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ABSTRACT

Earth observation satellites produce petabytes of geospatial
data. To manage large data sets, researchers need stable
and efficient solutions that support their analytical tasks.
Since the technology for big data handling is evolving rapidly,

researchers find it hard to keep up with the new developments.

To lower this burden, we argue that researchers should not
have to convert their algorithms to specialised environments.
Imposing a new API to researchers is counterproductive
and slows down progress on big data analytics. This paper
assesses the cost of research-friendliness, in a case where the
researcher has developed an algorithm in the R language
and wants to use the same code for big data analytics. We
take an algorithm for remote sensing time series analysis
on compare it use on map/reduce and on array database
architectures. While the performance of the algorithm for
big data sets is similar, organising image data for processing
in Hadoop is more complicated and time-consuming than
handling images in SciDB. Therefore, the combination of the
array database SciDB and the R language offers an adequate
support for researchers working on big Earth observation
data analytics.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications|: [Spatial databases and
GIS, Scientific databases, Image databases]
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1. INTRODUCTION

Earth observation (EO) satellites produce vast amounts
of geospatial data. The Landsat archive holds over five
million images of the Earth’s surface, with about 1 PB of
data. New satellites from Europe, USA, China, Brazil, and
India generate yearly as much data as one Landsat satellite
in a decade. Most space agencies have adopted an open
data policy, making unprecedented amounts of satellite data
available for research and operational use. This data deluge
has brought about a major challenge for Geoinformatics
research: How to design and build technologies that allow the
EO community to analyse big data sets?

When scientists use big EO data they face the burden
of organising thousands of files, downloaded from the space
agencies archives. To manage such large data sets, researchers
need stable and efficient solutions that support their analyti-
cal tasks. To choose a solution is hard because the technology
for large data handling and analytics is evolving. Alternatives
include MapReduce-based solutions such as Google Earth
Engine [10], object-relational DBMS extensions such as Ras-
daman [2] and distributed multidimensional array databases
such as SciDB [26]. Since each of these architectures takes on
a different approach, understanding the benefits and draw-
backs of each one helps researchers choose what best fits
their needs.

Given the diversity of options, researchers would gain from
documented experience that helps them to assess how pro-
posed big data architectures fit the needs of geospatial data
analysis. Recent papers describe algorithms required for
EO analysis [27] [21] and report case studies using specific
architectures [23|[18]. However, to make progress on big geo-
spatial data analysis, we need to engage the large community
of remote sensing researchers. In this paper, we consider
how big EO data architectures can support the needs of
data analytics. Our paper examines ways to cut the effort
required for researchers to develop and validate algorithms
for extracting information for big EO data.

We take the viewpoint that architectures should serve
applications, and not the other way around. To clarify the
researcher’s problem, we consider the needs for an important
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EO application: land use and land cover change (LUCC)
analysis. We propose an architecture based on open-source
tools that combines array databases with statistical analysis.
We evaluate this design to assess how it meets the needs of
EO scientists and compared with other approaches that aim
to meet these needs. This paper also puts forward a set of
criteria to build researcher-friendly architectures for big EO
data analysis.

2. BIG EO DATA ANALYTICS FOR LAND
COVER CHANGE

When designing an architecture for big EO data, one
needs to consider the needs of data analytics. A common
view of big EO data processing assumes that algorithms work
on a pixel-by-pixel basis. In this view, massively parallel
solutions based on the MapReduce model would fit this
job. However, behind the simple raster geometry of remote
sensing images, lies a huge diversity of processing algorithms.
Many EO tasks require sophisticated methods for spatial,
temporal and spatiotemporal analysis. For such applications,
scientists need to balance between parallel execution and
design flexibility, so that complex algorithms can be executed
with acceptable performance.

To consider the needs of big EO data analytics, we focus in
a demanding application: land cover change analysis. Land
cover change is one of the most immediate consequences
of humanity’s transformation the Earth’s ecosystems and
landscapes. To understand the impact and extent of global
land cover change, we need data from EO satellites, the
only source that provides a continuous and consistent set of
information about the Earth.

