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Abstract: In this work, we present an approach for the dy-
namical characterization of a nonlinear system using sym-
bolic dynamics and complex networks. As an example, we
apply the proposed methodology to the Logistic Map. Some
properties of the networks generated by the time series of this
map match with the expected behaviors of the system. In
other words, our methodology could identify periodic win-
dows and chaos.
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1. INTRODUCTION

The dynamical characterization of nonlinear systems is
a great challenge and it is usually performed by using Lya-
punov exponents and bifurcation diagrams, which is not al-
ways an easy task. The contribution of this work is to provide
an alternative characterization using a combination of sym-
bolic dynamics and the formalism of complex networks.

The methodology is exemplified in the context of the Lo-
gistic map:

Tpg1 =rxp(l — ) (1)

where 0 < z,, < 1 is a dimensionless measure of the pop-
ulation in the nth generation and 0 < r < 4 is the growth
rate.

R. May [1] showed that this model presents a “complex”
behavior when its parameter space is explored. Feigenbaum
[2] took this model as a paradigm to show the now called

“period-doubling route” to chaos, displaying the universal
behaviors governing dynamic transitions. All these features
make this model as a paradigm for a system that presents
transition to a chaotic dynamics.

In complex networks, a network corresponds to a graph,
which is composed by vertices connected by edges. We can
represent relationships with this network (where the vertices
represent entities and the edges represent the interactions be-
tween these entities) and analyze them by means of the the-
ory of complex networks. Examples of networks include the
internet, social networking, telephony, etc. [3, 4].

In this work, we will make use of symbolic dynamics to
allow us to apply the complex network formalism to analyze
time series from the logistic map that are associated with dif-
ferent dynamical regimes of this system. In order generate
the network, first we make a conversion of this time series to
a binary series and then we make a conversion of this binary
series into a decimal series. The network is built from this
decimal series and its properties will be studied according to
the formalism of complex networks. As a result, we have
a robust and reliable technique, whose implementation does
not require intense computational resources.

2. METHODS

One way to represent the time series from the Logistic
map into networks is by converting the values through the
computation of the Top Integral Function [5, 6] as follows:

Y, = [N.zg] = min{i € Z|N.x < i} 2)



in which Y}, is the integer associated to the value zj of the
series, N is the number of vertices of the network and 7 is the
smaller value such that N.x; < 4. In this case, each Y}, €
[1, N] corresponds to a vertex in the network. As shown in
[5], the characteristics of the generated network express the
Logistic map properties.

In this work we propose an approach that uses symbolic
dynamics. For each point of the time series generated by the
Logistic map we assign the symbol 0, if the value is between
[0,0.5], or 1 otherwise. After that, this new series is visited
using a moving template of M bits, which will slide from the
beginning to the end one position at a time. The M -bit tem-
plates are binary numbers that will be converted to decimal
numbers, which will form the decimal series we want for the
network representation. We can see how this process works
in Figure 1.
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Figure 1 — How to generate the symbolic and decimal series
from the Logistic map time series using a 10-bit template.

Each value of the decimal series corresponds to a node in
the network. The connections among nodes occur sequen-
tially, with nodes being linked to their adjacent neighbors in
the decimal series. Since the template has M bits, the net-
work will have 2™ nodes. Loops are allowed and there can
exist only one edge connecting a pair of nodes [5]. In Fig-
ure 2 there are some examples of networks generated from
the Logistic map, where we can see the existence of stable
periodic windows. To make sure they corresponds to truly
periodic windows, all the nodes must form a single cycle.
When we have period 1, the decimal series has always the
same value, so there is only one node at the network (which
is connected to itself). When there is period 2 the decimal
series has two repeating values, so we have two nodes con-
nected by one edge. In this case the average degree of the
network will be 1. For periods bigger than 2 it is possible to
see very well defined cycles resulting in graphs with average
degree equal to 2.

3. RESULTS

We performed experiments with 10-bits templates, i.e.,
using networks of N = 2!0 nodes. The total number of it-
erations of the Logistic map was 10500 (discarding the first
500) and we used a set of 1000 values of 7 ranging between
2.9 and 4.0, thereby generating a total of 1000 networks. The
initial condition was fixed to xg = 0.7, since the the results

(a) r = 3.629: Period 6. (b) » = 3.835: Period 3.

(c) r = 3.906: Period 5. (d) » = 3.961: Period 8.

Figure 2 — Networks generated from the time series of the Lo-
gistic map for several Logistic parameters r.

are nearly the same for different initial conditions [6].

