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Abstract: Due to increasing algae bloom occurrence and water degradation on a global scale, there is a
demand for water quality monitoring systems based on remote sensing imagery. This paper describes
the scientific, theoretical, and methodological background for creating a cloud-computing interface on
Google Earth Engine (GEE) which allows end-users to access algae bloom related products with high
spatial (30 m) and temporal (~5 day) resolution. The proposed methodology uses Sentinel-2 images
corrected for atmospheric and sun-glint effects to generate an image collection of the Normalized
Difference Chlorophyll-a Index (NDCI) for the entire time-series. NDCI is used to estimate both
Chl-a concentration, based on a non-linear fitting model, and Trophic State Index (TSI), based on
a tree-decision model classification into five classes. Once the Chl-a and TSI algorithms had been
calibrated and validated they were implemented in GEE as an Earth Engine App, entitled Algae
Bloom Monitoring Application (AlgaeMAp). AlgaeMAp is the first online platform built within
the GEE platform that offers high spatial resolution of water quality parameters. The App benefits
from the huge processing capability of GEE that allows any user with internet access to easily extract
detailed spatial (30 m) and long temporal Chl-a and TSI information (from August 2015 and with
images every 5 days) throughout the most important reservoirs in the State of São Paulo/Brazil. The
application will be adapted to extend to other relevant areas in Latin America.

Keywords: Google Earth Engine; Sentinel-2; water quality; chlorophyll-a; Trophic State Index;
Earth Engine App

1. Introduction

Human activities on a global scale have significantly contributed to the degradation of
the water quality of inland aquatic systems by increasing their nutrient levels. Particularly,
reservoirs are under high pressure due to the increasing water demand for urban areas,
including irrigation, industrial use, and energy production, while still needing to main-
tain their ecological function [1–3]. The quasi-lentic nature of reservoirs leads to a higher
phosphorus accumulation, which may trigger phytoplankton production, abundance, and
frequency of algae blooms [4]. Algae bloom (AB) is a rapid increase or accumulation in the
population of algae, characterized by the blue-green water coloration caused by algae’s pig-
ments, that can cause serious consequences to human health and aquatic biogeochemistry

Remote Sens. 2021, 13, 2874. https://doi.org/10.3390/rs13152874 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8061-0076
https://orcid.org/0000-0003-4543-5908
https://orcid.org/0000-0001-8839-5366
https://orcid.org/0000-0003-3802-0368
https://orcid.org/0000-0002-3221-9774
https://orcid.org/0000-0002-1223-9276
https://doi.org/10.3390/rs13152874
https://doi.org/10.3390/rs13152874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13152874
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13152874?type=check_update&version=1


Remote Sens. 2021, 13, 2874 2 of 20

due to the production of toxins [5,6]. The increase in aquatic ecosystems’ productivity has
been monitored by a series of different Trophic State Indexes (TSIs) based on information
regarding the nutrient input (generally, phosphorus), water transparency (usually Secchi
depth), and chlorophyll concentration (a proxy for phytoplankton biomass) [7]. The advan-
tage of using Chl-a for AB monitoring is that it can be estimated with satellite data and,
therefore, used to systematically monitor phytoplankton abundance at a relatively low cost.
The interaction between light and photoactive pigments in phytoplankton cells, such as
Chlorophyll-a (Chl-a), enables the detection of algae bloom from space-borne imagery [8].
For instance, the Normalized Difference Chlorophyll Index (NDCI) has been used to detect
phytoplankton presence by using a ratio of near-infrared (705 nm—maximum phytoplank-
ton reflectance sensitivity) and red bands (665 nm—high Chl-a absorption peak) [9]. In
phytoplankton-rich waters around the globe, NDCI has shown to detect a wide Chl-a
concentration range when using Sentinel-2 imagery [8,10–12]. Watanabe et al. [8] observed
that NDCI performed better than other algorithms (2-band, 3-band, and slope) for Chl-a
retrieval in the Tietê cascade system, which is the study area of this research.

The development of algorithms using remote sensing for Chl-a estimation relies largely
on in situ Chl-a measurements. Unfortunately, the lack of in situ data, in Latin American
countries for example, limits water quality management due to the scarce information
on the current status of surface waters. This is because most of the monitoring programs
provide water quality data at a low frequency (monthly or bi-monthly). Alternatively,
the spatial coverage and increased frequency of image acquisition make satellite remote
sensing a key tool for AB monitoring programs. Recently, new processing capabilities have
used remote sensing historical information, such as Sentinel-2, to track seasonal patterns
and degradation tendencies [4,13,14]. The Google Earth Engine (GEE), for instance, offers
high performance cloud computing resources to process large amounts of geospatial
datasets [15,16]. According to Hirt et al. [17], monitoring water resources using GEE is
promising since it offers access to a large image database of several satellites (Sentinel and
Landsat programs) thus permitting temporal analysis over large areas. Recent studies
have used GEE to map Chl-a concentration and its temporal dynamics [18–21], showing its
ability to monitor phytoplankton abundance and TSI using satellite images.

To meet the need to incorporate satellite remote sensing into the TSI monitoring
system in Latin American (LA) inland waters, several researchers from several countries
are developing Algae Bloom (AB) mapping tools under the support of GEE and Earth
Observation Data Science (EO) [22]. This research aims to develop a user-friendly appli-
cation (GEE App) to retrieve algae bloom-related products towards a monitoring system
for inland waters in Latin America. More specifically, the objective is to calibrate and
validate predictive algorithms for Chlorophyll-a and Trophic State Index classes using both
in situ data and Sentinel-2/MSI data available in Google Earth Engine. Once parametrized,
these predictive algorithms were implemented in the GEE App to compute the spatial and
temporal variation of Chl-a concentration and TSI classes. This paper gives the theoretical
and methodological background supporting the tool’s development and reports the first
results of their application to the monitoring of Tietê River Basin, located in the State of
São Paulo, Brazil (Figure 1).
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Figure 1. (a) Region of Interest is the Paraná River Water Basin; (b) Tietê River Basin with indication of the sample stations 
(see Table 1), (c) Detail of Guarapiranga and Billings Reservoirs. 