Current global and large-scale land cover products need
to be improved. Global land cover data sets such as MODIS
Land Cover, GLC2000 and GlobCover have large mismatches
on the spatial distribution of their land classes [20] |15]. Land
use practices are becoming subtler than a transition from
one cover (e.g, forest) to another (e.g., pasture). We need
to capture changes associated with forest degradation and
temporary or mixed agricultural regimes [3|. Therefore, devel-
oping new analytics for land cover change analysis using big
EO data is as important as having efficient data management
methods.

To better understand the requirements of big EO data
analytics, consider a conceptual view of the problem. Earth
observation satellites revisit the same place at regular inter-
vals. Thus measures need to be calibrated so that observa-
tions of the same place in different times are comparable.
After adjustment, the observations are organised in regular
intervals; each measure from an imaging sensor maps to
a point in a three-dimensional array in space-time (Figure
. Let S = {s1,82,...,8n} be a set of remote sensing im-
ages which shows the same region at n consecutive times
T = {t1,t2,...,tn}. Each location <z, y, t> of a pixel in an
image (latitude, longitude, time) maps to a <3, j, k> position
in a 3D array. Each array position <i, j, k> has to a set of
attributes values A = {a1,az,...,am} which are the sensor
measurements at each location in space-time (see Figure .
For optical sensors, these observations are proportional to
Earth’s reflexion of the incoming solar radiation at different
wavelengths of the electromagnetic spectrum. Therefore, a
3D array is an appropriate conceptual model for big EO data.

An example of big EO data analysis is the work by Hansen
et al. |13]. Using more than 650,000 LANDSAT images and
processing more than 140 billion pixels, the authors compared
data from 2000 to 2010 to produce maps of global forest loss.
A pixel-based classification algorithm was used to process
each image to detect forest cover. The results for 2000 and
2010 were compared to account for forest loss during the
2000-2010 decade. The method classifies each 2D image one
by one. The authors compare the results for different time
instances, using a space-first, time-later approach.

By contrast, methods such as the time-weighted dynamic
time warping (TWDTW) [19], TIMESTAT [14] and BFAST
[28] work on remote sensing time series to extract long-
term information for each pixel. These algorithms work on
individual time series and combine the results for selected
periods to generate classified maps. We call this the time-first,
space-later approach.

The benefits of remote sensing time series analysis arise
when the temporal resolution of the big data set is able to
capture the most important changes. Here, the temporal
autocorrelation of the data can be stronger than the spatial
autocorrelation. Given data with adequate repeatability, a
pixel will be more related to its temporal neighbours than
to its spatial ones. In this case, time-first, space-later meth-
ods lead to better results than the space-first, time-later
approach.

Using the 3D array metaphor, scientists can approach
the classification problem using both the space-first, time-
later and the time-first, space-later approaches. To enable
researchers to develop innovative analytical methods for big
EO data, the system architecture needs to support both
approaches.

3. ARCHITECTURES FOR BIG EO DATA
ANALYTICS

Progress on big EO data analytics depends on researchers
developing and sharing new methods. One crucial observa-
tion is that researchers are most productive when working
on familiar computing environments. Scientists like to test
new ideas on small and well-known data sets. Only after
they are satisfied with the experiments, they move up to
work with big data. Therefore, an architecture for big Earth
observation data analytics should meet important needs of
the research community, described below.

1. Analytical scaling: provide support for the full cycle of
research, allowing algorithms developed at the desktop
to run on big databases with minor changes.

