
Rev. Bras. Cartogr, vol. 72, n. 4, 2020                           DOI: http://dx.doi.org/10.14393/rbcv72n4-54037 

 
 665 

 

 

Revista Brasileira de Cartografia 

ISSN 1808-0936 | https://doi.org/10.14393/revbrascartogr 

Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto 

Landslide Scars Detection using Remote Sensing and Pattern Recognition 

Techniques: Comparison Among Artificial Neural Networks, Gaussian Maximum 

Likelihood, Random Forest, and Support Vector Machine Classifiers   

Detecção de Cicatrizes de Movimentos de Massa utilizando Sensoriamento Remoto e 

Técnicas de Reconhecimento de Padrões: Comparação entre os Classificadores Redes 

Neurais Artificiais, Máxima Verossimilhança Gaussiana, Random Forest e Support Vector 

Machine  

Tatiana Dias Tardelli Uehara 1, Sabrina Paes Leme Passos Corrêa 2, Renata Pacheco Quevedo 3, Thales Sehn Körting 4, 

Luciano Vieira Dutra 5  and Camilo Daleles Rennó 6 

 
1 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil. 

tatiana.uehara@inpe.br  

  ORCID: https://orcid.org/0000-0003-1861-8848  

2 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil. 

sabrina.correa@inpe.br 

 ORCID: https://orcid.org/0000-0002-9956-4134  

3 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil. 

renata.quevedo@inpe.br 

  ORCID: https://orcid.org/0000-0002-7528-9166  

4 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil.  

thales.korting@inpe.br 

  ORCID: https://orcid.org/0000-0002-0876-0501  

5 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil.  

luciano.dutra@inpe.br 

ORCID: https://orcid.org/0000-0002-7757-039X  

6 National Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, São José dos Campos - SP, Brasil.  

camilo.renno@inpe.br 

ORCID: http://orcid.org/0000-0001-9920-4473  

Recebido: 04.2020 | Aceito: 07.2020  

Abstract: Landslide inventory is an essential tool to support disaster risk mitigation. The inventory is usually obtained 

via conventional methods, as visual interpretation of remote sensing images, or semi-automatic methods, through 

pattern recognition. In this study, four classification algorithms are compared to detect landslides scars: Artificial 

Neural Network (ANN), Maximum Likelihood (ML), Random Forest (RF) and Support Vector Machine (SVM). 

From Sentinel-2A imagery and SRTM’s Digital Elevation Model (DEM), vegetation indices and slope features were 

extracted and selected for two areas at the Rolante River Catchment, in Brazil. The classification products showed 

that the ML and the RF presented superior results with OA values above 92% for both study areas.  These best 

accuracy’s results were identified in classifications using all attributes as input, so without previous feature selection.  

Keywords: Mass movement. Hazard. Supervised Classification. Pattern Recognition.  

 

Resumo: Inventários de cicatrizes de deslizamentos são uma ferramenta essencial para apoiar a mitigação de riscos 

de desastres. Os inventários são geralmente obtidos por métodos convencionais, como interpretação visual de imagens 

de sensoriamento remoto, ou métodos semiautomáticos, por meio de reconhecimento de padrões. Neste estudo, quatro 

algoritmos de classificação são comparados para a detecção de deslizamentos de terra: Redes Neurais Artificiais 

(ANN), Máxima Verossimilhança (ML), Random Forest (RF) e Support Vector Machine (SVM). A partir das imagens 

do Sentinel-2A e um Modelo Digital de Elevação (DEM) da SRTM, índices de vegetação e atributos de declividade 

foram extraídos e selecionados para duas áreas na Bacia Hidrográfica do Rio Rolante. Os resultados da classificação 

mostraram que os classificadores ML e RF obtiveram valores de Acurácia Global (AO) acima de 92% para ambas 

áreas de estudos. Os valores de acurácia mais altos foram identificados nas classificações utilizando todos os atributos 

como dados de entrada, portanto, sem seleção de atributos prévia. 