Table 1. Information about the Chl-a concentration range, date range, and number of water samples used in this research 
for the Chl-a algorithm and TSI decision tree. The dataset is composed of CETESB sample stations from ID1 to ID 25, and 
samples acquired during field work conducted on 7 November 2020 (ID 26–31). Geographical coordinates in decimal 
degrees (Datum: WGS/1984). 

ID Sample Station Lat Long # of Samples Min Chl-a Mean Max Date Range 
1 TITR02800 −51.147 −20.660 7 1.1 3.4 9.6 November 2016 and November 2019 
2 TITR02100 −50.467 −21.048 4 1.3 13.8 43.4 May 2017 and November 2019 
3 TIPR02990 −49.782 −21.297 3 3.2 16.2 34.7 November 2016 and May 2018 
4 TIPR02400 −49.285 −21.640 5 5.8 28.2 113.3 July 2017 and November 2019 
5 TIET02600 −48.994 −21.759 3 0.8 14.8 36.8 July 2017 and July 2018 
6 TIBB02700 −48.447 −22.544 3 28.6 33.0 39.8 November 2015 and July 2019 
7 TIBB02100 −48.348 −22.613 4 7.2 26.7 35.8 May 2018 and January 2020 
8 TIBT02500 −48.252 −22.678 6 13.4 31.3 60.6 July 2017 and November 2019 
9 PCBP02500 −48.174 −22.629 5 2.9 14.6 40.1 July 2017 and November 2019 

10 JARI00800 −46.424 −22.928 4 8.2 11.5 17.6 July 2017 and July 2019 
11 JCRE00500 −46.401 −22.971 2 1.7 4.5 7.2 July 2017 and July 2019 
12 CACH00500 −46.289 −23.033 1  7.4  5 July 2016 
13 JAGJ00900 −46.027 −23.193 3 1.0 1.3 1.5 June 2016 and December 2019 
14 SANT00100 −45.795 −23.335 3 1.0 1.3 1.5 June 2016 and December 2019 
15 INGA00850 −45.612 −23.366 4 1.0 1.4 1.5 June 2016 and December 2019 
16 IUNA00950 −45.571 −23.418 4 1.0 1.4 1.6 June 2016 and December 2019 
17 JQJU00900 −46.662 −23.340 6 1.8 5.2 13.3 August 2015 and July 2019 
18 PEBA00900 −46.278 −23.579 9 2.1 5.8 14.7 August 2015 and March 2020 

Figure 1. (a) Region of Interest is the Paraná River Water Basin; (b) Tietê River Basin with indication of the sample stations
(see Table 1), (c) Detail of Guarapiranga and Billings Reservoirs.

Table 1. Information about the Chl-a concentration range, date range, and number of water samples used in this research
for the Chl-a algorithm and TSI decision tree. The dataset is composed of CETESB sample stations from ID1 to ID 25, and
samples acquired during field work conducted on 7 November 2020 (ID 26–31). Geographical coordinates in decimal
degrees (Datum: WGS/1984).

ID Sample
Station Lat Long # of

Samples Min Chl-a
Mean Max Date Range

1 TITR02800 −51.147 −20.660 7 1.1 3.4 9.6 November 2016 and November 2019
2 TITR02100 −50.467 −21.048 4 1.3 13.8 43.4 May 2017 and November 2019
3 TIPR02990 −49.782 −21.297 3 3.2 16.2 34.7 November 2016 and May 2018
4 TIPR02400 −49.285 −21.640 5 5.8 28.2 113.3 July 2017 and November 2019
5 TIET02600 −48.994 −21.759 3 0.8 14.8 36.8 July 2017 and July 2018
6 TIBB02700 −48.447 −22.544 3 28.6 33.0 39.8 November 2015 and July 2019
7 TIBB02100 −48.348 −22.613 4 7.2 26.7 35.8 May 2018 and January 2020
8 TIBT02500 −48.252 −22.678 6 13.4 31.3 60.6 July 2017 and November 2019
9 PCBP02500 −48.174 −22.629 5 2.9 14.6 40.1 July 2017 and November 2019
10 JARI00800 −46.424 −22.928 4 8.2 11.5 17.6 July 2017 and July 2019
11 JCRE00500 −46.401 −22.971 2 1.7 4.5 7.2 July 2017 and July 2019
12 CACH00500 −46.289 −23.033 1 7.4 5 July 2016
13 JAGJ00900 −46.027 −23.193 3 1.0 1.3 1.5 June 2016 and December 2019
14 SANT00100 −45.795 −23.335 3 1.0 1.3 1.5 June 2016 and December 2019
15 INGA00850 −45.612 −23.366 4 1.0 1.4 1.5 June 2016 and December 2019
16 IUNA00950 −45.571 −23.418 4 1.0 1.4 1.6 June 2016 and December 2019
17 JQJU00900 −46.662 −23.340 6 1.8 5.2 13.3 August 2015 and July 2019
18 PEBA00900 −46.278 −23.579 9 2.1 5.8 14.7 August 2015 and March 2020



Remote Sens. 2021, 13, 2874 4 of 20

Table 1. Cont.

