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“We cannot go back and start over, but we can begin now and make a
new ending”.

James R. Sherman
in “Rejection”, 1982
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To all those who have suffered from mental illness
during the COVID-19 pandemic. And all the

neurodivergents around the world. You can do it.
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ABSTRACT

One crucial step in Remote Sensing analyses is the collection of reference sam-
ples,used either to train supervised classifiers or to assess the accuracy of results.
Up to date, it is common for reference samples to be treated as the truth, mainly
due to the lack of feasible ways to assess their quality. However, the increased avail-
ability of very high spatial resolution imagery may create new opportunities for such
a task. This thesis aimed to study the effect of the quality of reference data in su-
pervised image classification. For this, a methodology was proposed to define and
assess the quality of reference data, using a higher-resolution image as an auxiliary
data. A controlled situation was used, with the high-resolution image, first sampled
(by average) to a much lower-resolution image (LR) and then using LR to be the
working classification. In this way it was guaranteed that there were no geometric
errors. Besides, reference pixel quality was defined in terms of the relative propor-
tion of the land cover class inside the area of the LR pixel. The same set of classes
were used to classify the high-resolution image and histograms of classes inside the
LR pixel were evaluated. The class of the LR pixel is then assigned to the mode of
this class’ histogram, provided that the mode is greater than 50% of total potential
count inside the LR pixel. Then, sets of reference data, composed by those that met
this minimum relative proportion criteria (i.e, ≥ 50%), were divided into training
and test data using six different quality combinations (Setups) to be analysed. This
study observed that the quality of reference data is a relevant factor for remote sens-
ing analysis and for their respective spatial data quality; also, that the quality of
test samples tends to be more influential to qualitative measures (thematic accuracy
and kappa index) than the of the classifier itself. Finally, for this specific scenario,
completeness analyses for classification accuracy, producer and user accuracy (re-
lated to omission and commission errors, respectively) played a more important role
to represent the quality of an image than a thematic accuracy analyses.

Keywords: Remote Sensing. Supervised image classification. Reference data selec-
tion. Reference data quality. Spatial Data Quality. Classification Accuracy Assess-
ment. Digital Image Processing. Machine Learning. Pattern Recognition.

xi





SELEÇÃO DE AMOSTRAS DE REFERÊNCIA PARA
CLASSIFICAÇÃO SUPERVISIONADA DE UMA IMAGEM DE
MENOR RESOLUÇÃO AUXILIADA POR UMA IMAGEM DE

MAIOR RESOLUÇÃO

RESUMO

Um ponto trivial em análises em Sensoriamento Remoto é a coleção de amostras
de referência usadas tanto para treinar classificadores supervisionados, quanto para
avaliar a qualidade dos resultados da classificação. Até o momento, é comum tra-
tar amostras de referência como verdade, principalmente devido a falta de formas
práticas para avaliar essa qualidade. No entanto, o aumento da disponibilidade de
imagens de altíssima resolução espacial pode criar novas oportunidades para esta
tarefa. A partir disto, este documento teve como objetivo estudar o efeito da qua-
lidade em dados de referência para classificação supervisionada de imagens. Para
isso, uma metodologia foi proposta para definir a qualidade de dados de referência
utilizando uma imagem de resolução mais alta como dado auxiliar. Uma situação
controlada foi utilizada, onde a imagem de mais alta resolução foi reamostrada (por
média) para uma imagem de mais baixa resolução (LR) de forma que LR foi usada
como imagem a ser trabalhada nas análises. Desta forma, foi garantido que não hou-
vesse erros geométricos de registro. Além disso, a qualidade de pixels de referência
foi definida em termos de proporção relativa da classe de cobertura de terra dentro
da área de um pixel LR. O mesmo grupo de classes de cobertura foi utilizado para
classificar a imagem de mais alta resolução para se avaliar os histogramas das classes
dentro de um pixel LR. Daí, as classes dentro de um pixel LR foram assinaladas
para a moda do histograma daquela classe considerando que a moda tem frequência
maior que 50% do total de pixels dentro de um pixel LR. Então, os conjuntos de
dados de referência compostos por dados que tenham atingido o critério de mínima
proporção relativa (i.e, ≥ 50%) foram divididos entre dados de treino e teste utili-
zando seis combinações de qualidade de dados de referência (Setups) para ser depois
analisados. A partir disto, este estudo observou que a qualidade de dados de refe-
rência é um fator relevante em análises de sensoriamento remoto e para seu controle
de dados cartográficos; ainda, que a qualidade de dados de teste tende a ser mais
influente para medidas de acurácia temática (acurácia global e índice kappa) que
o tipo de classificador utilizado. Por fim, para este cenário específico, elementos de
completude, acurácia de produtor e do usuário (relacionadas aos erros de omissão e
comissão, respectivamente) se mostraram peças mais importantes para representar
a qualidade de uma imagem do que análises temática.