Palavras-chave:  Movimentos de massa. Perigo. Classificação Supervisionada. Reconhecimento de Padrão. 
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1 INTRODUCTION 
 

Landslides are widespread natural geomorphologic processes and represent a gravity-driven 

component of erosion (DAVIES, 2015). They are downward movements of slope material triggered by 

earthquakes, snow melting or heavy rain, which can also be caused or intensified by anthropic activities 

(GUZZETTI et al., 2012). These phenomena cause economic damages and casualties when occurring in 

occupied areas (HAQUE et al., 2019). For monitoring, landslide inventory maps are used, identifying mass 

movement scars, providing information about past events, such as location, types and patterns, and assisting 

to build landslide susceptibility models (RAMOS-BERNAL et al., 2018). Thus, landslide inventory maps are 

crucial to support urban planning and disaster risk reduction (LUPIANO et al., 2019). 

The inventory can be achieved either by conventional methods or state-of-the-art techniques. 

Conventional methods include field mapping and visual interpretation of remote sensing images; although, as 

a drawback, these methods are time and resource consuming (QIN; LU; LI, 2018). On the other hand, semi-

automatic recognition of landslide scars and analysis of changes in the spectral signature of land surface can 

provide rapid mapping (GUZZETTI et al., 2012). Machine learning techniques such as Artificial Neural 

Network (ANN), Maximum Likelihood (ML), Random Forest (RF) and Support Vector Machine (SVM) are 

pattern recognition methods, commonly applied to remote sensing images for landslide scars identification. 

Manfré et al. (2014) use SVM and ML to identify landslides in São Paulo State coast, in Brazil. The authors 

claim that SVM presented better performance than ML, especially when associated to the Normalized 

Difference Vegetation Index (NDVI). Moosava, Talebi and Shirmohammadi (2014) compare ANN and SVM 

to mapping landslides and the results have shown no significant differences between both methods. 

Additionally, much research uses ANN for landslide issues, for instance, the results shown by Chen et al. 

(2017) at Wanyuan area, China and by Kalantar et al. (2018) at Dodangeh watershed, Iran. Moreover, RF 

algorithms, as shown by Ghorbanzadeh et al. (2019), Chen et al. (2018), Stumpf and Kerle (2011) have also 

shown satisfactory outcomes for landslide scars detection.  

The reduction of time to conduct the process is usually significant in hazard-related issues. Thus, in 

order to accelerate the decision making, one can employ data mining techniques, such as feature selection. In 

general, data mining is based on finding valuable structure in large datasets, as stated by Hastie, Tibdhirani 

and Friedman (2009). Feature selection discriminates the most important features from a dataset, avoiding 

overfitting (HASTIE; TIBDHIRANI; FRIEDMAN, 2009).   

In this context, the aim of this study is to compare different pattern recognition techniques: ANN, ML, 

RF and SVM in order to identify which of them presents better results concerning landslide scars detection. 

Likewise, different feature selection methods are also compared aiming to understand the attribute’s 

contribution for this detection.  

This paper is an extended version of Uehara et al. (2019), presented in the XX Brazilian Symposium 

on GeoInformatics (GEOINFO 2019). 

 

2 STUDY AREA  
 

The Rolante River Catchment is located in the State of Rio Grande do Sul, Brazil (Figure 1), and it 

embraces three cities: Riozinho, Rolante and São Francisco de Paula. Its drainage area is 828 km², with 

altitudes varying from 19 to 997 m, according to data extracted from a Digital Elevation Model (DEM) 

provided by the Shuttle Radar Topography Mission (SRTM). This area is almost entirely located in the Serra 

Geral geomorphological unit, with a predominance of basaltic rocks and sandstone. According to Rossato 

(2011), the climate is characterized as very humid subtropical, with precipitation regime distributed throughout 

the year, with annual averages between 1700 and 2000 mm. 

On January 5th, 2017, there was a landslide event in the upstream area of Rolante River Catchment 

triggered by an extreme precipitation event. The rains lasted for approximately four hours, and local private 

measurers estimated volumes between 90 and 272 mm (SEMA, 2017). These rains moved a large amount of 

material from the slopes, generating a natural dam on the Mascarada river, a tributary of the Rolante river, 

with subsequent rupture of this barrier and consequent flash flood, reaching Rolante city. 
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Previous works identified approximately 300 landslide scars in this region (GAMEIRO et al., 2019; 

QUEVEDO et al., 2019a; QUEVEDO et al., 2019b).  

 

Figure 1 – Location map of the study area.  

 
Source: The authors (2020).  