ID Sample
Station Lat Long # of

Samples Min Chl-a
Mean Max Date Range

19 GUAR00900 −46.728 −23.674 5 35.8 40.9 46.6 July 2017 and March 2020
20 GUAR00100 −46.727 −23.754 4 43.2 86.4 128.3 Jul 2017 and March 2020
21 BILL02030 −46.664 −23.718 9 22.7 103.3 265.5 August 2015 and July 2019
22 BILL02100 −46.648 −23.749 11 23.7 83.4 273.3 August 2015 and July 2020
23 BILL02500 −46.598 −23.791 8 32.6 43.9 57.7 August 2015 and March 2020
24 BITQ00100 −46.656 −23.845 10 35.1 113.5 435.7 August 2015 and July 2020
25 RGDE02030 −46.416 −23.741 7 0.6 23.1 42.7 August 2015 and March 2020
26 Billings_1 −46.671 −23.706 1 486.2 8 November 2020
27 Billings_2 −46.639 −23.763 1 155.7 8 November 2020
28 Billings_3 −46.653 −23.721 1 270.5 8 November 2020
29 Billings_4 −46.612 −23.792 1 120.8 9 November 2020
30 Billings_5 −46.627 −23.816 1 98.3 9 November 2020
31 Billings_6 −46.637 −23.836 1 81.7 9 November 2020

2. Materials and Methods

The proposed methodology uses Sentinel-2 images corrected for atmospheric and
sun-glint effects to generate an image collection of the NDCI [9] for the entire time-series
(August 2015 to present) of a given area. NDCI data retrieved from the imagery are then
compared with Chl-a measured in situ. NDCI is used to estimate both Chl-a concentration,
based on a non-linear fitting model, and TSI, based on a tree-decision model. The TSI tree
decision classifies every pixel into five levels of Trophic State Index (Oligo, Meso, Eutrophic,
Super, and Hypereutrophic) [23].

2.1. Tietê River Basin

The AB monitoring tools were first developed for selected reservoirs of the Tietê River
Basin, located in the State of São Paulo (Figure 1), which is home to more than 40 million
inhabitants and is responsible for more than 24% of the total water demand in Brazilian ur-
ban areas. A variety of reservoirs provides water for the urban areas within the State of São
Paulo. The Cantareira system is the most important water supply for the São Paulo capital,
while the Tietê Cascade System Reservoir (which comprises six reservoirs in its cascade
system) with a downstream length of 1100 km provides water to fishery activities, naviga-
tion, hydroelectricity, industrial use, agriculture, and domestic demands for the interior of
the State. However, the rapid urbanization and industrialization process has led to high
nitrogen and phosphorus concentrations in surface waters and consequently degradation
and eutrophication of the water quality [24]. For example, the Billings reservoir, located
in the upstream Tietê basin, faces serious water pollution problems due to the increase in
urban population without a concurrent increase in sewage or solid waste collection and
treatment systems. As a result, high TSI levels were often observed throughout the past
years [8] along the Tietê River expressed by Chl-a concentration ranging from 1 to over
500 µg/L, suitable for the proposed application because it covers a large variety of trophic
levels, including AB conditions.

2.2. Sentinel-2 MSI Imagery Processing

The first step of the AB monitoring tool (Figure 2) is the atmospheric correction since
water applications demand reliable surface reflectance measurements. To circumvent the
lack of Sentinel 2 Level 2 (surface reflectance) for the entire time series (2015 onwards), the
best option is to use the SIAC (Satellite Invariant Atmospheric Correction) implemented
on GEE. The SIAC method uses coarse-resolution data derived from MODIS (Moderate
Resolution Imaging Spectroradiometer) MCD43A3 datasets (at 500 m of spatial resolution)
to describe surface anisotropy and CAMS (Copernicus Atmospheric Monitoring Service) to
estimate atmospheric parameters. MODIS data is mapped to TOA (Top-of-Atmosphere) to
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be compared against data with coarser spatial resolution, and CAMS data is used to obtain
atmospheric parameters solving an inversion problem. More detailed information about
SIAC and its implementation in GEE can be obtained in Yin et al. [25] and in Song et al. [26].
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products implemented in the GEE Application. Steps from (a–i) are described in detail along the text.

After atmospheric correction, the sun glint effect was corrected by subtracting the
B12 (2190 nm) from Bands 2–11 (Figure 2b). This method assumes that the remaining
signal (after atmospheric correction) in the SWIR band is related to the air–water interface
specular reflectance (sun and sky glint). The water signal in these wavelengths is assumed
to be negligible due to the extremely high water absorption [27,28]. This method was
previously used for glint correction in Brazilian waters with successful results [29–32]. In
order to evaluate both atmospheric and sun-glint correction of a Sentinel-2 image, in situ
radiometric data were collected in November 2020 in the Billings Reservoir. A detailed
description of this evaluation can be found in Appendix A.

The next step is to mask out the pixels with clouds by applying the Sentinel-2: Cloud
Probability product available on GEE (Figure 2c). This is a product created by using the
Sentinel Hub’s cloud detector (s2cloudless python package), which provides automated
cloud detection for Sentinel-2 imagery. Only pixels with a cloud probability lower than
10% were included in the following steps.

For the water mask, the Joint Research Centre (JRC) Water Mask product available
on GEE was used [33] to include water masses that are permanent all year long to avoid
adjacency effects and seasonally flooded wetlands (Figure 2d). After all the pre-processing
steps were completed, NDCIsat was calculated (Figure 2e) as follows [9]:

NDCIsat = (SR705 - SR665)/(SR705 + SR665) (1)

For Sentinel-2, the central wavelengths for Surface Reflectance at 705 nm (SR705) and
at 665 nm (SR665) correspond to Band 5 (red edge) and Band 4 (red), respectively. The main
limitation of using SIAC within GEE is that when the user wants to display the results
on the map after SIAC’s correction, GEE reaches its maximum computing capacity. This
limitation prevents the user from performing long time-series analysis of large water bodies.
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To overcome this issue, a new NDCIsat image collection has been created (resampled to
30 m) and uploaded into the GEE user’s asset to be used directly on the GEE platform
(Figure 2f). By doing this, the user can perform spatial and temporal analysis of NDCIsat
and derived products over large areas and long periods in a few seconds. Figure 2g,h
refers to the calibration and validation of Chl-a and TSI algorithms, respectively, described
as follows.

