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Abstract: Although 70% of the Amazon population lives in urban areas, studies on the urban 
Amazon are scarce. Much of the urban Amazon population lives in precarious settlements. The 
distinctiveness and diversity of Amazonian precarious settlements are vast and must be identified 
to be considered in the development of appropriate public policies. Aiming at investigating 
precarious settlements in Amazon, this study is guided by the following questions: For the Brazilian 
Amazon region, is it possible to identify areas of precarious settlements by combining 
geoprocessing and remote sensing techniques? Are there different typologies of precarious 
settlements distinguishable by their spatial arrangements? Thus, we developed a methodology for 
identifying precarious settlements and subsequently classifying them into urban fabric typologies 
(UFT), choosing the cities of Altamira, Cametá, and Marabá as study sites. Our classification model 
utilized geographic objects-based image analysis (GEOBIA) and data mining of spectral data from 
WPM sensor images from the CBERS-4A satellite, jointly with texture metrics, context metrics, 
biophysical index, voluntary geographical information, and neighborhood relationships. With the 
C5.0 decision tree algorithm we carried out variable selection and classification of these geographic 
objects. Our estimated models show accuracy above 90% when applied to the study sites. 
Additionally, we described Amazonian UFT in six types to be identified. We concluded that 
Amazonian precarious settlements are morphologically diverse, with an urban fabric different from 
those commonly found in Brazilian metropolitan areas. Identifying and characterizing distinct 
precarious areas is vital for the planning and development of sustainable and effective public 
policies for the urban Amazon.  

Keywords: Amazonian precarious settlements; Amazonian urbanization; GEOBIA; data mining; 
urban fabric typology 
 

1. Introduction 
According to estimates from the United Nations Human Settlements Program (UN-

Habitat) [1], one in eight people in the world lived in slums in 2016. In developing 
countries, the number of urban residents living in slums has increased by 28% between 
1990 and 2014, from 689 million to 881 million residents, representing 30% of the urban 
population of developing countries. 

According to UN-Habitat estimates [2], the number of slum dwellers surpassed the 
1 billion mark in 2018. The UN-Habitat declares that the growth trend in the number of 
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slum dwellers is now increased by direct and indirect effects of the COVID-19 pandemic 
and admits that the achievement of the 11th Sustainable Development Goal - “Make cities 
and human settlements inclusive, safe, resilient and sustainable” by 2030 is unlikely. 

In Brazil, slums are part of a larger category of inadequate housing—known as 
precarious settlements—a definition established in 2004 by the National Housing Policy 
[3]. The precarious settlements are segments of the urban territory of varying sizes and 
types, predominantly residential areas occupied by low-income populations, 
characterized by numerous shortages of public services and inadequate housing [3,4]. 

Dwellers of these settlements use multiple strategies to solve their own housing 
needs, as neither the State nor the formal market meets their demands [4]. This lack of 
public support results in low-quality self-constructed housing and, consequently, in 
irregular appropriation of areas in the cities [5]. 

These settlements encompass numerous typologies, especially tenements, slums, 
informal subdivisions, low-income irregular subdivisions, and degraded housing 
complexes [6]. Among these typologies, tenements and slums are the two types of 
settlements most studied in the literature [7–10]. 

Despite their relevance, the definition and characterization of precarious settlements 
established by the National Housing Policy [3] may not be sufficient to contemplate the 
particulars of most Brazilian municipalities, especially for periurban municipalities in the 
Amazon region [11–13]. The concept of “periurban” is similar to the definition of 
“peripheral urbanization pattern” developed by Erminia Maricato, Raquel Rolnik, Nabil 
Bonduki, and others during the 1970s and 1980s [12,14]. This term can also designate areas 
of urban–rural transitions that may or may not be in the outskirts of large cities [12,14]. 

To develop effective public housing policies for the Amazonian municipalities, there 
is an increased need to identify features of precarious settlements considering their 
regional, municipal, and urban diversities [13]. Understanding the characteristics of 
deprived areas in Amazonian cities is paramount to reveal social, economic, and regional 
inequalities. This study of identification, mapping, and characterization of precarious 
settlements in the Amazon allows the development of appropriate tools to support urban 
and housing policy in the region. 

Although about 70% of the Brazilian population lives in urban centers, studies on 
Amazonian urbanization are still limited [15]. The highest relative percentage of 
households located in Brazilian precarious areas is in the metropolitan area of Belém, 
corresponding to more than 51% of households [15]. About 54% of Belém’s Metropolitan 
area population resides in precarious areas [16,17]—that is, within the Legal Amazon. 
Furthermore, studies that use remote sensing and geoprocessing techniques to identify 
and characterize precarious settlements are restricted to the metropolitan areas of the 
southeast region of Brazil, such as the metropolitan area of São Paulo and the metropolitan 
area of Rio de Janeiro[18], with environmental and socioeconomic characteristics 
profoundly different from the Amazonian regions. 

Commonly, the identification and characterization of precarious settlements 
nationwide uses techniques for extracting useful information from census data [17,19–21]. 
Mahabir et al. [22] listed some limitations in the use of census data to identify slums: (a) 
the intensive, time-consuming, and costly data collection; (b) the time between two 
surveys (10 year interval in Brazil); (c) the levels of aggregation of census data may restrain 
the capture of relevant heterogeneity present in slums [23,24]; (d) the fear that residents 
of irregular areas have to provide information and perhaps face the misuse of these data, 
facilitating evictions by public authorities [25–27]; (e) the use of census data to support the 
development of public policies is reduced with poor data collection quality [28]. 

Given the limitations of exclusively using data from the census, methodologies that 
include remote sensing data have become desired for large-scale studies [22]. The arising 
of free and widely available high spatial resolution images (<5 m) favored novel 
applications in studies of the urban fabric, replacing previous practices developed using 
less refined imagery [29]. Now it is possible to overhaul previous analysis at the 
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household level and improve assessment of settlements, enabling a better understanding 
of the formation, status, and growth of slums [18,22]. 

Considering the above context, this work poses the following questions: In the 
Brazilian Amazon region, is it possible to identify areas of precarious settlements using 
geoprocessing and remote sensing techniques? Are there different typologies of 
precarious settlements distinguishable by their spatial arrangements? 

To answer these questions, we first developed and implemented a methodology for 
identifying precarious areas in Amazonian municipalities. Then, we proposed the 
classification of the identified settlements, considering specific urban fabric typologies 
(UFT). We applied this methodology in the municipalities of Altamira, Cametá, and 
Marabá—cities located in the state of Pará, in the Brazilian Legal Amazon. This work 
proposes the identification of precarious areas using techniques of geographic object-
based image analysis (GEOBIA) and data mining, and later classification by the C5.0 
decision tree algorithm [30]. This methodology was entirely built with open source 
software and open access data.  