 

3 METHODOLOGY   
 

To fulfill the proposed objective, 11 features were used. From Sentinel: band 02 – Blue (B02), band 

03 – Green (B03), band 04 – Red (B04), and band 08 – Near Infra-Red (B08); NDVI; Enhance Vegetation 

Index (EVI); NDVI Variance Texture; EVI Variance Texture. From SRTM:  Slope (degrees) and High Pass 

Filter applied to Slope, with a 3x3 kernel size. All features were ranked in order of importance using Weka 

software and its functions Correlation Attribute Evaluation and RF GINI regressor. Then, four image classifiers 

were applied: a parametric classifier, the ML and three non-parametric: ANN, RF and SVM. The 

methodological process of this study is depicted in Figure 2. 

 

Figure 2 – Flowchart of the methodology.  

 
Source: The authors (2020). 

 

The identification of landslide scars usually presents better results when high spatial resolution images 

are used (JOYCE et al., 2009). Considering that it provides orthorectified reflectance products of Bottom-of-

Atmosphere (BOA), the imagery from the MultiSpectral Imager (MSI) sensor on board Sentinel-2 and product 

level 2A was used. For the purpose of this study, among all products available for Level-2A, only 10m spatial 

resolution data was used. The original images were clipped in for the two areas of interest, each one containing 

6 km² (Figure 3). The choosing criteria for these areas considered that both contained a significant amount of 
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landslide scars presented in the landslide inventory (QUEVEDO et al., 2019a): Area 1 contains 91 landslide 

scars with 39 ha whilst Area 2 contains 34 landslide scars with approximately 16 ha. The Sentinel scenes 

selected are from March 30th, 2020 for Area 1 and February 09th, 2019 for Area 2. 

From the original images, a feature extraction process was performed, using features based on Gerente 

et al. (2017a), Gerente et al. (2017b) and Joyce et al (2009). The EVI and NDVI, which consider NIR and red 

wavelengths for their computation, were directly downloaded from Sentinel-2 products. NDVI values are used 

to detect varying densities of vegetation coverage which could be used for natural disasters (BHANDARI; 

KUMAR; SINGH, 2012). Moreover, textures can characterize the heterogeneity of classes. This concept is 

related to the spatial distribution of intensity values; hence, it contains information regarding rugosity, 

regularity, contrast, and others (RUIZ; FDEZ-SARRÍA; RECIO, 2004). Among the statistical features, 

variance extracted from both vegetation indices was used to characterize texture. This step was performed 

using ENVI 4.7. 

  

Figure 3 – Location map of the two analyzed areas. A) Area 1; B) Area 2.  

 
Source: The authors (2020). 

 

The original 30m spatial resolution DEM, from SRTM, was resampled to 10m using the nearest 

neighbor method available at SAGA toolbox resampling function in QGIS 3.4. SRTM data was chosen because 

no other data with higher spatial resolution was available free of charge. Tests were not realized to prove 

whether the interpolation presented an increase in the quality of the DEM data. However, this procedure was 

necessary in order to assure the same pixel size for all attributes in the stack, a requisite for the classification 

process performed. The slope was extracted from the DEM. After that, in ENVI 4.7, a high pass filter was 

applied to the slope to identify the valley regions and aid the differentiation between landslide scars and bare 

soil per se. 

Hall (1999) defines feature selection as a learning step that focuses on the most useful data aspects for 

analysis and feature prediction. This step was conducted using the Correlation Attribute Evaluation Function 

available on Weka, which ranks the importance of data based on the Pearson’s correlation. All the features 

were ranked in order of importance and the first five were selected. According to Raykov and Marcoulides 

(1999), the principle of parsimony reflects the notion that researchers should strive for simple measurement 

models that use the minimum number of parameters needed to explain a given phenomenon, so these five 

features were chosen to test whether half of the variables were able to map landslides scars and, consequently, 

make the model more parsimonious. Furthermore, another method used to rank the importance of variables 
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was the GINI importance in the RF model. Moreover, the features that were present among the first five in the 

importance rank from RF and Weka were selected for another round of classifications. 

With all selected attributes, the classification assessment was performed via holdout method where 

testing samples are given independently of training samples (KIM, 2009). The image size was approximately 

282x212 pixels, in which 200 training and 60 testing samples were used for each class. In order to assure our 

decision about the classes, Google Earth’s high spatial resolution imagery from different dates were consulted. 

