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Abstract—This paper provides a new design procedure for
robust current controllers applied to LCL-filtered grid-tied in-
verters suitable for the integration of renewable energy sources.
The design takes into account the digital implementation delay,
multiple resonant controllers and operation under uncertain grid
impedance. The procedure is based on the optimization of an
objective function that allows to get a good trade-off between the
settling of transient responses and rejection of disturbances. A
particle swarm algorithm is used to find the optimal control gains
and, differently from other works, here the robust stability of the
closed-loop system under uncertain parameters is theoretically
certified by means of linear matrix inequalities. Experimental
results are shown, confirming that the closed-loop system with
gains obtained by the proposed procedure presents a good trade-
off between robustness and performance, with suitable transients
and grid currents with low harmonic content, complying with
requirements from IEEE 1547 Standard, becoming a useful
robust control design alternative for power converters in the
distributed generation scenario.

Index Terms—Grid-tied inverters, Linear matrix inequalities,
Particle swarm optimization, Robust control, State feedback.

I. INTRODUCTION

The population growth and the technological development
lead to a continuous increase in the consumption of electrical
energy. In order to cope with this demand in a sustainable
way, renewable energy sources have become an important
alternative [1], [2]. In this context, grid-tied inverters (GTIs)
play a major role to interface renewable energy sources and
the power grid, allowing operation with voltage, frequency
and currents complying with stringent standards [3]–[5]. The
control of such converters becomes more challenging when
dealing with disturbances and uncertain grid impedances at
the point of common coupling, which is a typical issue in the
scenario of distributed generation and microgrids [6], [7].

One of the key features of GTIs is the control of the grid-
injected currents, which allows to regulate the power flow
between the primary source and the grid. Several current
control strategies have been employed as, for instance, the
proportional-integral in synchronous reference frame, propor-
tional resonant in stationary reference frame and also state
feedback [8]–[12]. In the case of GTIs with output LCL filters,
there is a resonance peak that must be properly attenuated
to avoid performance degradation or even instability, being
active damping strategies preferred over the passive to avoid

additional power losses. The design of active damping strate-
gies becomes more difficult under grid uncertain parameters,
motivating the investigation of better trade-offs between per-
formance and robustness. In this way, metaheuristics can be
an important alternative to search spaces in order to find the
control gains in an optimal way, allowing to take into account
practical performance indices, that can be measured even by
means of simulations or based on experimental data. How-
ever, metaheuristics have not been extensively investigated for
control tuning of power converters [13].

Among the metaheuristics, it is worth to highlight the
particle swarm optimization (PSO), that can optimize complex
functions, with simple implementation and fast execution
when compared to other techniques [13], [14]. PSO has
already been applied to power converters control design in
[15]–[19]. A common point in these works is that robustness
against uncertain parameters is not taken into account in the
design stage. Moreover, since the calculations in the PSO
are performed only for some parameter conditions, it may
not be sufficient to ensure robust stability for the entire
domain of uncertainties (which has infinite points). On the
other hand, one way to represent systems subject to uncertain
parameters is by means of polytopic models, from which,
given a control gain, linear matrix inequalities (LMIs) can
be applied to provide a theoretical certificate of stability for
the entire domain of uncertainties, based on a finite number
of evaluations. LMIs are recognized as a very efficient tool,
being solved by specialized programs in a fast way (solution
in polynomial time) [20].

The main motivation for the present work is to provide a
design procedure that combines PSO and LMIs, leading to
control gains that ensure suitable grid currents even under
disturbances, parameter uncertainties and delay from digital
control. The proposed procedure is able to find state feedback
control gains in a given hyper-rectangle, thanks to the PSO,
and also can certify the robust stability of the closed-loop
system under uncertain grid impedance, thanks to the LMIs.
The optimization which guides the control design is based on
a novel objective function, which takes into account a limit for
the closed-loop poles and also a limit for the transmission of
disturbances from the control input to the system output. Ex-
perimental results are presented and confirm the effectiveness
of the proposed procedure for grid-current control.
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II. STATE SPACE MODEL WITH UNCERTAINTIES

A three-phase inverter connected to the grid by means of
an LCL filter is shown in Figure 1. The grid is assumed as
predominately inductive, and the equivalent grid inductance at
the point of common coupling (PCC) is given by the uncertain
parameter Lgr.