This article has the following structure: Section 2 shows the importance of identifying 
precarious settlements in Brazilian cities by geotechnologies; Section 3 details the main 
concepts that guided the identification of these settlements; Section 4 proposes a novel 
methodology for identifying and characterizing precarious areas; Section 5 shows our 
methodology and accuracy assessment; Section 6 has the discussion of main results; and, 
finally, Section 7 shows final considerations. 

2. Identification of Brazilian Precarious Settlements by Geotechnologies 
The Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e 

Estatística, IBGE) addresses informal housing through a category of census tracts called 
subnormal agglomerates. According to IBGE [17], subnormal agglomerates are illegally 
occupied areas, consisting of at least 51 housing units, with or without essential public 
services: water, sewage, waste and utilities, and urbanization patterns in discordance with 
current guidelines. Usually, subnormal agglomerates have narrow circulation routes and 
irregular house alignments (lots with unequal sizes and shapes), and construction not 
regulated by public bodies. This definition applies to several types of precarious 
settlements in Brazil, such as slums, occupations, floodplains, wetlands, villages, 
communities, huts, stilts, among others. 

The 1990 and 2000 censuses held the same definition of subnormal agglomerates. The 
2010 census relied on high spatial resolution images and on the support of municipal 
offices responsible for housing policies to improve mapping of subnormal agglomerates - 
the IBGE technical report [17] lacks to inform the type of sensor used in the census 
mapping, despite mentioning the use of high spatial resolution satellite images. 
According to 2010 census results, a total of 11.4 million Brazilians lived in 15,868 
subnormal tracts—equivalent to 5% of all census tracts in Brazil [17]. 

However, some authors criticize the criteria used in the definition of subnormal 
agglomerates [20,31] and indicate that the minimum occupancy of 51 households excludes 
smaller arrangements, causing an underestimation of these tracts [16]. Fortunately, the 
limit of 51 households was not part of the guidelines for the delimitation of subnormal 
agglomerates in 2019 [32]. There are also criticisms regarding the requirement of land 
property analysis, which poses challenges in precarious areas; the derogatory nature of 
the term subnormal; and the use of census tracts as a territorial base [24]. Despite 
criticisms, IBGE have not attempted to distinguish precarious settlements from subnormal 
agglomerates or adapt census tracts to better represent different types of abnormal 
housing arrangements.  

Subnormal agglomerates are the most similar regions to study precarious settlements 
at census tracts level, as defined by IBGE, and it is the only source of data in these areas 
at this level of detail nationwide [24]. Therefore, we use subnormal agglomerates [32] as 
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samples of precarious settlements, even though we are following the definition of 
precarious settlements as established by the National Housing Policy [3].  

Research developed by the Center for Metropolis Studies (CEM) shows that the 2000 
and 2010 censuses underestimated housing precariousness numbers [20,21]. Using 
discriminant analysis techniques in census data, the CEM identified new subnormal 
agglomerates tracts not classified as such by IBGE. Analyzing data from the 2010 Census 
[17], CEM and CEBRAPE [21] demonstrated an underestimation of approximately 30% of 
precarious settlements in the metropolitan area of São Paulo. Despite advances, the CEM 
data also have limitations, as the territorial database continues to be formed by census 
tracts, which does not allow for their disaggregation [24]. 

Kurkdjian [33] published the first study that identified Brazilian precarious 
settlements using remote sensing data, although their main goal was to estimate the size 
of urban populations. The authors identified slums in São José dos Campos, São Paulo as 
one of the homogeneous residential zones (ZRH). Homogeneous residential zones are 
areas with similar residential patterns identified by having similar texture in remote 
sensing data. In Brazil, previous reports [34,35] defined a methodology for identify ZRH 
and estimate the population size of São José dos Campos, São Paulo. The ZRH 
identification was based on visual interpretation of aerial photographs recorded in 1978 
by an RC-10 camera, installed on the Bandeirante aircraft of the National Institute for 
Space Research (INPE), and Double-X Kodak panchromatic film, obtained at 1:10,000 
scale. The authors also used a light magnifying glass with a scale and a stereoscope to 
perform sectoring of municipalities and estimate population sizes. 

Studies with procedures for sectoring of Brazilian precarious areas by remote 
sensing were only published again in 2004, but still in the context of population size 
estimates through ZRH [36]. Matias and Nascimento [37] proposed the first study whose 
goal was to identify precarious settlements by mapping informal settlements in Ponta 
Grossa, Paraná, using a panchromatic image of the Ikonos-II sensor. 

Hofmann [38] proposed one of the first studies using GEOBIA for slums 
identification. For a region of Cape Town, South Africa, with Ikonos images, he generated 
geographic objects after multiresolution segmentation at different spatial scales, which 
were hierarchically linked. Precarious settlements were super objects that had several 
features regarding their shape and context, identified by fuzzy analysis techniques. 
Subsequently, Hoffman carried out studies for mapping slums in Rio de Janeiro [39]. The 
author developed a spatial ontology technique for identifying slums in high spatial 
resolution images. Further, he translated the spatial ontology model into an identification 
framework that uses GEOBIA techniques. After this study, several others have 
investigated the potential of ontology to map slums [40–46]. The study by Hofmann et al. 
[39] also inspired Kohli et al. [47] in the development of an ontology applied to slums that 
concentrates the physical characteristics of these inadequate housing arrangements, being 
a reference for the identification of precarious areas by remote sensing techniques [18].  

More recently, Feitosa et al. [48] identified precarious settlements in Baixada Santista 
metropolitan area, São Paulo, using the IMMerSe methodology (integrated methodology 
for mapping and classifying precarious settlements). The IMMerSe Project identified 
precarious areas and classified them into urban fabric typologies. This study was 
conducted in collaboration between academia and government with the goal of 
measuring housing deficit and inadequacy in the Baixada Santista metropolitan area. 
Despite not employing digital image processing, IMMerSe extracted information from 
high spatial resolution remote sensing images, such as density and urban organization 
level, to characterize the urban environment. 

In addition to the studies mentioned above, Costa et al. [49] and [50–54] developed 
maps of elements that compose the intraurban land cover (concrete, different types of 
roofs, water, and vegetation, among others). The authors applied the GEOBIA approach 
to classify the land cover of Brazilian cities using images with extremely high spatial 
resolution (< 1 m). These studies greatly contributed to the use of remote sensing 
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applications in the identification of precarious settlements, by allowing the classification 
of intraurban land cover given high spatial resolution images.  