2. Software reuse: allow researchers to adapt existing
methods for big data with minimal reworking.

3. Collaborative work: enable results to be shared with
the scientific community.

4. Replication: encourage research teams to build their
own infrastructure.

Data scientists are conservative in their choice of tools.
They prefer to work on tools with a simple software kernel
where they can add new packages that encapsulate new
analytical methods. A prime example is the R suite of
statistical tools [24]. R provides a wide variety of statistical
and graphical tools, including spatial analysis, time-series
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analysis, classification, clustering, and data mining for many
disciplines (e.g. hydrology, ecology, soil science, agronomy).
It is extensible through user-contributed packages. Thus, R
is the lingua franca of data analytics. It provides methods
and tools in an open source environment and allows research
reproducibility. Using R as their primary tool for big data
analytics, researchers can thus scale up their methods, reuse
previous work, and collaborate with their peers.

Given these needs, we propose an architecture adapted
to researchers and not the other way around. We comply
with the best practises of the scientific community by using
a known programming environment such as R, in which
scientists can execute their algorithms directly in big data
servers. The two main options for researchers that want to
use R for big EO analytics are MapReduce architectures such
as Apache Hadoop or array databases such as SciDB .

One trend for big data analysis is the MapReduce model,
whose most popular open source implementation is Apache
Hadoop (http://hadoop.apache.org/). The MapReduce model
has been motivated by parallel applications such as text
queries and its main goal is to support task execution using
a scalable cluster of computing nodes. Using the Hadoop
API, programmers can adapt the MapReduce model by cus-
tomising how inputs and outputs are split into key/value
pairs. For vector-based geospatial data, researchers have
developed tools such as Hadoop-GIS and SpatialHadoop so-
lutions. They require an extra preprocessing overhead to
allow GIS functions to process data @

The most used MapReduce-based tool for working with
big Earth Observation data is Google Earth Engine (GEE)
. GEE offers programming interfaces that support only
pixel-based image processing. Its methods neither support
region-based methods such as image segmentation, nor allow
large-scale time series analysis. These design decisions limit
researchers who would like to perform object-based image
analysis on large data sets or to perform time series data
analysis. Also, the API of Google Earth Engine is proprietary,
and thus researchers have to convert their existing methods
to its language.

We consider array databases to be the main alternative
to MapReduce-based tools. Array DBMS such as SciDB
|26] rely on the mathematical concept of array, allowing
interoperability at the algebraic level . They reduce the
impedance mismatch between the data model (raster), the
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storage model (arrays) and the analysis functions such as
linear algebra and image processing . Array databases
split large volumes of data in distributed servers in a “shared
nothing” way. A big array is broken into “chunks” that are
distributed among different servers; each server controls its
local data storage. Arrays are multidimensional and uniform,
as each array cell holds the same user-defined number of
attributes. Since arrays are a natural data structure to
store Earth Observation images, using SciDB researchers and
institutions can break the “image-as-a-snapshot” paradigm.
Entire collections of image data fit into single spatiotemporal
arrays.

Both the SciDB array database and the R statistical lan-
guage are open-source and together provide computational
support for parallelising complex analysis. SciDB has an R
interface that allows researchers to run their R algorithms
for extracting information from large remote sensing data
sets (Figure[2). The SciDB design is “shared-nothing” and
scalable; it is possible to add more dedicated servers to an ex-
isting configuration. Combining array DBMS with statistical
computing is a natural solution for EO applications.

In terms of effort for setting up the architecture, organising
a MapReduce-base environment for big EO data needs more
work than the equivalent array database solution. The main
reason is that MapReduce has been designed to work with
key/value pairs, requiring an extra preprocessing step of
breaking up the data. In contrast, whole collections of images
are mapped directly into array databases. These issues are
discussed in more detail in the next section, when we compare
the two approaches.