In the upper part of Figure 3 we have the degree of the
vertices as a function of the logistic parameter r. On the ver-
tical axis we have the 1024 vertices of each network and in
the horizontal axis we have the logistic parameter. The de-
grees are represented by color, with the lowest being blue and
yellow being the highest. In the middle of Figure 3 we have
the Lyapunov exponents (A), which measures the exponen-
tial divergence between orbits over time. Negative Lyapunov
exponents indicate the absence of chaos and the existence of
periodic windows. At the bottom of the figure we plotted
the bifurcation diagram of the Logistic map to emphasize the
meaning of the Lyapunov exponents.

The betweenness centrality of a vertex measures the num-
ber of shortest paths that pass through that vertex. So a vertex
with high betweenness has a great importance for the net-
work. The betweenness centrality of a vertex is given bellow

by = 3 ) 3)
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where o, is the total number of short paths between vertices
s and ¢ and o4 (v) is the number of these paths that pass
through v. The normalized betweenness centrality of a vertex
v is

b(v) — min(b)

norm(b(v)) = max(b) — min(b)

4)
where b is a vector that contains the value of the betweenness
centrality of all vertices of the network, min(b) and max(b)
are, respectively, the minimum and maximum values of b. As
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Figure 3 — From top to bottom: Vertices’ degree, Lyapunov ex-
ponents and bifurcation diagram of the Logistic map. The hor-
izontal axis is the parameter r.

we are working with a thousand networks, we will consider
the average of the normalized betweenness centrality.

The density of a network (D) is its number of edges (E)
over the maximum possible number of edges,

E
b= N(N —1)/2 )
in which N is the number o nodes.

Bellow, in Figure 4, we have the number of connected
vertices and the density of the network, followed by the di-
ameter, average degree, mean normalized betweenness cen-
trality and Lyapunov exponents, all of them as functions of
r.

4. DISCUSSION

In the upper part of Figure 3 we can see, starting from
r = 3.5, some periodic windows (blue vertical strips) for
the same values of the Logistic parameter where there are
windows at the bifurcation diagram and negative Lyapunov
exponents.

The number of connected vertices and the density grow
as r increases (Figure 4), but there is a sudden drop where
the Lyapunov exponents are negative. In these regions we
have periodic windows so that a few vertices are connected
and the number of connections between them is low. For
r = 4, practically all vertices are connected and the number
of connections between them is higher, which is expected
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Figure 4 — From top to bottom: Number of connected vertices
(red) and the density of the network (blue), diameter, average
degree, mean normalized betweenness centrality and Lyapunov
exponents as a function of r.

because of the presence of chaos. Notice that the density
is always low, in the order of 10~3, which means that the
networks generated by this method are sparse.

The following measures of diameter, average degree
and mean normalized betweenness centrality have several
“drops” for the same values of the logistic parameter  where
we can observe negative Lyapunov exponents and therefore
when there are periodic windows. In these windows, as pre-
viously mentioned, we have networks that form cycles of var-
ious periods, as shown in Figure 2.

The largest of the smaller paths between all vertices of a
network (diameter) tends to be lower when this network has
a cycle, so the diameter of these networks tend to be smaller
than the diameter of networks representing chaos. Also, the
average degree of networks corresponding to periodic win-
dows tend to be 2, since they form cycles as those presented
in Figure 2. The number of smaller paths passing through a
given vertex decreases when there is a cycle, which causes
the average betweenness centrality to be smaller.

Using only the graphics of the diameter, average
network degree, number of connected vertices or
density of the network, it is possible to predict the
existence of the following periodic windows: r =
3.583, 3.606, 3.629, 3.687, 3.703, 3.740, 3.774, 3, 835, 3, 906,
3,961 . For the average of the normalized betweenness cen-



trality, this correspondence was obtained from r = 3, 687.

We can also observe that at the chaotic regime, the diam-
eter of the networks is around 10 (about 1% of the number of
nodes) and the average degree is between 3 and 4. As the av-
erage degree is low, one can say that the networks are sparse
(as previously mentioned).

5. CONCLUSION

We generated time series for many values of the Logistic
parameter r. Then we built new representations of the se-
ries by applying symbolic dynamics techniques. From these
results we generated networks, each of them representing
one value of r, and we found correspondences between their
properties, the Lyapunov exponents and the bifurcation dia-
gram. Therefore, our methodology was able to predict the
existence of chaos and the appearance of some periodic win-
dows of the Logistic map. In future works we will apply this
methodology to other maps and also to continuous systems.
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