From the inverter output voltages, considering a balanced
system and that there is no path for the current ′0′, a state
space model of the plant in αβ0 stationary reference frame
can be written as (see, for instance, [21] for details)[

ẋα
ẋβ

]
=

[
A(Lg) 0

0 A(Lg)

] [
xα
xβ

]
+[

Bu 0
0 Bu

] [
uα
uβ

]
+

[
Bw(Lg) 0

0 Bw(Lg)

] [
vgα
vgβ

]
(1)

where xα and xβ are state vectors, uα and uβ are control
inputs, vgα and vgβ are disturbance inputs, and the uncertain
parameter Lg is given by

Lg = Lc2 + Lgr (2)

due to the uncertainty on Lgr.
Notice that (1) represents two single-phase decoupled sys-

tems. For instance, for axis α, this model is given by

ẋα = A(Lg)xα +Buuα +Bw(Lg)vgα (3)

being

A(Lg) =

 0 − 1
Lc1

0
1
Cf

0 − 1
Cf

0 1
Lg

0

, Bu =

 1
Lc1

0
0

,
Bw(Lg) =

 0
0
− 1
Lg

, xα =

 icα
vcα
igα


(4)

where icα is the current in the inductor on the converter side,
vcα is the voltage in the filter capacitor and igα is the current
in the inductor on the grid side, for axis α.

Since a model identical to (3)-(4) can be used for axis β,
the subscripts α and β are suppressed from now on.

The parametric uncertainty on Lg can be taken into account
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Figure 1. Three-phase grid connected inverter through LCL filter.

by means of the polytopic representation

ẋ = A(θ)x+Buu+Bw(θ)vg (5)

where

A(θ) = θA1+(1−θ)A2, Bw(θ) = θBw1+(1−θ)Bw2 (6)

and θ is a real parameter such that 0 ≤ θ ≤ 1.
In this representation, for instance, A1 and A2 are the

vertices of the polytope, obtained by evaluating A(Lg) for
the minimum and maximum values of Lg .

For the application of a digital control strategy, consider the
plant discretization with a sufficiently small sampling period
Ts, leading to the discrete polytopic model

x(n+ 1) = Ad(θ)x(n) +Bud(θ) ϕ(n) +Bwd(θ)vg(n)

y(n) = Cx(n) = [0 0 1] [ic(n) vc(n) ig(n)]
′

(7)
where

Ad(θ) = θAd1 + (1− θ)Ad2 , Adi = eAiTs (8)

Bud(θ) = θBud1 + (1− θ)Bud2 , Budi =
∫ Ts

0

eAiτBuidτ

(9)

Bwd(θ) = θBwd1 + (1− θ)Bwd2 , Bwdi =
∫ Ts

0

eAiτBwidτ

(10)
with i = 1 or i = 2, representing each one of the vertices.

The additional state

ϕ(n+ 1) = u(n) (11)

is included to represent the transport delay in the control signal
implementation [22].

Based on the internal model principle [23], to guarantee
tracking of sinusoidal references and the rejection of harmonic
disturbances, resonant controllers can be employed, being
represented, in the continuous case, by

[
δ̇r
δ̈r

]
=

Rc︷ ︸︸ ︷[
0 1
−ω2

n −2ξωn

] [
δc
δ̇c

]
+

Tc︷ ︸︸ ︷[
0
1

]
e

(12)

where ωn is the resonant frequency and ξ is the damping
factor.

A discrete-time model of the resonant controller can be
writen as [22]

xr(n+ 1) = Rd xr(n) + Td e(n) (13)

with

Rd = eRcTs , Td =

∫ Ts

0

eRcτTcdτ (14)

Generalizing, for ` independent resonant controllers, one
has

R=


Rd1 0 0 0
0 Rd2 0 0

0 0
. . . 0

0 0 0 Rd`

 T =


Td1
Td2

...
Td`

 (15)
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Finally, the augmented model can be written as

ρ(n+ 1) = Aaug(θ)ρ(n) +Buaugu(n)
+Bwaug(θ)vg(n) +Braugr(n)

y(n) = Caugρ(n)
(16)

where ρ(n) = [x(n)
′
ϕ(n) xr(n)

′
]
′

is the augmented state
vector and

Aaug(θ)=

Ad(θ) Bud(θ) 0
0 0 0
−TC 0 R

, Buaug=
 0

1
0


Bwaug(θ) =

 Bwd(θ)
0
0

 , Braug =
 0

0
T

 (17)

This model is useful for the design of state feedback
controller, and will be employed in the next section together
with the PSO.