Palavras-chave: Sensoriamento remoto. Classificação supervisionada de imagens. Se-
leção de dados de referência. Qualidade de dados de referência. Controle de Quali-
dade Cartográfica. Avaliação da Qualidade da Classificação. Processamento digital
de imagens. Aprendizado de máquina. Reconhecimento de padrões.
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1 INTRODUCTION

Remote sensing, as defined by Campbell and Wynne (2011), is the usage of electro-
magnetic radiation in regions of the electromagnetic spectrum reflected or emitted
from the Earth surface in order to derive information from it. Such information can
be used for monitoring the Earth’s surface: for military purposes (HUDSON; HUDSON,
), land and maritime monitoring, as well as emergency management (ESA, 2015b).

Remote sensing imagery studies started with the launch of the first satellite1 in
1957 and since then, there are several remote sensing satellites orbiting the Earth,
with their resolutions improving alongside with science and technology (CAMPBELL;

WYNNE, 2011). Therefore these breakthroughs aid scientists to have new under-
standing of environmental and socioeconomic dynamics of the Earth, which can be
exemplified by deforestation as well as inland and ocean water monitoring (ELMES

et al., 2020).

The evolution in science and technology has led to advances in the satellite sensors
that have increased their resolutions with time. Regarding the spatial resolution, in
this year of 2021, the availability of moderate resolution sensors (5 − 30m), high-
resolution sensors (1 − 5m) and very-high resolution sensors (< 1m) has enabled
more focused studies regarding Machine Learning techniques for image classification
(ELMES et al., 2020).

According to Richards and Xiuping (2006), image classification can be defined as a
computer-based quantitative analysis of the attributes of each pixel - which can be
spectral bands available or their derivatives - so we can label them identifying as
belonging to a particular set of pixels of interest. Plus, Lary et al. (2018) state that
"machine learning is an automated approach to building empirical models from the
data alone".

However, supervised machine learning (ML) algorithms are dependent on a "com-
prehensive representative set of examples", referred to as training data (LARY et al.,
2018) as well as test (or validation) data (BRANDT; MATHER, 2009), which combined
are entitled here as reference data. As these reference data are trivial for defining the
predictive ML model as well as for assessing the classification quality, their quality
seems to be important. In this sense, we come up with the question: to what extent
the quality of reference data affects the predictive model of a supervised image clas-

1The first launched satellites was Sputnik-1 in 1957 by USSR, it had military positional purposes
(LAUNIUS et al., 2002).
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sification? In this study, we define the pixel quality as being related to its spectral
purity, thus a pure pixel is considered if it is 100% pure (SHIMABUKURO; PONZONI,
2019).

There are some studies regarding this subject, though focusing on the quality of
training data, such as Elmes et al. (2020) who organised a survey in this matter
proving the importance of these data into machine learning algorithms. Foody et
al. (2016) also studied the effect of imperfect reference training data and found that
the errors related to training data depend on the involved classes. Another study
shown in Mellor et al. (2015) focused in training data imbalance for machine learning
prediction model. Another study was conducted by Jin et al. (2014) which assessed
how training data selection affect binary image classification. There are also studies
in which regard the sampling designs and image classification results (STEHMAN;

CZAPLEWSKI, 1998; STEHMAN, 1999; STEHMAN, 2009; STEHMAN; FOODY, 2019).

We emphasise the existence of quantitative studies on reference data, such as
Shimabukuro and Ponzoni (2019) who determine the quality of reference data based
on in situ data using the so-called spectral mixture. However, these studies are en-
tirely focused on applications, such as inland water monitoring (MACIEL et al., 2019;
CAIRO et al., 2020), rather then the quality assessment of image classifications. De-
spite these studies present relevant conclusions, most of them are thematic accu-
racy rather than completeness elements, which flags a lack a completeness elements’
studies regarding effect of training data in supervised remotely sensed image classi-
fication.

Another point to be addressed is a statement that have been taken as a convention
in Pattern Recognition studies: for classifications, it is important to select test sam-
ples as representative as possible. Nonetheless, this fact can be understood as true
for assessing the quality of the classifier per se, by analysing how well the classifier
can allocate information to a certain label, which usually is discussed in Pattern
Recognition books (RICHARDS; XIUPING, 2006; HASTIE et al., 2009; THEODORIDIS;

KOUTROUMBAS, 2009). The quality of a thematic map, which is the resulting clas-
sified image, may not always be related to the quality of the classifier, specially for
region-based classifiers, once the training object is different from the testing object;
this idea emerged from Foody et al. (2016) where the involved classes influence the
effect of training data quality.