4. THE COST OF BEING RESEARCHER-
FRIENDLY

In this section, we evaluate the performance cost of hav-
ing an architecture focused on researcher needs. We focus
on remote sensing time series analysis. We chose a time-
consuming algorithm: the Time-Weighted Dynamic Time
Warping (TWDTW) method for land cover mapping [19].
Besides TWDTW, algorithms for analysis of remote sensing
time series include time series reconstruction , detect-
ing trend and seasonal changes , extracting seasonality
information , land cover mapping , detecting forest dis-
turbance and recovery , crop classification [22| and crop
expansion and intensification @ These innovative methods
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Figure 2: Proposed architecture for big EO data analytics

show that extracting information from remote sensing time
series is one of the most promising research trends in big
Earth observation data analysis.

Research on time series data mining shows that methods
based on dynamic time warping (DTW) have achieved good
results [7]. The algorithm compares two time series and finds
their optimal alignment, providing a dissimilarity measure.
DTW provides a robust distance measure for comparing
time series [17]. The DTW algorithm works well for shape
matching, but is not suited per se for remote sensing time
series classification. Each land cover class has a distinct
phenological cycle which is relevant for space-time classifica-
tion [29]. A good time-series land cover classifier needs to
balance between shape matching and temporal alignment.
To avoid mismatches, in [19] we introduce a time constraint
in TWDTW to distinguish between different land use and
land cover classes. This method is flexible to account for
multiyear crops, single cropping and double cropping. It is
also robust to account for other land cover types such as
forest and pasture and works with a small amount of training
samples.

By taking a complex method such as TWDTW as the basic
algorithm for our comparison, we develop a realistic case
study. We take the case where a researcher has developed
a new method, validates it in small data sets and wants
to use it for exploring big data. Our task is to evaluate
the cost of using a code developed in R and apply it to big
data with minor adjustments. We compare two possible
approaches: using R together with SciDB and with Hadoop.
The evaluation considers both the execution time and also
the costs of building and adapting each environment.

4.1 Experimental Setup and Datasets

The evaluation uses the MOD13Q1 product from NASA’s
MODIS collection 5 [§]. This data set has 18,000 images
covering Brazil from 2000 to 2016 compiled every 16 days.
Each pixel has a 250 m x 250 m spatial resolution. The total
data size is about 10 TB. Our cluster has five servers using
24 CPUs of 2.40GHz, 16 disks of 1.1TB, 94 GB RAM of
2GHz AMD Opteron(tm) Processor 4171 HE and 3.4 GB
RAM memory. They run Ubuntu 12.04.5 LTS (64 bit) and a
switch of 1Gb interfaces all of the servers. This is a typical
infrastructure for a medium-size research laboratory to work
with big Earth observation data.

We built two experimental setups: one with SciDB and
other with Hadoop. For SciDB, all 18,000 MOD13Q1 satellite
images covering Brazil from 2000 to 2016 were loaded as 2
dimensional arrays of pixels in a snapshot mode in SciDB;
they were then stacked into a 3D array. SciDB splits this data
set into subsets which are distributed to the data servers.

Each server runs several instances of SciDB. The SciDB
coordinator instance organises the query execution and is also
responsible for client-server communications. The remaining
instances take part in the distributed processing of data
queries. This organisation take advantage of the distributed
CPUs, memory and disks to maximise parallel performance.

For Hadoop, we used its Streaming API which implements
the MapReduce model, breaking an arbitrary set of parallel
and intensive tasks into parts. The main challenge of using
Hadoop’s streaming API is to adapt the input and output
data sets to sets of key/value pairs. Binary data sets such
as remote sensing images have to be converted to flat files
with binary key/value pairs. To adapt our data set to run
in Hadoop, we preprocessed the MOD13Q1 satellite images,
transforming them to a sequence of files containing one (lo-
cation, time series) pair for each line. We ran the TWTDW
algorithm to process each time series.

This strategy is a simplification of the map/reduce model.
The mapping is done in the preprocessing phase by break-
ing a 3D array into a set of time series. We had to split
these time series between the different nodes. Unlike SciDB,
Hadoop does not automatically split a large data set into
multiple nodes. This setup does not require a reduce step.
This adaptation of a 3D array to run in Hadoop leads to a
loss of generality. In an array database such as SciDB, the
algorithm can address arbitrary partitions of space-time. To
run in Hadoop each type of algorithm has to perform its
own preprocessing step. Therefore, in terms of researcher-
friendliness, array databases are easier to work with than
map/reduce environments.