III. CONTROL DESIGN PROCEDURE

Given the state space formulation of the problem in Sec-
tion II, one can use the state feedback control law [22]

u(n) = Kρ(n) =
[
Kx Kϕ Kr

]  x(n)
ϕ(n)
xr(n)

 (18)

where K is the vector of control gains.
In the proposed design procedure, the control gains will be

obtained by means of a PSO algorithm, which requires an
objective function to guide the optimization.

A. Objective function

The objective function has the purpose of measuring the
system performance for a given control gain K. In the context
of grid-tied inverters, the problem is to design robust control
gains capable to ensure that the closed-loop grid currents track
sinusoidal references even under disturbances and parameter
uncertainties.

In order to achieve that, consider the proposed objective
function

F (K) = σ(K)γ(K)+
(380σ(K)− 360)

1 + e−1000σ(K)+1000
(19)

In (19), the function σ(K) provides a stability index
evaluating the maximum module of the closed-loop system
eigenvalues, defined by the maximum value of

max |λ (Aaug(θ) +BuaugK)| (20)

evaluated for θ = 0 and θ = 1, i.e., for the extreme values of
Lg . It is known that evaluating the stability only at the vertices
of a polytope is a necessary (but not sufficient) condition for
the stability of the entire domain. However, it is used here
since, from the computational point of view, this provides a
simplified and fast way to approach the stability, which will be
theoretically guaranteed by the LMI tests in the next section.

The function γ(K) is a measure of the harmonic attenuation
from the output PWM voltages to the current ig , defined by
the maximum value of

max |Caug(ejωTsI − (Aaug(θ) +BuaugK))−1Buaug|
(21)

evaluated for θ = 0 and θ = 1, over the frequency range ω ∈[
0, 2π

Ts

]
. These harmonics can be related with nonlinearities, as

dead-time in the driving of the inverter switches, for instance.
Concerning the objective function, the first term of (19)

allows to get a good trade-off between (20) and (21). However,
evaluate only the first term may not guarantee that the solution
is stable (i.e., σ < 1). For this, a second term is included to
play the role of a penalization, using the sigmoid function.
Thus, for unstable solutions, the value of the sigmoid function
increases the objective function for higher values of σ. On
the other hand, for values of σ < 1, the sigmoid function has
almost zero value. In addition, the angular coefficient (equals
to 380) and linear coefficient (equals to 360) are designed to
increase the convergence of the solutions to the stable region.

The problem now is to find the robust control gain K? that
solves the following optimization:

K? = arg min
K ∈K

F (K) (22)

where F (K) is given by (19), taking into account different
controller candidates belonging to a search space K, and (22)
must be evaluated for θ = 0 and θ = 1.

The following subsection presents the PSO algorithm ap-
plied to the problem of finding robust control gains.

B. Particle swarm optimization
In order to use the PSO [14] in the control design problem

above, consider that each vector K in (18) defines a particle
position sj (i.e., a point in a search space) with D dimensions,
given by

sj = [sj,1 sj,2 sj,3 · · · sj,D] (23)

The algorithm initially creates a swarm of particles, ran-
domly distributed in the search space. By evaluating the
objective function, a fitness value is associated to the position
of each particle. In successive iterations (called epochs) the
positions are updated, and the swarm moves in the search
space in order to find the minimum of the objective function.