Visual interpretation of this imagery allowed the identification of the main classes present in the study area. 

Hence, the classes were: Forest, Shadowed Forest, Grass, Bare Soil and Landslide. 

 

3.1 Classification methods  
 

The analysis of different classifiers and features for detecting landslides scars aims to present the best 

performance available in order to attend risk assessments in urgent situations. Considering that, it is important 

to take into account the computational efforts, time and feasibility of such methods presented hereafter. 

Artificial Neural Networks (ANN) is a supervised, non-parametric classification method, which is 

inspired on human brain functioning, composed of a variety of processing units, called neurons, that work in 

parallel classifying input data in output classes. Generally, a feed-forward multi-layer network is adopted. It 

typically consists of three layers—input, output, and a hidden layer between the first two—with a sufficient 

number of neurons in each layer (AURORA; DAS GUPTA; GUPTA, 2004). This method uses the error 

backpropagation algorithm (RUMELHART; HINTON; WILLIAMS, 1986), which consists of minimizing the 

output errors. 

Maximum Likelihood (ML) is a supervised classification method determined by the Bayes theorem 

and employs a discriminant function to assign pixels to user-defined classes with the maximum likelihood 

(PAWLUSZEK; BORKOWSKI; TAROLLI, 2018). According to the author, ML continues to be the most 

widely used parametric classification algorithm. Hastie, Tibdhirani and Friedman (2009) state that the feature 

is assigned to a class with the highest probability of belonging, considering their correlation and variance. A 

probability function describes the distribution of reflectance values and evaluates the possibility of a pixel to 

belong to a certain category. It is important to emphasize that, for this study, a gaussian ML was used. 

Random Forest (RF) is an ensemble-learning non-parametric method which uses the Bootstrap 

Aggregation technique and performs as classifier and regressor, combining decision trees. In the classification, 

the input data is randomly selected and separated into subsets. To each sub-sample, a decision tree is 

constructed, then the RF model selects the more frequent result. The RF predictor model also uses the GINI 

importance ranking the most important features used in the model, hence being also a feature selection tool. 

Another highlight is that the RF model measures the model statistical quality by the Out-Of-Bag (OOB) with 

samples not used for the classification. Two parameters are to be defined by the user: the number of trees and 

the number of the features, this allows the algorithm to create trees that have high variance and low bias 

(BREIMAN, 2001; HASTIE et al., 2009; SOTHE, 2019).  

Support Vector Machine (SVM) is a machine learning technique, based on statistical learning theory 

which transforms original input space into a higher-dimensional feature space to find an optimal separating 

hyperplane (VAPNIK, 1998; KAVZOGLU; COLKESEN, 2009; ABE, 2005). The goal of the optimal 

separating hyperplane is a correct discrimination between two sorts of samples while maximizing the 

classification margin (HUANG; ZHAO, 2018) avoiding under and overfitting. According to Feizizadeh et al. 

(2017),  the resulting SVM classifications are affected by the choice of the kernel function and among different 

possibilities of available kernels, the Radial Basis Function (RBF) has been found the most feasible and reliable 

to produce susceptibility maps. Based on that, the authors chose RBF kernel for SVM. 

 

3.2 Feature Selection  
  

According to Yu and Liu (2004) and Chen et al. (2018), the role of feature selection is to reduce the 

number of features used aiming the elimination of redundant information in addition to finding sensitive 

features optimal combination. Chen et al. (2018) adds that feature selection algorithms can be split into filter, 
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wrapper and embedded methods. The filter method, more suitable for large scale dataset, eliminates the 

classifier training steps, ranking the subset (CHEN et al., 2018). Moreover, Chen et al. (2018), state 

that the wrapper method depends on the machine learning algorithm performance evaluating merits of the 

feature subset and Tang, Alelyani and Liu (2014) add that this approach uses the predictive accuracy of a 

learning algorithm predefined for determining the feature selection quality.  Lastly, the embedded method is 

used as component of the machine learning algorithm, considering the bias of the classifier, as stated by Tang, 

Alelyani and Liu (2014) and Chen et al. (2018), being decision tree the most typical one. This study concerns 

a filter method, entitled Correlation Attribute Evaluation (CAE) and an embedded method, which is the GINI 

importance inside the RF classification model.  