In a nutshell, some points regarding the assessment of reference data for image
classification are:
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• Most studies focus on the assessment of training data;

• There is a convention that the quality of testing (validation) data for image
classification must be as high as possible;

• The studies regarding the selection of reference data concern mostly the
isage of thematic accuracy rather than completeness;

• So far, studies that define the quality of reference data depend on in situ
information.

From these considerations and assuming that the acquisition of reference samples for
supervised image classification is prone to the existence of sprectrally mixed pixels,
in this study, we seek to answer the following question: to what extent choosing more
(or less) class-representative training and test samples affect the accuracy of image
classification? In order to answer that question, this study presented the objectives
hereafter.

1.1 Objectives

For answering the question stated above, the main objective of this study is to
control the quality of acquired remote sensing reference data for supervised image
classification and then determine how it affects the thematic map accuracy. From
this, the specific objectives are:

a) Propose a semi-automated method for selecting reference pixels with di-
verse mixture profiles aided by an adequately higher spatial resolution
image, entitled Reference Sample Selection (RSS);

b) Assess the accuracy of image classification using thematic accuracy mea-
sures2 (overall accuracy and kappa index) as well as completeness elements
(commission and omission errors) varying the quality of training and test
samples as measure of purity.

1.2 Manuscript structure

Therefore, this manuscript firstly presents a Literature Review (Chapter 2) of image
classification, classifiers, reference data selection and classification accuracy assess-
ment. Then, the Methodology is separated into two chapters: (i) Proposed Approach,

2Please refer to DSG (2016) for more information regarding the use of the expression "thematic
accuracy" and "completeness" for classification accuracy.
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shown in Chapter 3, where the theoretical concept of Reference Sample Selection
(RSS) is presented alongside with the manual approach for selecting reference sam-
ples and (ii) Experimental Planning (Chapter 4), where the used material is stated
as well as how RSS is applied to a controlled situation. After presenting the method-
ology, the Results and Discussions regarding two distinguished controlled situations
are presented in Chapter 5. Finally, Conclusions and final remarks are shown in
Chapter 6.

Additionally, aiming the accessibility of remotely sensed studies, most of the images
in this study are colourblind friendly and the ones which could not meet this criteria
are presented in Black and White format in Appendix C.
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2 LITERATURE REVIEW

2.1 Classification systems

Classification is a quantitative analysis as it analyses the image numeric properties,
as stated by Richards and Xiuping (2006) and Novo (2010) and it is effective for a
general assessment of ground cover types according to its geometric characteristics.
This analysis can be summarised in assigning a meaning to, or labelling, an object of
the image. The object of the image can be a pixel or a set of pixels, so-called region.
When the object is a pixel, then the classification is entitled herein as Pixel-based
Classification discussed in Section 2.2.1. When the object is a set of pixels, also
known as regions, and metrics derived from this set of pixels is computed, there is a
segmentation followed by a classification based on these metrics, entitled herein as
Region-based Classification, discussed in Section 2.2.2.

Moreover, according to Brandt and Mather (2009), the image classification uses a set
of input features in a k-dimensional space, so-called feature space, so it can create
a relationship between any pattern and a labelled class or ground cover type. For a
remotely sensed data, these features may be values of spectral reflectance, metrics
derived from these reflectances or even geographical information, such as slope and
elevation, as stated by Brandt and Mather (2009). These features can be selected
or extracted, i.e, derived from selected features which are chosen according to their
importance to the classification model as stated by Theodoridis and Koutroumbas
(2009).

For a visual understanding of the feature space, Figure 2.1(a) presents a 2-
dimensional feature space where the features are x and y. Each ith object in the
feature space has its features values, being (xi, yi) as a set of coordinates vector.
According to these coordinates in the feature space, they can be classified into the
classes ω1, ω2, ω3 and ω4. Once they are classified, the results are presented in a map
of labels or Thematic Map, as showed in Figure 2.1(b) which is an array represen-
tation regarding their array coordinates. Nonetheless, Figure 2.1 shows the classes
well-separable and it also presents the classes centroids for a better understanding
of the classes.
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Figure 2.1 - Illustration of classification using two features.
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Classification represented in two forms: (a) in the feature space and (b) in array as a
Thematic Map.

SOURCE: Adapted from Richards and Xiuping (2006) and Theodoridis and Koutroumbas
(2009).

Once the feature space in defined, the labelling, or classification approach takes
place. It can be supervised, unsupervised or a combination of both (called semi-
supervised or weakly supervised), according to Theodoridis and Koutroumbas (2009)
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and Brandt and Mather (2009). To be more specific, Richards and Xiuping (2006) de-
scribed unsupervised classification as classifying objects according to feature classes
without previous knowledge of the ground cover classes. On the other hand, the
supervised approach needs a user to collect data or samples to train the classifier, so
it can delineate the class region in the feature space (BRANDT; MATHER, 2009). This
study focuses on supervised classification, hence all subsequent topics will imply this
approach.