3. Precarious Settlements in the Brazilian Amazon 
Cardoso et al. [55] described the morphological patterns of informal settlements, 

among other morphological typologies, in six cities in the State of Pará: Marabá, 
Parauapebas, Canaã dos Carajás, São Felix do Xingu (all in Southeast Pará), Santarém 
(Lower Amazonas, Southeast Pará), and Altamira (Southwest Pará).  

Traditional Amazonian settlements have an organic layout and are modeled 
accordingly with the natural site, with a few urban voids, and a strong connection 
between the built-up areas and open spaces [56]. The open areas in traditional spaces 
function as house extensions, interweaving the urban economy with everyday life. On the 
contrary, informal settlements can be understood as reduced reinterpretations of these 
traditional settlements [55] and are divided into spontaneous informal and organized 
informal settlements. 

The early transformation of rural areas with agrarian fragility systems in urban areas 
results in organized informal settlements, following the same patterns of territorial 
rationalization that the private sector pursues [55]. Both organized and spontaneous 
informal settlements are subject to poverty by reducing the size of residential lots, which 
restricts the use of land and hinders food self-sufficiency of low-income dwellers [55]. 

Some informal settlements are in lowlands [55] where seasonal floods pose a greater 
challenge to an informal settlement resident than to a riverside dweller [56]. Unlike in 
informal areas, in the riverside floods may not pose an environmental risk to inhabitants 
and buildings are designed to tolerate floods when they occur [56]. 

The migration of caboclo peasants (caboclo is the designation given in Brazil to those 
born from the miscegenation between Brazilian indigenous and white people) to urban 
wetlands was one of the main factors that led to the formation of precarious settlements 
in Amazonian cities. Population density was gradually increasing in wetlands and these 
areas transformed into informal settlements [55]. The destruction of livelihoods and 
exogenous control of the means of production, either through private appropriation of 
natural resources or through the control of the means of production [55] intensifies the 
migration from the countryside to the city. Another fact that explains the formation of 
precarious settlements is the irregular occupation of public or private land designated for 
“rural use” during periods of migratory flows to the Amazon region, especially by low-
income population. 

4. Materials and Methods 
The study area has 622.50 km² and encompasses the municipal seats of Altamira 

(152.74 km²), Cametá (44.18 km²), and Marabá (425.47 km²), located, respectively, in the 
Southwest, Northeast, and Southeast of the State of Pará, in the Brazilian Legal Amazon 
(Figure 1). We created a rectangular boundary around the study areas, overlaying it with 
urban census tracts of the municipal seats [19]. These municipalities were chosen because 
they have distinct patterns of urban occupation [55,57] and are part of a research study 
from the Laboratory for Investigation of Socioenvironmental Systems [58]. 
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Figure 1. Study areas or municipalities: (a) Altamira; (b) Cametá; and (c) Marabá. 

4.1. Preprocessing 
In this work, we analyzed images from the CBERS-4A satellite. The CBERS (China–

Brazil Earth Resources Satellite) is a series of satellites utilized in the partnership between 
Brazil and China for studies in technical–scientific space matters. The CBERS Program 
marked Brazil’s entrance into space technology and allowing the collection of primary 
remote sensing data [59,60]. 

The CBERS-4A satellite is the fifth satellite of the Sino–Brazilian program, launched 
in December 2019, providing images from across the globe to researchers in several fields. 
In Brazil, many programs to control deforestation in the Legal Amazon use images from 
the CBERS series. The CBERS-4A is a satellite equipped with optical payloads operating 
in visible spectrum with spatial resolution in the range of 2 to 60 meters [59,60]. 

The WPM sensor provides panchromatic and multispectral images simultaneously. 
Panchromatic images have 2 meters of spatial resolution, with a spectral range between 
0.45 and 0.90 µm. Multispectral images have 8 meters of spatial resolution with the 
spectral bands: blue (0.45–0.52 µm), green (0.52–0.59 µm), red (0.63–0.69 µm), and near-
infrared (NIR) (0.77–0.89 µm). The radiometric resolution of the images is 10 bits. The 
imaged swath width is 92 km, and the revisit period is 31 days [59]. INPE makes the 
CBERS series imagery freely available in its catalog [61]. 

We used orthorectified images from the WPM sensor of the CBERS-4A satellite. For 
Altamira, the chosen image is from 31 January 2020 (path: 215, row: 117), for Cametá, the 
image is from 15 September 2020 (path: 212, row: 116). For Marabá, the image is from 
20/08/2020 (path: 211, row: 120). The following software was used: 

• QGIS [62]: for image clipping, PCA fusions, image registration, calculation of 
biophysical index and textural index, creation of hexagon grids, and production of 
thematic maps; 

• Orfeo ToolBox [63]: segmentation of WPM images; 
• Geographical Data Mining Analyst (GeoDMA) [64]: for feature extractions and 

estimation of the classification model by applying the C5.0 algorithm. 
First, we cropped the images to match the boundaries of the study areas. Then, we 

proceeded with a fusion of the panchromatic image with the multispectral images by 
using the principal component analysis (PCA) method. After the fusion, we registered the 
images using a third-degree polynomial algorithm with cubic resampling, having Google 
Earth images as a reference. The mean error was less than 3 pixels for each of the three 
images.  

After preprocessing the images, we calculated the following indices: 
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(a) Normalized difference vegetation index (NDVI): division of the near-infrared 
(NIR) band by the red band, normalized, to analyze the presence and condition 
of vegetation [65] (Equation (1)): 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝐸𝐷)(𝑁𝐼𝑅 +  𝑅𝐸𝐷) (1) 

(b) Normalized difference roof index (NDRI): division of the red band by the blue 
band, normalized, to identify the presence of ceramic roofs and areas with 
exposed soil [66] (Equation (2)):  𝑁𝐷𝑅𝐼 =  (𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)(𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸) (2) 

(c) Bare soil area index (BAi): the normalized division of the blue band by the near-
infrared band, to identify exposed soil [46] (Equation (3)): 𝐵𝐴𝐼 =  (𝐵𝐿𝑈𝐸 − 𝑁𝐼𝑅)(𝐵𝐿𝑈𝐸 +  𝑁𝐼𝑅) (3) 

We also computed texture metrics from the gray level co-occurrence matrix (GLCM) 
by Haralick [67], GLCM variance, entropy, contrast, textural correlation, uniformity, and 
measures of correlation (MOC) among features using a 25 × 25 window size for all 
directions. After preprocessing steps (Figure 2), the database was composed of three 
layers corresponding to multispectral bands, NDVI, NDRI, BAi, and layers of textural 
metrics (variance, entropy, contrast, correlation, uniformity, and MOC).  

 
Figure 2. Preprocessing steps. 