According to Hall (2009) and Aldehim and Wang (2017), CAE is a filtering feature selection tool 

which ranks features considering a correlation-based feature heuristic evaluation function, assessing, 

therefore, the efficacy of individual features taking into account their predicting strength and how strong they 

are inter-correlated. On the other hand, Gini is a splitting metric between two classes measuring the weighted 

average between the trees (BREIMAN, 2001; BREIMAN, 2017; ALER et al., 2020). Moreover, Maretto et al. 

(2015), have proven that feature selection can reduce both amount of data and computational time, being 

therefore an asset for detection of land change and land use. 

 

3.3 Classification Accuracy and Comparison 
 

For comparing classification results, both elements of Spatial Data Quality are considered: thematic 

accuracy and completeness. For thematic accuracy, both overall accuracy and kappa index are used, and for 

completeness, Commission and Omission Errors are computed, as stated by ISO (2013). 

In addition to that, the McNemar hypothesis test is carried out. This test was proposed by Bradley 

(1968) and Agresti (1996) and is explained with examples by Foody (2004). In a nutshell, this hypothesis test 

statistically compares two classifications with related samples by evaluating their confusion matrices using a 

Chi-squared distribution. 

 

4 RESULTS AND DISCUSSION 
 

Feature selection results are shown in Table 1, revealing that each area and method presented different 

rankings. None of them ranked the same top-5 features, however, the B03 and the NDVI variance were present 

in all cases. Considering that, we used four datasets for each area and each classifier: all the attributes; the five 

more important by the Weka ranking; the five more important by the RF regressor ranking; B03 and the NDVI 

variance. In this sense, we obtained 32 classifications, 16 for each study area. 

As mentioned above, among the top-5 features for both selection methods and areas, B03 and the 

NDVI variance texture are present. B03 corresponds to the green band in the visible range of the 

electromagnetic spectrum, presenting high values for vegetated areas. Since the study areas are in dense 

forested regions with Bare Soil and Landslide, this feature could be useful to describe these classes, presenting 

high values for the former, and low for the two latter. In that sense, the fact that the variance of the NDVI 

feature was also selected can be explained by the relevance of the abrupt NDVI change in Landslide scars 

compared to their location site. In this case, most of the scars have occurred in forested areas at the slopes.  
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Table 1 – Feature Selection and Selection for both studied areas.  
Rank Weka CAE GINI RF 

Area1 Area2 Area1 Area2 

1 NDVI Texture: NDVI 

variance 

Texture: NDVI 

variance 

Texture: NDVI variance 

2 EVI Texture: NDVI 

variance 

NDVI Sentinel B03 (Green) 

3 Sentinel B03 (Green) Sentinel B03 (Green) DEM Slope 

4 Texture: NDVI variance Slope Sentinel B3 (Green) Sentinel B04 (Red) 

5 DEM Sentinel B04 (Red) Slope DEM 

6 Sentinel B02 (Blue) Sentinel B02 (Blue) Sentinel B04 (Red) Texture: EVI variance 

7 Sentinel B04 (Red) Texture: EVI variance Sentinel B02 (Blue) Sentinel B02 (Blue) 

8 NIR Texture: EVI variance Texture: EVI variance Sentinel B08 (NIR) 

9 Texture: EVI variance Sentinel B08 (NIR) Sentinel B08 (NIR) Texture: NDVI variance 

10 Slope DEM EVI EVI 

11 Slope High Pass Filter Slope High Pass Filter Slope High Pass 

Filter 

Slope High Pass Filter 

Source: The authors (2020). 

 

One should notice that the best ranked features in at least one method or area were: B03, Texture NDVI 

variance, NDVI, EVI, B04, DEM and slope. Both NDVI and EVI are vegetation indices, so their contribution 

is assembled with the B03 explanation, regarding the identification of (non-)vegetated areas. Nonetheless, as 

the feature selection differentiates correlations between attributes, it is expected that the red band is not close 

to its derived products (NDVI, EVI, Textures). Besides, they can help with the mapping of different vegetation 

types, as Grass and Forest. According to Fox et al. (2004), the soil line is a linear relationship between the NIR 

and red reflectance of Bare Soil. In that sense, since B04 corresponds to the red band, it presents relevant 

information to Bare Soil detection. When it comes to geomorphometric features, as the DEM and slope, they 

stand out due to the spatial concentration of landslide occurrences. In other words, there is a pattern between 

the altitude and the slope angle where landslides happen. This pattern can help the model to recognize the 

landslide scars, considering that elevation and slope values are similar among them. Related results can be 

seen in Quevedo et al. (2020) and Oliveira et al. (2019). The High Pass Slope Filter achieved the lowest position 

for all the rankings. This could be explained by the fact that it could present similar information when compared 

to the slope and DEM.  