2.3. Chl-a In Situ Data

In situ Chlorophyll-a measurements were provided by the São Paulo State Environ-
mental Company (CETESB), which monitors reservoirs bi-monthly at defined sample
stations [23]. Considering the limited number of Chlorophyll-a in situ samples available
on the same day as the satellite image acquisition, different time windows were tested to
gather a larger number of samples (see Appendix B). After testing the algorithm’s output
varying time windows from 0 to ±3 days, that with ±2 days has shown to be the best
balance between the number of samples, accuracy, and precision for both Chl-a estimation
and TSI classification. This time window has been frequently reported in the literature for
the application of satellite images in lentic aquatic systems [34].

The two-days window matchups correspond to 130 samples of 25 stations (Figure 1
and Table 1) acquired from August 2015 and November 2020. Those samples are not evenly
distributed amongst the in situ stations (IDs) since the frequency of Chl-a measurements
varies among them—for example, Billings Reservoir’s stations ID21–25 are more likely
to fall within the ±2 days window, having a larger number of samples throughout the
study period. In addition, some fieldwork was conducted in the Billings Reservoir (in
November 2020) during which six Chl-a concentration samples were incorporated to the
calibration/validation dataset used to develop the Chl-a model (summing to a total of 136
pairs of Chl-a and NDCIsat samples, Table 1).

2.4. Calibration and Validation
2.4.1. Algorithm for Chl-a

All the match-ups between in situ Chl-a data and NDCIsat (N = 136, for a ± 2 days’
time window) were used to calibrate the Chl-a algorithm by Monte Carlo (MC) cross
validation technique, with 10,000 rounds [35]. At each run of Monte Carlo, 70% of the
samples were applied for calibration and the remaining for validation (Figure 2g). After
testing two non-linear fitting models (Polynomial 2nd order and power-law fitting curves),
the power-law function was selected for the Chl-a modeling as the polynomial fitting
showed a parabolic trend causing the estimated Chl-a to increase as NDCI decreased (for
NDCI lower than −0.2). A total of 10,000 runs were used for Monte Carlo validation and
two fitting statistics were computed: Coefficient of Determination, R2, and Mean Absolute
Percentage Error, MAPE.

R2 = 1 − ∑(yi − ŷ)2

∑(yi − y)2 (2)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − ŷ
yi

∣∣∣∣ (3)

where n is the number of predictions, yi is the observed value, ŷ is the predicted value, and
y is the mean value of yi. The results for fitting statistics as well as the model parameters
for the 10,000 runs were calculated considering the mode of each statistic.

2.4.2. Decision Tree for TSI and Algae Bloom Classification

The Trophic State Index can be classified into six classes according to Chl-a concen-
tration, ranging from Ultra-oligotrophic to Hyper-eutrophic (Table 2). For this study, all
the 136 measured Chl-a samples were first categorized into measured TSI levels as ground
truth following the thresholds in Table 2. The NDCIsat distribution for each TSI class was
submitted to a paired T-Test (p value = 0.05) between the classes, where the null hypothesis
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is that there is no significant difference between the two classes being tested. The NDCIsat
distributions between all classes were statistically different, except for Ultra-oligotrophic
(not statistically different from Oligotrophic, p-value > 0.05) which was then reclassified
into Oligotrophic. A decision tree based on MC technique was applied to determine the
NDCIsat threshold that classifies into five TSI levels (Figure 2h). To detect the algae bloom
(AB), the criterion was to consider either Super-eutrophic or Hyper-eutrophic levels (i.e.,
Chl-a > 30.55 µg/L) as algae bloom condition. The output is binary classification, where
NDCIsat is categorized either as non-bloom (Oligo, Meso and Eutrophic levels) or AB
condition (Super and Hypereutrophic levels).

Table 2. Chl-a concentration thresholds for Trophic State Levels according to CETESB [23]. * In this
research, Ultra-oligotrophic class was combined with Oligotrophic because paired T-test indicated no
significant difference between them. ** Considered Algae Bloom condition for this research.

Trophic State Chlorophyll-a (µg/L)

Ultra-oligotrophic * Chl-a < 1.17
Oligotrophic 1.17 < Chl-a < 3.24
Mesotrophic 3.24 < Chl-a < 11.03

Eutrophic 11.03 < Chl-a < 30.55
Super-eutrophic ** 30.55 < Chl-a < 69.05
Hyper-eutrophic ** 69.05 < Chl-a

For both TSI and AB detection, confusion matrices were used to evaluate the classifi-
cation performances in terms of accuracy and f1-score. All the calibration and validation
processing were conducted in Python 3.6.

2.5. GEE App

The Chl-a algorithm (Section 2.4.1) and TSI decision-tree (Section 2.4.2) were imple-
mented in GEE in order to compute Chl-a, TSI, and AB maps from the stored NDCIsat
collection (August 2015 to March 2021). To make these products easily accessible to end-
users, a GEE App with interactive functions has been implemented. The user can select
the Region of Interest (ROI), date range, and the type of analysis: either single image or
temporal analysis. For single image analysis, the user can select an image from a day of the
year to visualize RGB, NDCIsat, Chl-a, TSI, and/or AB images. For the temporal analysis, a
couple of charts will pop-up when the user defines a geometry on the Map showing Chl-a
temporal average and the relative TSI area. In addition, new map layers are added with
mean, minimum, maximum maps for Chl-a, TSI, and AB data (Figure 2i).

3. Results

The intermediate outputs of an image processing workflow from Original S2 Level 1 to
NDCI images are shown in Figure 3. The original image (Figure 3a) was first cloud masked
(Figure 3b) and then submitted to atmospheric and glint correction followed by water mask
application (Figure 3c). NDCIsat was calculated and exported to the NDCI-daily collection
with a 30 m resolution (Figure 3d). The evaluation of the atmospheric correction method
applied in this study is available in Appendix A.