The urban fabric typologies (UFT) identification process took place after the 
preprocessing stage and the generation of informational layers (NDVI, NDRI, BAi, and 
GLCMs) from WPM images. This methodology can be summarized (Figure 3) in three 
main steps: (1) creation of the land cover base and generation of the first level of 
segmentation; (2) identification of precarious areas; (3) identification of typologies of 
precarious areas (UFT). After identifying precarious areas, the databases with images of 
the three municipalities were appended to carry out their typologies identification. 

 
Figure 3. Methodology for identification of precarious areas and classification of urban fabric typologies (UFT). Arrow 
numbering indicates the order of steps taken. 
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4.2. Preparation of the Land Cover Database. 
The segmentation of WPM images using the mean shift cluster algorithm [68] 

resulted in the first level of information, represented by a land cover base. The mean shift 
algorithm first defines a window around each point and averages out the gray tones of 
the image. Then, it changes the center of the windows for each centroid and repeats the 
procedure until it iteratively converges. As a result, the algorithm segments the image into 
several pixel clusters. 

The mean shift cluster algorithm is available in the Orfeo Toolbox plugin (OTB) [63] 
and, during initial tests it performed better relative to processing time and segmentation 
of objects compared to the other four algorithms available. Chosen values of spatial 
radius, range radius, maximum number of interactions, and minimum region size control 
the size and shape of segments. In this case, we adopted: spatial radius of 5 pixels, range 
radius of 100 pixels, maximum number of interactions of 100 times, and minimum region 
size of 15 pixels. 

 We defined classes of objects by size and shape as follows: fiber cement roofing, 
ceramic roofing, high gloss roofing, exposed soil, asphalt, forest vegetation, herbaceous 
vegetation, dirt road, clouds, shadow, and water. About 2255 samples of segments from 
Altamira, 1607 from Cametá, and 2424 from Marabá. We performed random and 
stratified sampling, following the natural prevalence of classes. 

Afterward, we extracted features from the spectral layers; the GLCMs layers; the 
biophysical index layers; and spatial metrics of objects—totalizing 121 features for each 
segment. We extracted spectral and shape features [69] of objects using GeoDMA software 
[64]. Using ANOVA’s R², the features were ranked according to their explanatory strength 
to distinguish classes in the sample. We eliminated features with R² below 0.1 or with 
absolute linear correlation above 0.75 with other variables. After this stage, 24 variables 
remained for Altamira, 24 for Marabá, and 26 for Cametá. We classified all segments using 
the machine learning algorithm C5.0 [30], an improved version of the C4.5 algorithm 
[70,71].  

The C5.0 algorithm has a two-step classification process [70,71]. The first step is 
training and consists of building a set number of decision trees in the training samples. 
The second step is classification, consisting of classifying the segments in the testing 
samples by applying the decision tree built in the previous step. In this algorithm, an 
entropy metric called information gain determines the choice of variables so that the 
features with greater information gains are chosen to be kept in the final decision tree. 
Each segment receives the class with the most votes from the decision trees. To run C5.0 
in the GeoDMA, the following parameters are required: 
• Boosting value: number of trees. We adopted a value of 100 trees for boosting. 
• Minimum cases: the minimum number of samples required to split an internal node. 

We chose a minimum value of 2. 
• Training samples proportion: the proportion of samples labeled for training. We adopted 

70% of the labeled samples for training and 30% for validation. 

4.3. Identification of Precarious Areas 
We built a second level of information, hierarchically superior to the first, 

represented by a grid of regular hexagons with 100 m diagonal and 8661 m² area. 
Hexagons are spatial units of analysis used as a reference for merging data from different 
sources, such as environmental characterization data and data collected from remote 
sensing. We adopted a hexagonal spatial unit because it allows for better understanding 
of spatial phenomena through its neighborhood structure and cell connectivity [72,73]. 
We defined the dimensions of the hexagon grid based on studies that identified precarious 
settlements in Brazilian municipalities using cell grids [24,45,48] and considered 100 m 
the length of a regular urban block in Brazil. Furthermore, this cell size allows for 
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capturing neighborhood differences without compromising internal spatial arrangements 
within hexagons (Figure 4). 

 
Figure 4. Comparison of hexagon sizes given the length of their main diagonal in meters: (a) 50; (b) 100; (c) 150; and (d) 
200. 

As previously performed for the first level, we extracted features from spectral layers, 
GLCMs, and biophysical index. We also extracted landscape metrics for the land cover 
classes present in the first level, totalizing 344 features for each hexagon. 

Further, we created spatial variables from neighborhood connections between 
hexagons. Since Xଵ, Xଶ, Xଷ, Xସ, Xହ, and X଺  are neighbors and adjacent hexagons of a Y 
hexagon, for each variable “a” among the 344 existing (features) variables, we estimated 
the mean value (𝑀𝑉௔) of the neighbors for variable “a”, the normalized difference (𝐷𝑉௔) 
between cell Y and the mean of its neighborhood, and the normalized global difference 
(𝐷𝐺௔) between Y and the mean of the variable “a” given a grid of hexagons (Equations 
(4)–(6)). 

 

𝑀𝑉௔ =  ∑ (𝑋௔)௜଺௜ୀଵ6  (4) 

𝐷𝑉௔ =  (𝑌௔ − 𝑀𝑉௔)(𝑌௔ + 𝑀𝑉௔) (5) 

𝐷𝐺௔ =  (𝑌௔ − 𝑀𝐺௔)(𝑌௔ + 𝑀𝐺௔) (6) 

For the second level, we performed random and stratified sampling of precarious 
and nonprecarious settlements. In total, we selected 3427 samples for Altamira, 1229 for 
Cametá, and 7082 for Marabá. For Altamira and Marabá, we adopted the IBGE subnormal 
agglomerates as the reference or original data of precarious settlements to be identified 
[32]. For Cametá, we adopted references from a research study conducted by Sakatauska 
[13]. These data for precarious settlements needed preprocessing procedures. We 
redefined the boundaries of settlements when they had uninhabited portions, removing 
large areas of vegetation and roads. This cleaning process was necessary especially in 
areas classified as subnormal agglomerates [32] since these data come from a category of 
census tracts and may not necessarily represent the mapping of precarious settlements. 

Subsequently, we eliminated variables with low explanatory strength (R² < 0.1) and 
with high linear correlation (> 0.75 absolute) with others. Thus, 26 variables remained for 
Altamira, 55 for Cametá, and 73 for Marabá. We classified the second level of data by 

(a) (b) (c) (d) 
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applying the C5.0 algorithm with a boosting value of 100. The algorithm classified 
precarious and nonprecarious areas. We set 70% of the samples for training and the 
remaining 30% for validation. 