After performing the classification including all 11 features, feature selection was performed, and three 

other datasets were used as input. Tables 2 and 3 show the Overall Accuracy (OA) and kappa index for each 

classifier related to a feature selection method for Areas 1 and 2.  

For Area 1, concerning the results with all features as input, SVM and ML presented the highest values, 

with 96.33% and 95.33% of OA, respectively, as can be seen on Table 2. Since their values are similar, the 

McNemar statistical test was applied, showing that they are not different, considering 5% of significance, 

which, based on that, cannot lead to any conclusion concerning their performance. The datasets built from the 

RF GINI and Weka feature selection showed a general decrease in the accuracy values, especially for the RF 

classifier. The effects on the RF classifier were expected, since it is not recommended to perform a feature 

selection before this type of classification, considering that this procedure is already implemented by the 

algorithm. However, tests after the feature selection were made in order to standardize the methodology for all 

cases. On the other hand, the other classification algorithms maintained a relative stability in the results, 

presenting less than 3% of changes in their accuracy values.  

Besides, we can verify that the use of only two variables, B03 and NDVI variance, can present an 

acceptable accuracy for ML, SVM, and RF with OA values above 77%. The reduction to a couple of features 

as input for ML caused a decrease of 11% on the OA. Nevertheless, comparing to the others, this classifier 

still presented the highest accuracy values with OA of 84%. Based on that, one can affirm that ML was the 

most parsimonious model with two variables for Area 1. 
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Table 2 – Classification results for Area 1. Overall Accuracy (%) and kappa index values for the classification 

algorithms in each feature selection method. All: 11 attributes are considered in the classification. RF: only top-5 

features selected by RF. Weka: only top-5 features selected by Weka. B03 + NDVI variance: only these two features. 
A

re
a 

1
 

Feature Selection 
ANN ML SVM RF 

OA (%) kappa OA (%) kappa OA (%) kappa OA (%) kappa 

All 86.33% 0.8292 95.33% 0.9417 96.33% 0.9542 90.57% 0.8821 

RF GINI 84.67% 0.803 93.33% 0.9167 93.67% 0.9208 84.85% 0.8106 

Weka CAE 85.67% 0.8208 94.33% 0.9292 90.33% 0.8792 84.18% 0.8022 

B03 + NDVI Variance 57.67% 0.4708 84.00% 0.8 77.67% 0.7208 77.10% 0.7138 

Source: The authors (2020). 

 

For Area 2, the OA and kappa index for the classifications are shown in Table 3. The best performance 

with all features included was achieved by RF (92.33%) and SVM (92.00%). In order to compare these values, 

the McNemar test was applied, presenting a negative result, meaning that, on 5% of significance, one cannot 

deny the hypothesis that the two accuracy values are different, concluding that the RF indeed presented a better 

performance than the SVM. On this approach, the ANN presented the lowest result (74.33%), being this value 

decreased to 59% when using the first five features selected by Weka. However, the combination of ANN and 

the two most frequent attributes (B03 + NDVI variance) increased the OA value in 7% when compared to all 

features, reaching an acceptable OA value (81.67%). The same value is verified for the SVM with two features, 

which decreased only 10% of the accuracy when reducing about 80% of its input data. 

 

Table 3 – Classification results for Area 2. Overall Accuracy (%) and kappa index values for the classification 

algorithms in each feature selection method. All: the 11 attributes are considered in the classification. RF: only top-5 

features selected by RF. Weka: only top-5 features selected by Weka. B03 + NDVI variance: only these two features. 