For a given epoch m, a recursive velocity equation is used
to update the position of each particle. The best position that
each particle has ever obtained (Pj.best), and the best posi-
tion among all particles (Gbest) are defined by the objective
function and the values are stored. The velocity and position
recursive equations are given, respectively, by

vm+1
j = ωvmj +η1r1(Pj.best−smj )+η2r2(Gbest−smj ) (24)

sm+1
j = smj + vm+1

j (25)

being η1 e η2 the cognitive and social coefficients, respectiv-
elly, r1 and r2 random values between [0, 1] and ω the inertia
factor that decelerates the particles during the execution, for a
better convergence.
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The PSO execution used here has the following steps:
1) configure the PSO parameters;
2) initialize the particles randomly in the search space;
3) calculate the objective function for each particle;
4) update Pj.best and Gbest;
5) update position and velocity of each particle;
6) if the stop criterion is reached, inform the best particle

(Gbest) and end the execution. If not, return to step 2.
At the end of the execution, the PSO algorithm returns the

particle (i.e., the control gain K?) with the lowest objective
function value associated (Gbest). The number of particles,
the number of epochs, and the coefficients η1 and η2 are set
in order to ensure convergence of the objective function with
viable computational effort.

After the PSO execution, a theoretical certificate of robust
stability is provided, by means of LMIs, as can be seen in the
next section.

IV. ROBUST STABILITY BY MEANS OF LMIS

The control gain K? provided by the PSO is obtained
evaluating the closed-loop system stability and performance
only for the vertices of the polytopic model. In order to provide
a theoretical certificate of robust stability valid for the entire
polytope, LMI based tests can be used, as follows.

The closed-loop system

ρ(n+ 1) = G(θ)ρ(n) (26)

with
G(θ) = Aaug(θ) +Buaug(θ)K (27)

is stable for all 0 ≤ θ ≤ 1 if there exist symmetric positive
matrices P1 and P2 such that

G
′

1P1G1 − P1 < −I, G
′

2P2G2 − P2 < −I (28)

and

G
′

1P1G2 +G
′

2P1G1 +G
′

1P2G1 − 2P1 − P2 < I,

G
′

2P2G1 +G
′

1P2G2 +G
′

2P1G2 − 2P2 − P1 < I
(29)

The proof can be found in [24] for the general case of N
vertices, and was specialized here for 2 vertices. The results
with the above LMIs are less conservative than the well known
quadratic stability [20], allowing to get theoretical certificates
of robust stability even when the quadratic stability fails.

V. CASE STUDY AND EXPERIMENTAL VALIDATION

As a case study, consider the GTI shown in Figure 1, with
parameters given in Table I. Note that there are 4 resonant
controllers, which lead to a xr vector with 8 states, that,
together with the 3 states of x and the state φ, results in an
augmented state vector of 12 states.

The PSO parameters are chosen as: 50 particles, 200 epochs
and η1 = η2 = 0.5. For each entry of K, the limits that
defines the search space are given in Table II. These values
were obtained from a digital linear quadratic regulator control
vector, tuned with Q being the identity matrix and R = 1.

Table I
GTI PARAMETERS.

Parameters Values
Lc1, Cf and Lc2 1 mH, 62 µF and 0.3 mH

Lg [0, 1] mH
DC-link voltage Vdc 400 V

Grid voltage vg 180 V (peak); 60 Hz
Sampling frequency 20040 Hz
Switching frequency 10020 Hz

Frequencies of resonant controllers 60, 180, 300 and 420 Hz
Damping factor 0.0001

Table II
SEARCH SPACE K LIMITS FOR THE GCC CASE STUDY.

sj sj,1 sj,2 sj,3 sj,4 sj,5 sj,6 sj,7 sj,8 sj,9 sj,10 sj,11 sj,12
sjmin -15 -15 -15 -15 0 -100 0 -50 0 -50 0 -50
sjmax 0 0 0 0 100 0 50 0 50 0 50 0

The PSO was executed several times, always converging to
viable controllers. After a typical execution, the PSO led to
the solution

K? = [−9.6783 − 2.1732 − 1.2914 − 0.2858
73.7784 − 73.7457 18.1096 − 17.6463

23.0582 − 23.4587 23.0796 − 23.8390]
(30)

for which the fitness has the evolution shown in Figure 2(a).
Evaluating functions (20) and (21) for the gain (30) one

has σ = 0.9933 and γ = 0.3109. The value of σ can
be confirmed by the eigenvalues location in the unit circle,
shown in Figure 2(b), for a sweep in Lg from 0 mH to
1 mH. The value of γ can be confirmed by the frequency
response of model (16) from the input u to the output ig ,
shown in Figure 3, confirming rejection of disturbances for
all frequencies, specially in the harmonics of the resonant
controller, which also ensure good rejection of harmonics from
the grid voltages, which was confirmed by time-simulations.