After processing the entire Sentinel-2 imagery database for the Tietê River Basin on
a daily basis and adding them into the GEE Asset with 30 m resolution, the NDCI daily
collection of more than 1500 images from August 2015 to February 2021 summed up to
10 GB.
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3.1. Chl-a Algorithm

As a result of Monte Carlo simulation, the validated power-law fitting curve (N = 30%)
assembles the global power-law fitting curve (N = 136) rendering a robust predictive model
(Figure 4a).
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The final model presented a R2 of 0.86 and MAPE close to 90% (Figure 4a). The
low accuracy indicated by MAPE value could be related to the fact that the proposed
algorithm presented higher uncertainty for low Chl-a values (<5 µg/L). As Chl-a increases,
the algorithm accurately estimates Chl-a for concentration between 10 and 70 µg/L, as
observed in Figure 4c. On the other hand, the prediction’s errors increase significantly
above 70 µg/L [Chl-a], according to the model’s residual values (Figure 4d). Overall, the
algorithm performs satisfactorily well on estimating medium to high Chl-a (>10 µg/L), a
concentration range where AB often occurs.

3.2. TSI Classification Tree

The paired T-test confirmed that the NDCIsat distribution is different among each
TSI class (Figure 5a). The NDCIsat thresholds (nodes) were based on the decision tree
defined after MC iteration (Figure 5b), as follows: <−0.131 (Oligo), <−0.093 (Meso), <0.025
(Eutrophic), and <0.127 (Super). The Gini index indicates high purity for Hypereutrophic
class (n = 23). On the other hand, Gini increases for Meso (n = 23), Eutrophic (n = 23), and
Super-eutrophic (n = 34) classes showing some overlap amongst them, as displayed in
the boxplot.
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distribution amongst the eutrophic level classes) and (b) respective threshold values defined by the decision tree.

The weighted overall f1-score, which accounts for both precision and recall, is 0.71
(Figure 6a). Oligo and Hypertrophic classes show a high f1-score (>0.78), indicating that
the tree classification performs well on the extremes (very low and very high) of Chl-a
concentration range. For the intermediate classes, however, the f1-score decreases to 0.72
for Super-eutrophic, 0.61 for Meso, and 0.50 for Eutrophic class. The Eutrophic class shows
a low precision (0.39) due mostly to the underestimation of Super-eutrophic class, i.e., the
tree decision classifies some Super-eutrophic samples (n = 10) as Eutrophic, and to the
overestimation of Meso-eutrophic samples classified as Eutrophic class (n = 4). Overall, the
classifier shows a satisfactory performance allowing the user to detect increasing levels
of eutrophication.

For AB (Super and Hyper-eutrophic) vs. non-bloom (Oligo, Meso, and Eutrophic)
classification, the overall f1-score is 0.90 (Figure 6b). Most of the errors are due to the
misclassification of bloom (true label) as non-bloom (predicted label), which means the
under-estimation of bloom condition of around 14%. On the other hand, for the pixels
classified as bloom with 96% of precision, only two samples identified as bloom out of 57
were mistaken.
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3.3. App Interface and Functionalities

Once the Chl-a and TSI algorithms had been calibrated and validated, they were
implemented in GEE as an Earth Engine App (Figure 7), entitled Algae Bloom Monitoring
Application (AlgaeMAp). Within the App, the user can pick a region of interest, display
maps, create temporal charts, and visualize spatial stats, such as min, max, and mean
values for each pixel given a date range.
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Figure 7. Print-screen of the current version of the experimental GEE App showing an NDCI image from 11 August 2015;
(a) Select the ROI (Region of Interest), either Basins or Reservoirs; (b) Indicate geographic coordinates to add a geographical
point, in decimal degrees.; (c) Select single images to display RGB (432, Original Level 1), Chl-a, NDCI, TSI, or Bloom
product; (d) For temporal analysis, select the year and month interval of interest; (e) Calculate time-series to generate Spatial
Stats Maps such as min, max, mean, and bloom occurrence (%); (f) Write a buffer and scale before drawing a geometry to
create time-series charts; (g) Select the geometry and draw it on the map and select the Check-boxes to show time-series
charts; (h) Inspect the image pixel value; (i) Download the processed images; (j) Legend for image interpretation.
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A few examples extracted from the Tietê River Basin are shown to illustrate the App
functionalities by taking the user’s perspective:

Single image analysis—After selecting a ROI (either basins or reservoirs), individual
(or single) images can be displayed as RGB and/or derived products (Chl-a, TSI, bloom)
by selecting the desired date (Figure 7c). After selecting the date, the user can click on the
“Display Image” button (Figure 7c) to show the Chl-a, TSI, and Bloom images (Figure 8).
For every date selected, the user can download the displayed layers (NDCIsat, Chl-a, TSI,
and AB) as tiff files (Figure 7i). Additionally, the user can click on a given pixel to show the
Chl-a, NDCIsat, and geographic location in the Inspector tool (Figure 7h).
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Time-series spatial stats—After selecting the ROI, the user can also analyze time
changes in variables such as Chl-a and NDCIsat (temporal mean, min, max) and Bloom
Frequency (Figure 9). For that, the user must select the date range (year and month) and
click on the ‘’Calculate Time-Series button” (Figure 7e). This method allows the user to
choose a specific t interval and monthly range (to analyze seasonality). These statistical
maps are added as new layers into the Map Panel and can be visualized and downloaded
separately (Figure 9). Similar to the Single image analysis, clicking on a specific pixel on
the map in the Time-series section will display the temporal variables in the Inspector
(Figure 7h).
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Time-series charts—After selecting the date range, the App can also be used to plot
temporal information from an area of interest, which can be a rectangle, polygon, or point
(Figure 7f). First, the user must choose one of these three available geometries and draw
it on the map. Then the user must click on the desired information, which can be “Show
mean Chl-a”, “Show mean NDCI”, “Show monthly TSI”, “Show daily TSI”, and “Show
Video”. For the “Show mean Chl-a” and “Show mean NDCI” buttons, the App displays
temporal variation of spatial mean Chl-a and NDCI (if the geometry is a rectangle or a
polygon). When the user selects a point, the Chl-a and NDCIsat temporal information
becomes specific to an individual pixel. As a result, the Chl-a and NDCIsat time series can
be analyzed for a given geographic coordinate of interest (decimal longitude and latitude,
WGS 84), which is often the case when you have in situ data from a field campaign. For
example, Figure 10a shows Chl-a time-series for one of the CETESB’s monitoring sites
indicated by the coordinates in Figure 7.
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Figure 10. Time-series charts of: (a) Chl-a concentration for CETESB’s sample point (GUAR00900, ID19 in Figure 1) indicated
by the blue arrow in Figure 8; (b) Represents a gif image that shows monthly average Chl-a concentration for a given
period; (c) TSI level aggregated by day with absolute values (number of pixel) within a rectangle area of interest (Billings
Reservoir—black square in Figure 8); and (d) TSI level aggregated by month with relative values (% area) for the same area
(Billings Reservoir).

Furthermore, it is possible to identify, within the chart, every date with an image,
which can be then displayed (Figure 8c). For TSI, there are two options to visualize the
information: relative TSI area aggregated by month (“Show monthly TSI”) or absolute daily
TSI area (“Show daily TSI”). Monthly aggregation gives a more general TSI condition with
less gaps on the water body over space and time, being more appropriate for long-term and
regular monitoring. Alternatively, for a more specific evaluation of TSI, the user can select
aggregation by day which shows the absolute number of pixels for a given eutrophication
class. Figure 10c,d shows the TSI temporal trend aggregated by day and month within
the rectangle presented in Figure 7 (covering the entire Billings reservoir). Additionally,
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the user can visualize a video of Chl-a maps over time when selecting “Show Video”
(Figure 10b).

4. Discussion

The monitoring of Chl-a concentration in inland waters using remote sensing data has
been improved in the last years due to the new generation of earth observation sensors [10].
A successful example is the MSI sensor aboard Sentinel-2A-B. This sensor covers the
lack of spectral (13 bands), spatial (10–20 m), and temporal (5 days) resolutions required
for inland water bodies monitoring [10,13,36,37]. Moreover, the MSI sensor’s spectral
resolution allows for Chl-a concentration in those waters to be detected more accurately
than in other sensors such as Landsat-8 [38]. This accuracy is likely due to there being
more bands in the near-infrared region (705, 740 nm), which allows the detection of the
spectral features associated to phytoplankton blooms (e.g., high Surface Reflectance signal
at 705 nm). Therefore, these spectral features could be enhanced using indexes such as the
NDCI [9]. NDCI is related to Chl-a as it is the normalized difference between the red-edge
band (705 nm) and the red band (660 nm) [39]. As Chl-a concentration increases, the signal
at 705 nm will increase (reflectance peak), and the signal at 660 nm will decrease due to the
high Chl-a absorption at this band [9]. NDCI and band ratios between red-edge and the
red band were widely evaluated in literature and presented successful results [9,36,40–44].

In this study, the use of NDCIsat for estimating Chl-a concentration in the Tietê River
Basin confirms its applicability for algae blooms monitoring. It was possible to develop
a robust power-law function to predict Chl-a based on NDCIsat values obtained from
the Sentinel-2 images. The results based on our validation procedure using Monte Carlo
simulation demonstrated that the model had good performance for Chl-a retrieval (mode
of R2 = 0.86). Further, the NDCIsat separated the trophic state (global accuracy of 0.70)
and the bloom occurrence (global accuracy of 0.90). In a previous NDCIsat application on
MERIS bands, Mishra [9] used a quadratic function to estimate Chl-a from the NDCIsat
(Chl-a < 30 µgL−1), with RMSE of 1.43 µgL−1. In a eutrophic reservoir in Tietê River
Basin (Barra Bonita), Watanabe et al. [43] obtained an R2 of 0.80 and a Mean Absolute
Error (MAPE) of 39.44% for an NDCI algorithm, using in situ radiometric measurements.
In a more global application for a wider range of Chl-a concentrations (0–1000 µgL−1),
Pahlevan et al. [37] reported that NDCI obtained from in situ radiometric data estimated
Chl-a with errors of approximately 49%. The NDCI was compared with other algorithms
and outperformed almost all, apart from a machine-learning algorithm. Using Sentinel-2
imagery, Watanabe et al. [45] observed that NDCI performed better than other algorithms
(2-band, 3-band, and slope) for Chl-a retrieval in the Tietê cascade system (Chl-a between
~0 to up to 800 µgL−1), with MAPE values of 48%. The use of NDCI for Chl-a estimates
in eutrophic environments (~40 to up to 225 µgL−1) was also demonstrated by Tavares
et al. [46] in two Brazilian Lagoons (RMSE = 25.96 µgL−1). Additionally, NDCI has
been used for algal bloom monitoring in locations with the absence of in situ data due
to the COVID-19 lockdown [12,47], and also to provide near-real-time bloom alerts to
environmental and governmental agencies [10,11].