A
re

a 
2

 

Feature Selection 
ANN ML SVM RF 

OA (%) kappa OA (%) kappa OA (%) kappa OA (%) kappa 

All 74.33% 0.6792 84.67% 0.8083 92.00% 0.9000 92.33% 0.9042 

RF GINI 81.00% 0.7625 90.33% 0.8792 92.00% 0.9000 89.33% 0.8667 

Weka CAE 59.00% 0.4875 88.33% 0.8542 92.00% 0.9000 89.67% 0.8708 

B03 + NDVI Variance 81.57% 0.7708 78.88% 0.725 81.67% 0.7708 72.00% 0.6500 

Source: The authors (2020).  

 

Considering all of the above, for the two-features approach, ANN and SVM revealed to be the most 

parsimonious models applied to Area 2. Moreover, it is interesting to point out that RF presented the most 

accurate results for the input considering all features, however, the worst for the two-features approach. This 

reveals the classifier’s high level of sensibility at the classification’s accuracy with previously applied feature 

selection procedure. 

For completeness, the commission (CE) and omission (OE) errors regarding each classification 

product derived from the procedures including all features are shown on Tables 4 and 5. For both areas, the 

classification algorithm presenting the highest error rates was the ANN. For Area 1, when comparing 

completeness, SVM presented the best prediction with maximum CE of 7.69% for the class Grass and OE and 

8.33% for Bare Soil. For Landslide detection, SVM also presented the greatest outcomes, with 0.00% of OE 

and 3.33% of CE. On the contrary, ANN presents the highest error rates for landslides, which are 11.86% of 

CE and 13.33% of OE. 

For Area 2, SVM also achieved the best performance either in general or considering only the 

Landslide class. In the general scenario, the highest error rates were 16.67% of CE for Shadowed Forest and 

20.00% of OE for Forest. Similarly, to Area 1, for Area 2 classifications, ANN also presented the highest error 

rates for both general scenario and Landslide class: 37.78% of CE and 53.33% of OE. 

For both areas, apart from the ANN classification, in general, Landslide detection showed greater 

outcomes when compared to other classes. A possible explanation for that relies on the fact that all extracted 

attributes were chosen specifically for landslide scar detection. In a nutshell, in all possible studied scenarios, 

SVM model showed the most satisfactory results while ANN showed the opposite. 
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Table 4 – Percentage of Commission (CE) and Omission (OE) errors for the four classifiers for Areas 1 without feature 

selection. 

Area 1 ANN ML RF SVM 

Class CE OE CE OE CE OE CE OE   

Bare Soil 31.82 25.00 10.77 3.33 15.38 25.42 3.51 8.33 

Forest 5.26 10.00 0.00 10.00 5.17 8.33 6.25 0.00 

Grass 15.15 6.67 1.72 5.00 4.76 0.00 7.69 0.00 

Landslide 11.86 13.33 7.81 1.67 5.36 8.62 0.00 3.33 

Shadowed Forest 0.00 13.33 1.69 3.33 16.18 5.00 0.00 6.67 

Source: The authors (2020). 

 
Table 5 – Percentage of Commission (CE) and Omission (OE) errors for the four classifiers for Area 2 without feature 

selection. 

Area 2 ANN ML RF SVM 

Class CE OE CE OE CE OE CE OE 

Bare Soil 45.95 33.33 26.39 11.67 1.89 13.33 9.84 8.33 

Forest 6.82 31.67 19.4 10.00 0.00 23.33 2.04 20.00 

Grass 6.67 6.67 0.00 33.33 3.28 1.67 0.00 11.67 

Landslide 37.78 53.33 10.61 1.67 10.45 0.00 7.69 0.00 

Shadowed Forest 24.68 3.33 12.73 20.00 17.81 0.00 16.67 0.00 

Source: The authors (2020). 

 

When it comes to visual interpretation, the classification results for Area 1 are shown in Figures 4 and 

5 whilst for Area 2, they are shown in Figures 6 and 7. Due to the large number of results, only the classification 

without feature selection as well as the classification using B03 and NDVI variance as inputs are shown herein. 

The point is to show the reader the visual effect of reducing attributes on classifications. 

 As before mentioned, for Area 1, the classifiers presented better OA values without the realization of 

previous feature selection. Figure 4 shows that, in general, the four methods presented similar results. All of 

them could detect an acceptable quantity of landslide scars, which can be identified at the RGB composition 

by their bright color and long shape. SVM presented the least noisy result, with well delineated forms and a 

reduced number of spare pixels (salt-and-pepper effect). Simple visual interpretation could conclude that the 

ANN had more variations on results compared to the others, having classified less Shadowed Forest areas.  
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Figure 4 – Classification products with all Features for Area 1.  