4.4. Characterization and Identification of Urban Fabric Typologies (UFT) in Precarious Areas 
With the identification of precarious areas, the next step consisted of the 

characterization of urban fabric typologies (UFT) based on visual analysis of satellite 
images. An urban fabric can have a variety of forms and dimensions of urban elements 
such as buildings, roads, public spaces, lots, and other infrastructure, among other 
components, and a specific relationship among these elements and with the geographic 
base that supports them [74,75]. 

Our theoretical reference comes from Cardoso et al. [55] and Sakatauskas [13] to 
understand relevant physical characteristics of precarious settlements in the cities of 
Altamira, Cametá, and Marabá. We considered the following elements to identify fabric 
typologies: (a) the dimensions and shapes of urban elements; (b) built-up density and the 
presence or absence of unoccupied areas within settlements; (c) presence, shape, 
importance, and condition of pathways; (d) aspects of organized or spontaneous 
occupation, such as new construction and block shapes; and (e) existence of designated 
residential areas or guidelines for housing—data extracted from satellite images. We 
divided precarious areas into six different urban fabrics (UFT). Table 1 shows key features 
to identify urban fabric typologies. 

Table 1. Key features to identify urban fabric typologies (UFT) in the areas of study. 

UFT Full and Empty 
Scheme WPM RGB (3,2,1) Class description 

UFT1 
Fibre cement  

  

Organized occupation with planned blocks and structured 
roads. The roads have sections with poor quality asphalt and 
sections of unpaved ground. High built-up density, without 
unbuilt areas inside settlements or space within lots. Fiber 

cement is the predominant material for roofs. 

UFT2 
Ceramics 

  

Organized occupation with planned blocks and structured 
roads. The roads have sections with poor quality asphalt and 
sections of unpaved ground. High built-up density, without 

unbuilt areas inside settlements or space within lots. The 
predominance of ceramic roof is what distinguishes UFT2 

from UFT1. 

UFT3 
Vegetated 

 

  

Organized occupation with planned blocks and structured 
roads. The roads are unpaved and longer than 400 m. 

Medium built-up density, with unbuilt areas and vegetation 
inside blocks. Ceramic is the predominant material for roofs. 

UFT4 
Sparse 

  

Spontaneous and not consolidated occupation. Low built-up 
density, without well-defined blocks and with unpaved 

streets. There is a predominance of empty spaces between 
dwellings, with herbaceous vegetation. Recent occupations 

resulting from unmediated expansion of organized 
precarious settlements toward environmentally sensitive 

areas or land designated for rural purposes. 
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UFT5 
Roads 

  

Occupation located near highway BR-230 (Transamazônica) in 
Marabá and Altamira, BR-222 in Marabá, and BR-422 in 

Cametá. Organized settlements located far from central areas, 
in regions with periurban characteristics. Roads are unpaved 

(except highways).  

UFT6 
Wetlands 

  

Spontaneous occupation, located in wetlands or in areas 
subject to flooding. Low built-up density and similar to UFT4, 

some are the result of the expansion of large settlements. It 
may not have well-defined street layouts and has shrubby 

vegetation between houses. 

 
Schemes of full and empty spaces—with “full” symbolizing constructions and 

“empty” symbolizing streets, squares, green areas, and other open spaces—are a way of 
representing these two morphological elements that cannot be seen or analyzed 
individually, as they are interdependent [76]. Additionally, full and empty schemes may 
represent the porosity of urban fabrics (related to the circulation of winds) and built-up 
density.  

To identify typologies of precarious settlements, we created a database with land 
cover landscape metrics (level 1), classification of precarious areas (level 2), and other 
context metrics (Table 2). We generated context metrics using data from volunteered 
geographic information (VGI). We used the OpenStreetMap [77] road infrastructure and 
hydrography database to obtain the “Euclidean distance between the nearest road and the 
centroid of a cell” and the “Euclidean distance between a municipal seat and the centroid of a cell”. 
In addition, we computed neighborhood metrics, totalizing 984 variables for each cell at 
the end of the feature extraction process.  

Table 2. Reasons for the choice of the following context metrics. 

Context metric Reason 
Euclidean distance between the 
nearest road and the centroid 

of a cell 

Roads are vectors of urban growth in Amazonian cities [55,57]. Additionally, they are 
related to the formation of precarious settlements in their surrounding areas [13]. 

Euclidean distance between the 
municipal seat and the 

centroid of a cell 

The central region of Amazonian cities in this study concentrates health and 
educational services and has better infrastructure and offer of basic services [13] than 
other regions. Some precarious settlements are far from the center of the municipality, 

as they occupy regions close to roads and areas in recent expansion. 

Euclidean distance between the 
centroid of a cell and the height 

above the nearest drainage 
(HAND) 

Some informal settlements are in flatlands [55]. However, unlike traditional 
Amazonian populations, here housing is not well designed to survive seasonal floods. 
Furthermore, Sakatauskas [13] identified a typology of precarious settlements located 
in wetlands. We built HAND according to the methodology developed by Rennó et al. 

[78]. 

Average of the shape index of 
blocks 

Informal settlements tend to have greater inconsistency of block designs when 
compared to traditional Amazonian settlements [57]. This value allows the 

comparison of geometric shapes of blocks in regular areas (rectangular blocks with 
similar sizes) and irregular shapes or the absence of subdivisions within blocks, a 

common characteristic of precarious settlements [75]. We computed shape index [79] 
from the road base [77] accordingly to the methodology described by [75]. 

Performing random and stratified sampling, we selected 41 samples for UFT1—Fiber 
Cement, 113 for UFT2—Ceramics, 53 for UFT3—Vegetated, 198 for UFT4—Sparse, 157 for 
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UFT5—Roads, and 113 for UFT6—Wetlands. Finally, we eliminated variables with low 
explanatory strength (R² <0.2) and high linear correlation (>0.75 absolute) with others, 
keeping only 28 variables for each cell. The identification of typologies was also 
performed by the C5.0 decision tree algorithm, with a boosting value of 100. We set 70% 
of samples for training and the remaining 30% for validation. 

4.5. Validation 
We built a decision tree based on the training sample (70%) and evaluated the 

classification of segments based on the validation sample (30%). We assessed accuracy 
through two confusion matrices: one to evaluate the classification of precarious areas and 
another to evaluate UFT classification. 

5. Results  
By qualitatively analyzing the classification of precarious areas by our methodology 

(Figure 5), we notice that, in general, they overlap with polygons of real precarious 
settlements used as references (polygons shaded black). Despite this, there are 
commission errors in all cities where nonprecarious areas were classified as precarious by 
our methodology. 

 
Figure 5. Urban fabric typologies (UFT) classified by the proposed methodology for (a) Altamira, (b) Cametá, and (c) 
Marabá. Graphs of (d) location of identified precarious areas, (e) the proportion of UFT per municipality, and (f) the total 
number of UFT per municipality. 

