of
the 27th Annual ACM Symposium on Applied
Computing, pages 709–716. ACM, 2012.

[16] L. G. Vasconcelos and L. A. Baldochi. Usatasker: A
task definition tool for supporting the usability
evaluation of web applications. In Proc. of the IADIS
Internat. Conf. WWW/Internet, pages 307–314, 2012.

794

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