 
Source: The authors (2020). 

 

Figure 5 – Classification products with B03 + NDVI variance Features for Area 1.  

 

  
Source: The authors (2020). 
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Figure 6 – Classification products with all Features for Area 2. 

 
Source: The authors (2020). 

 

Figure 7 – Classification products with B03 + NDVI variance Features for Area 2.  

 

Source: The authors (2020). 

 

 

For Area 2 (Figure 6), the classifiers also had, generally, a similar result, except for the ANN, which 

classified less Landslide areas and a higher proportion of Shadowed Forest. Moreover, the ANN presented the 

noisiest output and could not properly delineate the Bare Soil trail crossing the scene horizontally (clearly 
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represented in the others). Analyzing Figures 5 and 7, where only two features were used, one can notice an 

increase in the proportion of Bare Soil classified in comparison with Figures 4 and 6 (without feature selection). 

This could be explained by the absence of a geomorphometric attribute, which could help to discriminate both 

classes by associating Bare Soil characteristics on high slope values as Landslide. Besides, the Shadowed 

Forest class is significantly underrepresented in Area 1, specially by the ANN, where almost any pixel was 

identified on that class. RF, on the contrary, classified a considerable amount of Shadowed Forest, however it 

showed the highest sensibility to salt-and-pepper effect for both areas. The difficulty to detect Shadowed Forest 

well might occur due to the absence of the B02 (green), since this type of vegetation might not present 

variations on the NDVI compared to Grass or Forest, however could have lower reflectance values for this 

band (i.e., dark green).  

It is important to notice that, even with a significant reduction on the number of features used, the 

classifiers were still able to detect the majority of landslide scars, specially ML and SVM. This emphasizes 

the potential of this features for landslide detection. Besides, data spatialization in maps can provide relevant 

information regarding the classifier’s performance, which cannot be identified only through the OA and kappa 

index values. This can be illustrated by observing Figure 5, where the SVM and the RF presented noticeably 

different results, however both showed OA values around 77%. 

 

5 CONCLUSION  
 

Most of the evaluated classifiers could effectively detect the Landslides scars, which is the main target 

of this research. Special attention should be given to SVM, which achieved among the best performances for 

both Area 1 and 2. Even though for the classification with all features, the RF algorithm outperformed the 

SVM in Area 2, SVM presented a more stable behavior of output values, being less affected to the changes 

due to the feature selection procedures.  

On the other hand, the reduction in approximately 80% of the input features did not affect 

significatively the overall accuracy. When analyzing the result from the classification with only two features, 

the most parsimonious classification algorithms were the ML for Area 1 (OA of 84.00%), and ANN and SVM 

for Area 2 (OA of 81.66%). This demonstrates that the models used are robust and capable of performing the 

classification with few variables, as long as they are adequate. 

Both RF GINI and Weka feature selection methods were able to rank relevant features, providing, in 

general, satisfactory accuracy results for the classifications with only five features (less than half of the original 

dataset). Moreover, the comparison of both methods and study areas allowed the selection of the two (B03 and 

NDVI variance) most frequent features amongst the first five ranked in all cases. These two features showed 

a great potential for landslide detection, providing more than 77% of OA in 75% of the cases analyzed. 

It is important to emphasize that finding the most appropriate classifier is problem-dependent, meaning 

that a classifier can be best recommended for a specific study area and time. Therefore, it is crucial to test the 

best option for their specific case. 

Moreover, it is important to point out that the classes used must be chosen thoroughly, as the supervised 

classification quality depends directly on that. Likewise, this study proves that good reference data (i.e. training 

and test samples) are crucial for achieving better outcomes. 

 For future studies, it is recommended to add segmentation processes before the classification in 

addition to testing other state-of-the-art pattern recognition approaches. Nevertheless, even though semi-

automatic classification methods have proven to display satisfactory results, it does not exclude completely 

the importance of manual processing and interpreter interference. Semi-automatic algorithms still show some 

problems, which can be better managed throw auxiliary data such as field work and visual interpretation 

corrections, in order to produce better classification results. 
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