When verifying the feasibility of the LMIs (28) and (29)
with the control gain (30), the LMI Control Toolbox from
Matlab confirm that there exist symmetric positive matrices
P1 and P2 solving the problem, which theoretically certifies
the stability for the entire domain of uncertain parameters (i.e.,
for Lg assuming any value from Lgmin to Lgmax).
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0 40 80 120 160 200

G
be
st

(a)

­1 ­0.5 0 0.5 1

­0.5

0

0.5

­1

1
Im

Re

(b)

Figure 2. (a) Evolution of Gbest in each epoch; (b) Closed-loop eigenvalues
for a sweep in Lg , confirming the value σ = 0.9933.
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Figure 3. Frequency response from u to ig, for the extreme values of Lg ,
confirming the value γ = 0.3109 (i.e. −10.15 dB).

A. Experimental Results

To evaluate the system performance with control gains in
(30), experimental results are obtained with a 5.4 kW pro-
totype. The prototype is comprised by a three-phase inverter
based on IGBTs and a three-phase LCL filter, with system
parameters in Table I. Filter states (currents and voltages) are
measured using Hall effect sensors. The control law is synthe-
sized in a DSP TMS320F28335 and the grid synchronization
with the PCC is provided by a Kalman filter algorithm [25].

Figure 4 shows the grid-injected currents, in α and β
axes, under reference amplitude variations for the converter
connected to a real utility grid. The first variation represents
the start-up of the system, injecting active power into the grid,
while the second one represents an increase in the current
amplitude to 20 A. From these results it is possible to verify
that the system is capable of tracking sinusoidal grid-current
references with suitable steady-state and transient responses.

The three-phase currents related to the test performed in

­25
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­25
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ibref ib
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Figure 4. Experimental grid-injected currents in α axis (top) and β axis
(bottom) for an experimental test under reference variations (data from DSP).

(a)

(b) (c)

Figure 5. Experimental three-phase grid currents for the reference variations
in Figure 4 (vertical scale: 10 A/div): (a) full test; (b) converter start-up; (c)
increase in the active power.

Figure 4 are shown in Figure 5 (a), and the transient responses
are detailed in Figure 5 (b) and (c), highlighting the overall
good closed-loop performance.

Figure 6 (a) shows the three-phase grid currents in steady-
state. For one of the phases, the harmonic spectrum is given
in Figure 6 (b), showing that the closed-loop system with
control gain (30) is able to properly synthesize grid currents
with individual harmonic components that comply with the
limits from the IEEE 1547 Standard, and with total harmonic
distortion less than 5%, also complying with this Standard.

Finally, to evaluate the closed-loop stability under uncertain
grid inductances, a test is performed with the filter discon-
nected of the PCC. A short-circuit is then applied to the output
of the filter, and the grid inductance is emulated with additional
inductors, included in series with Lc2. Figure 7 (a) and (b)
shows the system start-up with Lgmin (i.e. Lg = 0 mH) and
Lgmax (i.e. Lg = 1 mH), respectively. It is possible to confirm

(a)
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H
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m
. 
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%
)

Harmonic order

(b)

Figure 6. Experimental results for harmonic content analyses (vertical scale:
10 A/div): (a) Steady-state currents; (b) harmonic spectrum and limits from
IEEE 1547 Standard.
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(a) (b)

Figure 7. Experimental results for stability evaluation under uncertain
parameter (vertical scale: 10 A/div): three-phase grid currents for an off-grid
test emulating (a) Lgmin and (b) Lgmax.

the stability under uncertain parameters, ensured by the LMIs,
with suitable transient and steady-state responses.
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VI. CONCLUSION

This paper provides an automatic procedure for the design
of robust state feedback current controllers for GTIs, leading
to grid-injected currents in compliance with requirements from
IEEE 1547 Standard. The design is based on a PSO, which
searches the control gains guided by the minimization of an
objective function that takes into account a trade-off between
the settling of transient responses and disturbance rejection.
Differently of other papers, LMIs are used to theoretically
certify the robust stability of the closed-loop for the entire
interval of grid uncertain inductances. Experimental results are
shown, confirming compliance of the steady-state responses
with requirements from IEEE 1547 Standard for individual
harmonics and total harmonic distortion, and also suitable
transient recovers.
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