Statistically, the classification of precarious areas resulted in the following global 
accuracy levels (GA) and F1-score (F1): 0.97 (GA) and 0.78 (F1) for Altamira; 0.94 (GA) 
and 0. 81 (F1) for Cametá; and 0.97 (GA) and 0.91 (F1) for Marabá. Table 3 shows the 
outcome confusion matrix from our classification of precarious areas, computed in the 
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validation samples. Among the three cities, Marabá had the highest F1-score value. About 
40% of Marabá’s area of study is uninhabited vegetated areas, which reduces the region 
size to be classified and mitigates classification errors. The large size of uninhabited areas 
in Marabá may be one of the reasons for high accuracy in classifying nonprecarious areas. 

Table 3. Confusion matrix of the precarious area validation samples. 

    Classification   Producer’s 
Accuracy 

User’s 
Accuracy 

Area 
    Nonprec. Prec Total 

R
ef

er
en

ce
 

Nonprec. 1054 11 1065 0.99 0.98 
Altamira (F1: 0.78; GA: 0.97) Prec 26 65 91 0.71 0.86 

Total 1080 76 1156       
Nonprec. 350 15 365 0.96 0.96 Cametá (F1: 0.81; GA: 0.93) 

Prec 14 62 76 0.82 0.81 
Total 364 77 441       

Nonprec. 1887 52 1939 0.97 0.98 
Marabá (F1: 0.91; GA: 0.97) 

Prec 31 444 475 0.93 0.90 
Total 1918 496 2414       

 
Marabá, the city with the largest area (425.47 km²), concentrates most of the identified 

precarious areas (75% of the total) (Figure 5d). However, Cametá has the highest 
percentage of urban areas classified as precarious, corresponding to 30% (Figure 6). 
According to our classification, Altamira has 4% of urban areas classified as precarious. 
Our classification resulted in a similar number of urban areas identified as precarious in 
Cametá and Altamira when compared to the original data [32]. There was an increase in 
the urban area classified as precarious in Marabá. When compared with IBGE data [32], 
the percentage of precarious urban areas in Marabá changed from 16% to 23%, an increase 
of 46%. 

 
Figure 6. Comparison of urban areas classified as precarious by our decision tree classification and 
original data. 

Concerning the typologies (Figure 5), only Altamira has UFT1—Fiber cement, 
representing 5% of the cells analyzed. UFT2—Ceramics is predominant in Marabá, but we 
can also find it in Altamira, which corresponds to 28% of the total. UFT3—Vegetated is 
exclusive to Cametá and is the least frequent typology (only 4% of the total). Most of the 
precarious areas identified are UFT4—Spaced type, accounting for 38%, and despite the 
predominance in Marabá, it is present in all cities. Similar to UFT4, UFT5—Roads is also 
present in all cities, corresponding to 16% of the total. Finally, UFT6—Wetlands is present 
in Marabá and Cametá, representing 10% of the total. 
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Regarding the identification of UFT, the variable selection process resulted in 28 
features, all of them neighborhood features. The final decision trees have eleven features 
in common, with nine related to landscape metrics and the other two related to context 
metrics. Using p the perimeter (in meters), A the patch area (in m²), and n the number of 
patches, we show the 11 most relevant features found, starting with nine related to 
neighborhood mean (MV): 
• LSI Asphalt: The landscape shape index (LSI) of the “Asphalt” class, which measures 

the complexity of shape by dividing the perimeter by twice the square root of the 
area multiplied by π (Equation (7)). This index quantifies the amount of edge present 
in a landscape relative to what would be present in a landscape of the same size but 
with a simple geometric shape (circle in vector, square in raster) and no internal edge. 
Equation (7) shows the LSI calculation: 𝐿𝑆𝐼 =  ∑ 𝑝௝௡௝ୀଵ2√𝜋𝐴  (7) 

• PD Exposed Soil and PD Roads: The patch density (PD) of the “Exposed Soil” and 
“Roads” classes, which represents the number of patches divided by the total patch 
area. Equation (8) shows the PD calculation: 𝑃𝐷 =  𝑛𝐴 (8) 

• MSI Herbaceous Vegetation: The mean shape index (MSI) of the “Herbaceous 
Vegetation” class. Equation (9) shows the MSI calculation: 

𝑀𝑆𝐼 =  ∑ 𝑝௝௡௝ୀଵ2ඥ𝜋𝐴௝𝑛  
(9) 

• NP Herbaceous Vegetation: The number of patches (NP) of “Herbaceous Vegetation” 
class; 

• AWMPFD Herbaceous Vegetation: The area-weighted average fractal dimension 
(AWMPFD) of “Herbaceous Vegetation” class; AWMPFD equals the average patch 
fractal dimension of patches of the corresponding patch type, weighted by patch area 
so that larger patches weigh more than smaller patches [79]. Equation (10) shows the 
AWMSI calculation:  𝐴𝑊𝑀𝑃𝐹𝐷 =  ෍ ቈ2. ln (𝑝௝)𝑙𝑛(𝐴௝)  . 𝐴௝∑ 𝐴௜௝௡௜ୀଵ   ቉௡௝ୀଵ  (10) 

• IJI Shrub Vegetation: The interspersion and juxtaposition index (IJI) of the “Shrub 
Vegetation” class, which measures whether a particular patch type is adjacent to one 
or more classes. Equation (11) shows the IJI, with m being the perimeter of all edge 
segments involving the corresponding patch type: 

𝐼𝐽𝐼 =  − ∑ ൬ 𝑝௝∑ 𝑝௞௡௞ୀଵ ൰௡௝ୀଵ  .  𝑙𝑛 ൬ 𝑝௝∑ 𝑝௞௡௞ୀଵ ൰ln (𝑚 − 1)  .  100 (11) 

• TABO Water and TABO Ceramic Roof: Total area of the largest object (TABO) of the 
“Water” and “Ceramic Roof” classes that cross the landscape.  
The two features from global difference (DG): 

• Euclidean distance from a cell’s centroid to the nearest river; 
• Euclidean distance from a cell’s centroid to the nearest road. 

Figure 7 exemplifies three precarious original settlements and their UFT 
classifications. For Loteamento Bela Vista, an irregular allotment in Altamira (Figure 7a,b), 
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the hexagons classified as UFT5—Roads are those located in the vicinity of the 
Transamazônica Highway, BR-230. Additionally, hexagons classified as UFT1—Fiber 
cement are located further away from the area of influence of highways. The same general 
pattern was observed for the Invasão do Castanhal settlement, in Cametá (Figure 7c,d), 
where the UFT5—Roads class hexagons are located near the Transcametá Highway, BR-
422. 