The performance of NDCIsat algorithm for Chl-a retrieval using satellite data is de-
pendent on the atmospheric correction. In Google Earth Engine, bottom of atmosphere
(BOA) data was only available using the Sen2Cor method and only after 2019 for the South
America region. The Sen2Cor method that generates the BOA data for MSI imagery in GEE
also has uncertainties for water applications, as it is designed for land applications [48].
Therefore, atmosphere correction methods suitable for inland water application need evalu-
ation to increase their accuracy over water bodies. The SIAC method evaluated in this study
presented a satisfactory performance for Surface Reflectance retrieval (Pearson R = 0.96,
MAPE = 48%) when all bands were compared and, specifically, for bands used in the
NDCIsat calculation (MAPE = 27.23% and 8.92% for bands 4 and 5, respectively). Similar
to other AC methods, SIAC applies the well-known 6SV RT model, a long-term MODIS
product, as well as fast processing in the GEE platform. Moreover, the auxiliary products
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have been tested for atmospheric correction of medium spatial resolution [49–51], and
the results are promising in terms of quality and reproducibility. In fact, the satisfactory
agreement between in situ surface reflectance and satellite reflectance corroborates the use
of SIAC for water quality applications, particularly for NDCIsat calculation. The advan-
tage is that SIAC has been implemented into GEE allowing atmospheric correction via
cloud computing services, which is extremely fast when compared to traditional personal
computing methods.

Furthermore, we observed that glint correction reduced Surface Reflectance data
errors (a reduction by, approximately, 30%). The application of glint correction using
the SWIR band of Sentinel-2 was also demonstrated by other studies in Brazilian Inland
waters [29,31,35]. The comparison between in situ calculated NDCI and NDCIsat also
presented likely results (Pearson R = 0.94, MAPE = 47.4%). The higher MAPE values for
NDCI could be attributed to uncertain propagation in band-ratio algorithms [52], and a
slight offset between in situ measured and NDCIsat. However, as the algorithms were
developed using NDCIsat on a wide temporal scale, this difference should not impact the
final algorithm. The time delay used in this study was set at ±2 days, which could be a
source of uncertainty if a bloom occurs between these two measurements [53,54]. However,
other studies pointed out that if the data was carefully checked, the time delay could be
extended up to three days [29,35,45,55].

For the TSI, previous studies [29,55] usually estimate trophic levels after deriving
Chl-a concentration from satellite imagery, which often propagates the Chl-a algorithm’s
uncertainties. Alternatively, we propose the use of NDCIsat, which is independent of any
predictive Chl-a algorithm, to derive TSI levels. The proposed decision tree separates
extreme classes well, such as Oligotrophic and Hypereutrophic, but some misclassifications
were observed within the intermediate levels. It is important to note that both Chl-a and
TSI algorithms are results of the first attempt at a regional approach. The plan is to improve
these algorithms, having NDCIsat as the predictive index so it can be extended to other
relevant regions in Latin America (Figure 11).

Overall, the AlgaeMAp application system has shown to be useful to provide remote
sensing water quality algorithms to end-users. The App is easy to use and offers valuable
information about the current and historical Chl-a, TSI, and bloom state of a given water
body. Different programs have been developing platforms to monitor reservoir Chl-a and
trophic state using remote sensing [56–58]. The CyanoLakes company, for example, moni-
tors current and historical Chl-a in reservoirs using the Ocean and Land Colour Instrument
(OLCI) on Sentinel-3 (with 300 m spatial resolution) and provides the information in a web
platform [58]. Similarly, the company EOMap also provides web portals where the user can
extract spatial and temporal data of Chl-a, suspended matter, Chl-a, harmful algae bloom,
and trophic state classification [56]. In addition to private companies, public agencies are
also realizing the great benefit of providing water quality parameters in web platforms.
The Brazilian National Water Agency (in Portuguese ANA) has been developing a remote
sensing web platform called HidroSat, which provides Chl-a and turbidity information
using MODIS TERRA e AQUA [59]. However, the platform provides the historical infor-
mation in a graph for just one fixed point, a method that prevents spatial analysis. In the
same way, the United States Environmental Protection Agency (EPA) has been developing
an App that will inform cyanobacteria algal blooms on a national scale throughout the
USA using Sentinel 3 information [57].

To the extent of the authors’ knowledge, our developed AlgaeMAp is the first online
platform built within the GEE platform to offer high spatial resolution of water quality
parameters. As a result, the App benefits from the huge processing capability of the GEE
platform that allows any user with internet access to easily extract detailed spatial (30
m) and long temporal Chl-a and TSI information (from August 2015 and with images
every five days) over the most important reservoirs in São Paulo. AlgaeMAp uses the
GEE platform to access Sentinel 2 images which are uploaded approximately one day
after the satellite acquisition date, allowing the App to serve as an alarm system as well.
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Considering that the São Paulo State Environmental Quality Company currently relies
on in situ data to monitor reservoirs in the most important economic region in Brazil, the
App satellite information might be a huge advance in water governance if incorporated
by water agencies. The AlgaeMAp aims to connect space technology to water decision
end-users to improve water management in Latin America.
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5. Conclusions

In this article, we demonstrate the development of an algae bloom monitoring system
that uses cloud computing (GEE) to process all Sentinel-2 imagery, generate the NDCIsat
collection, and provide quick access to the Chl-a and TSI (Trophic State Index) levels for
any water body within the study area (Tietê River Basin, Figure 1). More importantly, all
this information has been implemented into an Earth Engine App that allows personalized
evaluation of a given water mass that can either be chosen from a list or drawn by the user
on the map panel. The AlgaeMAp is currently under development and a demonstration
version can be accessed from GEE App gallery Available online: https://felipellobo.users.
earthengine.app/view/algaemapv10 (accessed on 8 July 2021). The user is able to define
date range, ROI (Region of Interest), time-series charts (either NDCI or Chl-a) and TSI area
charts (% class area), and save these plots as texts or image formats.