For interfacing SciDB and R, we also use a streaming
solution, using a SciDB operator that streams the data sets
for use in R programs. We envisage a large "shared-nothing”
cluster where each local machine has access to its own disk.
The first step is to send the R programs to be executed
by the local machines. At each node, the SciDB streaming
operator reads the local data sets and processes them using
a multi-core version of R. Data analysis takes place in a
parallel version at each node of the cluster. This interface is
researcher-friendly. It allow the analysis of big data sets by
reusing existing algorithms.

4.2 Comparing Hadoop with SciDB for big EO
data analytics

We compared the performance of the R version of TWTDW
in SciDB and in Hadoop. In both cases, the data was broken
into 64MB chunks in space-time. Since TWDTW is used
for time series analysis, we fixed the time duration (380
intervals of 16 days each). We measured the performance on
different 2D slices, varying from a block of 1000x1000 to one



of 4000x4000 pixels. We organised the SciDB array database
to optimise performance of time series analysis, favouring
time-first, space-later methods over space-first, time-later
algorithms. We did this to match the preprocessing of the
Hadoop data sets, which also favours time series analysis.
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Figure 3: Comparing Hadoop and SciDB performance using
the TWDTW .

Results (shown in Figure [3) show a quasi-linear scalability
in both Hadoop and SciDB architectures, while performance
time is similar. TWDTW is a recursive algorithm that re-
quires a lot of in-memory processing; the method is more
compute-bound than I/O bound. Since TWDTW processes
each time series separately, processing time increases linearly
with the number of time series. Other algorithms with dif-
ferent breakdowns in compute-bound and I/O bound parts
will get different performances in both Hadoop and SciDB.
However, we are confident our result holds in general for a
large set of remote sensing time series analysis methods.

We recognise benchmarking of big data analytics remains
a contentious issue. There are multiple alternatives for fine-
tuning complex environments such as Hadoop. Other re-
searchers could organise Hadoop or SciDB architectures to
improve their performance measures. However, most of our
performance limitations are due to our conscious choice of
using R code instead of native APIs of Hadoop and SciDB.
It is unlikely that orders-of-magnitude gains can be achieved
by fine-tuning either architecture.

5.  CONCLUSIONS

This paper addressed the problem of designing an archi-
tecture for big Earth observation data analytics that meets
the most common needs of researchers. We argue that re-
searchers should not have to convert their algorithms to
specialised processing environments. Imposing a new API
to researchers would be counterproductive and would slow
down progress on big data analytics. For this reason, our
main concern was to assess the cost of research-friendliness.

Our scenario is a case study where the researcher has code
that has already been tested in the R language and wants to
use the same code for big data analytics.

Our restriction of using algorithms in R narrows the current
alternatives for big EO architectures to two main options:
array databases such as SciDB and map/reduce environ-
ments such as Hadoop. Both solutions provide a streaming
API that can be used to run R code with minimal change.
However, more work is required to adapt Hadoop to run
R for EO data analysis than in the case of SciDB. The
map/reduce model used by Hadoop requires preprocessing
the image data into text files (or sequence files), while the
array database represents image data directly. Thus, organis-
ing image data for processing in Hadoop is more complicated
and time-consuming than handling images in SciDB. In terms
of performance, we obtain a similar result when running the
TWDTW method in both Hadoop and SciDB solutions.

When considering both the cost of data organisation and
the execution time, we conclude that array databases are
superior to map/reduce solutions for big EO data analytics.
The combination of R algorithms with SciDB can be an
acceptable solution to the problem of providing a friendly
environment for big EO analytics. Array DBMS provide
consistent data management of big EO data, while statistical
computing tools support complex analytics methods.
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