In the case of the Precarious Settlements Bairro da Paz, Bairro Filadelfia, and São Miguel 
da Conquista, in Marabá (Figure 7e,f), UFT2—Ceramics refers to a consolidated area, 
previously occupied. As the occupation advances toward the Itacaiúnas River, the level 
of consolidation decreases. Consolidated settlements are urbanized settlements that have 
already been integrated with the city and have basic infrastructure. Physical interventions 
that alter their morphology are not necessary (segmenting lots, redefining the road 
system), nor the implementation of basic infrastructure (such as water and sewage 
services). However, these settlements may be informal, and their population may have 
specific demands postoccupation, and needs for social programs, and other public 
services [80]. In this case, there is a transition from an organized occupied urban fabric to 
a spontaneous occupied urban fabric, motivated by unmediated precarious settlement 
growth. 

Table 4 shows a confusion matrix from the UFT classification, computed from 
validation samples. The global accuracy and the average F1-score were above 0.91, which 
demonstrates the methodology’s relevant potential.  

Table 4. Confusion matrix of the UFT validation samples. 

    Classification   Producer’s 
Accuracy 

User’s 
accuracy 

Class  
F1-Score Global 

  
    UFT1 UFT2 UFT3 UFT4 UFT5 UFT6 Total   

R
ef

er
en

ce
 

UFT1 15 1     1   17 0.88 0.83 0.86 F1-Score 0.91 
UFT2   32       1 33 0.97 0.91 0.94 Accuracy 0.92 
UFT3     19 1 1   21 0.90 0.90 0.90     
UFT4       58   1 59 0.98 0.92 0.95     
UFT5 3 2 2 2 47 2 58 0.81 0.96 0.88     
UFT6       2   34 36 0.94 0.89 0.92     

  Total 18 35 21 63 49 38 224         

We obtained producer accuracy and F1-score levels above 0.9 for almost all classes 
except UFT1 and UFT5. The UFT1 also had the lowest user accuracy among the typologies. 
The smaller number of samples and the confusion with UFT5 explain the lower 
performance of our methodology for the UFT1 class. The UFT5 is a typology that includes 
areas near roads and does not necessarily have a specific morphological pattern, which 
increases the probability of classification errors. Although UFT5 does not have a well-
defined morphological pattern, we identified it as one of our six categories because roads 
are vectors of urban growth in Amazonian cities. Roads replaced the role that rivers 
played in the formation of the first Amazonian urban centers [55], and they are also related 
to the formation of precarious settlements in the surrounding areas [13]. 

The UFT4—Sparse had the best classification performance according to F1-score. In 
addition to its very peculiar morphological pattern, which is easily distinguished from the 
other typologies, UFT4 had the largest number of samples. 
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Figure 7. UFT classification of three precarious settlements: Loteamento Bela Vista, Altamira, in 
WPM true color image (a) and classification in UFT (b); Invasão do Castanhal, Cametá, in WPM true 
color image (c) and classification in UFT (d); Bairro da Paz, São Miguel da Conquista and Bairro 
Filadelfia, Marabá, in WPM true color image (e) and classification in UFT (f). 

6. Discussion 
The identification of precarious settlements in Altamira and Cametá resulted in 

similar prevalence of precarious areas to the original data. Only in Marabá the area 
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identified as precarious had greater prevalence than in the reference data. Therefore, there 
are some misclassifications. In all these cities, subnormal agglomerates have 
nonresidential areas. When we corrected the delimitation of subnormal agglomerates, 
removing areas of vegetation and nonresidential areas, our model underestimated the 
original prevalence of subnormal agglomerates in the IBGE data [32] (Figure 8).  

Although Altamira has a low percentage of urban areas identified as precarious, our 
classification almost doubled the total number of precarious areas in the city when 
compared with the IBGE data [32]. In Cametá and Marabá, our classification 
overestimated in 69% and 61% the number of precarious areas in the reference data. 
Therefore, our work agrees with several studies that report an underestimation of 
subnormal agglomerates [16,20,21] by IBGE. Furthermore, our study shows that the 
underestimation of subnormal clusters by IBGE is not restricted to metropolitan areas, 
also occurring in Altamira, Cametá, and Marabá. 

 
Figure 8. Comparison of urban areas classified as precarious by our methodology and as identified 
in the original (reference) data by IBGE. 

The characterization of urban fabric typologies reveals a diversity of morphological 
patterns existing in precarious settlements in the Amazonian region. This general 
characterization of urban fabric typologies demonstrates the need to build specific 
interpretation keys for Amazonian cities. Models based on generic samples neglect to 
identify these housing arrangements, especially for those located outside the metropolitan 
areas of Belém and Manaus. 

Note that, none of the municipalities have all six UFT in its territory. However, the 
UFT4—Sparse and UFT5—Roads are present in all three cities. Slums and tenements are 
the two most studied precarious settlements in the Brazilian literature. However, we have 
not found slums and tenements in any of the three cities, reinforcing the need for more 
diverse studies on the singularities of precarious settlements in nonmetropolitan 
Amazonian cities. 

In the Brazilian case, prior characterization of settlements is a mandatory step for 
local governments to access funding from the federal government’s slum upgrading 
programs [4]. Furthermore, this type of characterization allows the understanding of 
internal structures in precarious areas to provide meaningful indicators to combat poverty 
through evidence-based policy-making toward more sustainable cities [81]. 

Feitosa et al. [48] (by IMMerSE methodology) and Georganos et al. [81] also identified 
morphological patterns in slums and other types of precarious settlements. Implementing 
the methodology in Nairobi, Kenya, Georganos et al. [81] assembled multiple WorldView-
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3 datasets with varying numbers of bands and image features, allowing for the 
exploration of computational efficiency, complexity, and scalability. The authors used a 
land cover classification generated by the GEOBIA approach to identify typologies of 
deprived urban areas (DUAs). The classification of DUAs typologies was performed by 
unsupervised k-means clustering. Similarly, both studies [48,81] identified settlements 
with different levels of consolidation, organization of the urban fabric, and built-up 
density. Note that these studies also used grids as spatial reference units. 

The input variables in our final decision trees for UFT classification have theoretical 
relevance in the field. Figure 9 shows a boxplot of the “LSI Asphalt” and “IJI Shrub 
Vegetation” landscape metrics, and the contextual metrics of river and road distances. The 
“LSI Asphalt” has higher prevalence in UFT1—Fiber cement and UFT2—Ceramics, which 
are the two most consolidated types of settlement, with better conditions of road 
infrastructure and with the highest built-up density. In contrast, these two settlements 
have the lowest values of “IJI Shrub Vegetation” metric. As expected, UFT5—Roads has 
low distance values to highways, while UFT6—River has low distance values to the river 
(distance values appear negative because they are normalized). 