For the project’s following activities, we plan to extend the NDCIsat collection to
other important South America regions, such as Uruguay, Argentina, and north-eastern
Brazil. However, this extension depends on in situ data for algorithm validation, which
could be accomplished with more in situ chlorophyll data provided by the users and
collaborators. Finally, this project represents the state-of-art Application of Remote Sensing
and Cloud Computing to provide algae bloom alerts in the Latin America regions, helping

https://felipellobo.users.earthengine.app/view/algaemapv10
https://felipellobo.users.earthengine.app/view/algaemapv10
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governments, institutions, and decision-makers to take quick actions to protect and mitigate
environmental impacts derived from algae bloom events.
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Appendix A

For an evaluation of a Sentinel-2 images after atmospheric and sun glint correction,
radiometric data was collected in the Billings Reservoir (November 2020). Three intercali-
brated TriOS-RAMES (Hyperspectral Radiance and Irradiance Sensors) spectroradiometers,
operating in the 350–950 nm spectral range, were used to collect radiometric data in
22 sample sites (Figure A1a, Chl-a concentration was only determined for six of these
sample sites). At each site, the instruments measured, simultaneously, the downwelling
irradiance above the water surface, Water-Leaving Radiance, and Sky Radiance to derive
Surface Reflectance-SR (full radiometric processing described in [30]). Then SR values were
used to simulate MSI/Sentinel-2 spectral bands using their Spectral Response Function [60].

SR
(
λj
)
=

∑n
i=1 SR(λi) × SRF(λi)

∑n
i=1 SR(λi)

(A1)

where SR
(
λj
)

is the simulated band at central wavelength j, SRF (λ) is the spectral response
function for each wavelength i, and SR(λi) is the measurement for each wavelength i. The
simulated bands were used to calculate NDCI (Equation (1)), named NDCIin situ, which
were compared to the NDCIsat derived from Sentinel-2/MSI. In total, 22 radiometric
samples were used to evaluate the Sentinel-2 processing of atmospheric correction, glint
correction and NDCI of one image acquired on 7 November 2020 (Tile: T23KLP).

The evaluation of the SIAC’s surface reflectance output using in situ surface reflectance
as ground truth (Figure A1) shows a high correlation between them (N = 176 considering all
bands, R = 0.94, MAPE = 70.65%). Particularly, for Bands 4 and 5, used in NDCI calculation,
MAPE was 50.19 and 14.85, respectively. The Pearson’s correlation and MAPE slightly
improved after sun-glint correction of Sentinel 2 Surface Reflectance (SR) for this image
(All bands, Pearson R = 0.96, MAPE = 45.09).

When in situ measured NDCI (NDCIin situ) is plotted against Sentinel-2 derived NDCI
(NDCIsat), a high positive correlation is observed (R = 0.93. N = 22). NDCIsat consis-
tently shows lower values, which is expected, because NDCIsat integrates a larger area
(30 m × 30 m) than those measured by in situ radiometers.
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Figure A1. (a) Location of the 22 radiometric samples acquired on 7 November 2020 in the Billings Reservoir; (b) Scatter plot
between measured and satellite surface reflectance after atmospheric correction (SIAC) and glint correction considering B2
(490 nm), B3 (550 nm), B4 (665 nm), B5 (705 nm), B6 (740 nm), B7 (783 nm), B8 (842 nm), and B8A (865 nm), statistics (Pearson’s
R and MAPE) for all bands together; and (c) Scatter plot between NDCIin situ and NDCIsat, statistics for 22 radiometric
measurements. (d) Pearson’s R and MAPE for each band after SIAC and glint corrections (n = 22).

Appendix B

To define a predictive model with the best balance between the number of samples,
accuracy, as well as precision for both Chl-a estimation and TSI classification, several tests
were taken by varying time windows from 0 to ±3 days. According to Table A1, the
algorithm’s outputs with ±2 days has shown to be more appropriated for this application
because it comprises a wide Chl-a interval, large number of samples (n = 136), and yet,
high determination coefficient value (R2 = 0.86).

Table A1. Performance of power-law algorithm by varying the time window between satel-
lite and in situ samples from 0 to ± 3 days. a and b refer to the algorithm’s parameters
(Chl-a = a ∗ (NDCIsat +1) ˆ b). The model chosen for this research is ± 2 days indicated with *.

Days (+ −) # of
Samples

Chl-a
Range
(µg/L)

R2 MAPE a b

0 27 0.56–87.6 0.65 0.25 29.81 4.54
1 91 0.56–486.1 0.86 0.57 19.23 8.68

2 * 136 0.56–486.1 0.86 0.89 23.44 7.95
3 175 0.56–486.1 0.81 1.00 24.49 7.48

For the TSI tree decision and AB classification, similar conclusions can be withdrawn.
Overall accuracy for TSI classification when using a ± 2 days window is approximately
the same as using ±1 day window but with 50% more samples (Table A2). For AB
classification, overall accuracy is similar for all tested windows (>0.89). When using only
samples taken on the same day (0 day), the paired T-tested amongst the classes did not
reject the null hypothesis which is that there is no significant difference between them
preventing procession with the tree decision testing.
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Table A2. Accuracy performance of Trophic State Index (TSI) and Algae Bloom (AB) classification by varying the time
window between satellite and in situ samples from 0 to ± 3 days. Paired T-test between classes rejects the null hypothesis
(H0) when there is a statistical difference between them (p-value < 0.05). Nodes correspond to NDCI thresholds depicted in
Figure 6. The model chosen for this research is ± 2 days indicated with *.

TSI AB

Days
(+ −)

# of
Samples

Chl-a Range
(µg/L)

T-Test
(reject

H0)
Accuracy Node1-

Meso
Node2-
Eutro Node3-Super Node4-

Hyper Accuracy

0 27 0.56–87.6 FALSE
1 91 0.56–486.1 TRUE 0.714 −0.150 −0.060 0.025 0.124 0.89

2 * 136 0.56–486.1 TRUE 0.705 −0.131 −0.093 0.025 0.127 0.9
3 175 0.56–486.1 TRUE 0.640 −0.131 −0.099 0.025 0.127 0.89
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