 
Figure 9. Variables included in the final decision tree for our classification model: (A) LSI Asphalt; 
(B) IJI Shrub Vegetation; (C) distance to the river, and (D) distance to the road. 

The use of landscape metrics to classify urban environments was also experimented 
by Reis [82]. The author achieved reasonable accuracy and discriminatory power using 
landscape metrics as features, enabling the identification of intraurban patterns in the 
context of dengue fever surveillance and disease control in Rio de Janeiro, Brazil. The 
landscape metrics described in our methodology are consonant with Reis [82], 
demonstrating the potential of these metrics for urban and intraurban environmental 
studies. 

From the methodological point of view, two decisions were central to obtaining high 
levels of global accuracy and F1-score. First, the use of two levels of segmentation, initially 
formed by ground cover base, and a second level hierarchically superior formed by 
hexagonal grids, where neighborhood connectivity allows better extraction of features 
than in rectangular grids [72]. Adopting these two levels enabled the extraction of 
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landscape metrics from first-level geographic objects, and the estimation of neighborhood 
features for second-level objects.  

The second main methodological decision was to classify cells using a machine 
learning algorithm. We applied the C5.0 algorithm to build optimal decision trees, which 
outperforms manual classification models. Additionally, regarding geographical data for 
identification and characterization of precarious settlements, two datasets were essential: 
i) WPM images from the CBERS-4A satellite, in which spatial resolution of the 
panchromatic camera allowed the extraction of geographic objects for intraurban analysis 
scale; ii) OSM road and hydrological database to calculate distance measures to the nearest 
river and nearest highway that were fundamental features for most of the UFT 
characterization. 

Although our results show high global accuracy and F1-scores, there are a few 
methodological gaps that could be improved. Kuffer et al. [18] proposed the inclusion of 
socioeconomic census data jointly with features extracted by satellite images to improve 
the classification of precarious settlements. The last Brazilian census was carried out in 
2010, and due to the COVID-19 pandemic the census scheduled for 2020 was postponed 
to 2022. Therefore, our proposed methodology sought to identify precarious settlements 
using only features from open data sources extracted from remote sensing and 
volunteered geographic information (VGI).  

Our methodology for identifying precarious areas and characterization of UFT 
combined the GEOBIA approach with a classification using the C5.0 machine learning 
algorithm. Other algorithms can be assessed for the classification of geographic objects 
such as support vector machines (SVM) and random forests (RF), which have shown high 
accuracy in slum identification models [18,83]. However, notice that machine learning 
algorithms, although showing high accuracy [18], usually require great computational 
power and a large number of training samples to give useful models. These samples of 
precarious urban areas may not be available for many Brazilian municipalities and may 
be scarcer in Amazonian cities, impeding the use of these models for the distinction of 
intraurban classes. Furthermore, neighborhood features can be included as measures of 
spatial correlation in traditional classification models that do not consider the spatial 
nature of the data, such as the C5.0 classifier and other traditional machine learning 
algorithms.  

In this study, we analyzed images from the Sino–Brazilian Earth Resource Satellite 
CBERS-4A, launched in 2019 and in the process of commissioning. The CBERS-4A images 
are freely available in the INPE catalog [61]; however, the parameters necessary for the 
radiometric correction of the WPM sensor have not yet been published. This prevented us 
from performing radiometric correction in the images, so we processed the data for each 
city separately. The radiometric correction would facilitate image processing. 

We chose the study areas from census tracts, considering urban those areas in the 
vicinity of municipal seats or to census tracts that are labeled as urban by IBGE [18]. A 
future work could include night light images that are usually indicators of built-up areas 
beyond the boundaries of municipal seats to indicate areas effectively occupied by the 
population [84]. Moreover, identifying study areas by night light images would not be 
restricted by the dichotomy of labeling regions as urban or rural areas, as assumed by 
census tracts. 

A final methodological suggestion is the assessment of regression models to identify 
precarious areas. It allows the estimation of housing precariousness probability surfaces 
[24,48], showing cells most and least likely to be precarious. Regression models could also 
identify settlements with mixed characteristics that have lower probabilities to belong to 
each class. 

Since this is the first study to identify and classify precarious settlements by remote 
sensing in Amazonian municipalities, these methodological suggestions could be tested 
in a future study. However, we bring to light the work developed by researchers from the 
Instituto de Pesquisa Econômica Aplicada (IPEA), who identified and characterized an 
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informal urban nucleus for each of six Brazilian hubs, including the Marabá hub. Their 
work analyzed variables collected through remote sensing; IPEA researchers plan to 
publish a research book in 2022 [85]. 

Unlike many Brazilian metropolitan areas, nonmetropolitan Amazonian cities, as the 
study sites, have precarious areas that are not easily distinguishable from nonprecarious 
regions [13]. The difficulty of distinguishing between precarious and nonprecarious areas 
in Amazonian cities is mainly due to common poor city infrastructure, especially in 
environmental sanitation services—characteristics of regional inequality between 
Northern Brazil and other regions [13]. Another main difference of Amazonian cities is 
their distinct housing construction specifics: the house accesses (use of wooden bridges), 
the predominant type of material in the buildings, how the population relates to the place 
where they live, and the architectural design that carries local empirical knowledge 
inherited from traditional Amazonian residents, in the symbology of local culture [13]. 

In addition to methodological suggestions, future studies could broaden the 
geographical scope, deepening theoretical discussions to better identify precarious 
Amazonian areas and their typologies. The unique characteristics of urban fabric in 
Amazonian municipalities require a broader debate on the concept of precarious area, to 
inventory and extract relevant features that properly describe these regions.  

7. Conclusions 
This work identifies precarious areas in Amazonian municipalities and classifies 

them into urban fabric typologies (UFT). In addition, this methodology was entirely built 
using open source software analyzing free access data, using only data collected from 
remote sensing and volunteered geographic information (VGI). To the best of our 
knowledge, this work shows the first proposed technique to identify precarious 
settlements in the Amazonian territory using remote sensing data.  

Our methodology to identify precarious areas and classify typologies using GEOBIA 
and data mining techniques showed mapping results with an overall accuracy above 0.90, 
indicating that our methodology is a valuable tool for semiautomatic identification of 
precarious settlements in Amazonian cities. This methodology demonstrated that 
precarious settlements in the Amazonian cities studied are diverse and can be grouped 
into different typologies of urban fabric, contributing to a methodological debate about 
precariousness in Amazonian cities. 

Currently, there are millions of people living in precarious settlements in Brazil. 
Mapping these precarious settlements by presential site visits or visual analysis is time-
consuming, costly, and demands the collaboration of researchers from several fields. The 
proposed methodology provides accurate information to support municipalities planning 
to assist in the identification of precarious settlement as another layer of relevant 
information.  
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