In a nutshell, Figure 2.2 presents a step-by-step flowchart of a supervised image
classification, based on Richards and Xiuping (2006), Brandt and Mather (2009),
and Theodoridis and Koutroumbas (2009). This figure illustrates both region-based
and pixel-based classification scenarios. Regarding the former, it is necessary the step
of segmentation to form regions and later the extraction and selection of attributes
prior to the classification. On the other hand, the latter has only attribute extraction
and selection prior to the classification. Nonetheless, both cases need the extraction
of reference data generating training and test samples, which is the main focus of
this study. This extraction is thoroughly discussed in Section 2.2.

The next sections explain in more details the Pixel-Based and Region-based classi-
fications for remotely sensed data.
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Figure 2.2 - Flowchart of usual supervised classification system for remotely sensed data.
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SOURCE: Author.
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2.2 Reference data selection for supervised classification

Selecting reference data is the process of selecting pixels or regions that characterise
the thematic classes of interest, as defined by Brandt and Mather (2009). These
data is further used by pattern recognition algorithms in Earth Observation studies
as well as for classification accuracy assessment. Ideally, the reference data should
concern the entire region of study; however, as this is unpractical, selecting these
samples using statistics becomes necessary (STEHMAN, 2009). The author defines
sample as "a subset or portion of the region mapped" hence these samples should
summarise the data.

Considering they should summarise the data, the quality of these data must be
put into thought. There are two main sources of remotely sensed reference data:
those selected from basemaps and in situ samples. The former as they are easier to
acquire, they are the majority of the cases and, as stated by Elmes et al. (2020),
must consider characteristics in which may influence the selection judgement, such
as sun angle, spectral band selection and image contrast. The latter regards the
collection of samples directly in the field which are usually defined as points. In
both scenarios, the samples are called "ground truth" (STEHMAN, 2009; ELMES et al.,
2020) regardless of its reliability.

Besides, in remote sensing image classification, these samples are objects which can
be pixels or regions, as stated by Richards and Xiuping (2006). According to the
authors, the first case, the pixels selected have their feature or terrain values, such
as grey scale, digital number directly measured or any derivative from these metrics;
the latter, a metric of the region is computed, such as mean, median or mode.

The error source of acquiring reference data is presented in Section 2.3. Then, the
statistics considerations required for selecting samples, or reference data, in this
study will be called sampling design and are discussed in Section 2.3.1 and studies
concerning sampling size are exposed in Section 2.3.2. The accuracy assessment is
dealt separately in Section 2.5.

2.2.1 Pixel-based classification

The Pixel-based classification is, for remotely sensed data, the most used approach
because it infers directly on the pixel data for each used feature(BRANDT; MATHER,
2009). For pattern recognition, Richards and Xiuping (2006) states the pattern as a
pixel vector containing the ith pixel values for each band in the format (xi, yi, ..., ni).
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The features can be values of brightness, spectral reflectance, digital level, slope,
elevation or aspect, or metrics derived from these features (RICHARDS; XIUPING,
2006; BRANDT; MATHER, 2009). Metric derived from features are defined as feature
extraction, which is when the feature is a derivation two or more other features. As
an example, the bands red and near-infrared (NIR) that together generate the nor-
malised difference vegetation index (NDVI), used for better recognition of vegetation
in optical satellite images (BRANDT; MATHER, 2009; NOVO, 2010).

2.2.2 Region-based classification

As stated by Brandt and Mather (2009), it is possible to create a set of pixels and
classify the set instead of using the pixels separately. Blaschke (2010), Hossain and
Chen (2019) define segmentation as partitioning an image in a set of different regions
according to specific properties, such as shape, texture, colour and digital level.
These regions are segments, entitling this procedure as segmentation. According to
Baatz et al. (2008), this is a two-stage approach where the first process segments
the image in sets of pixels and metrics and computed from it (KÖRTHING, 2012;
ABDOLLAHI; PRADHAN, 2021); the second step is image classification and analysis.
An illustration of an image segmentation is presented in Figure 2.3.

As a difference from the Pixel-based, Espindola et al. (2006) and Baatz et al. (2008)
affirm that this approach has more advantages, creating a more consistent thematic
map. The authors also mention that segmentation requires some input parameters,
which affect the quality of the outcomes. Besides, Baatz et al. (2008) highlight that
the created objects impact the classification results, once "the accuracy and the
significance of the final measurements, numbers, and statistics directly and actually
critically depend on the quality of the segmentation".

The segmentation technique used herein in the Multiresolution segmentation that,
according to Blaschke (2010), it was first proposed in Baatz and Schäpe (2000) and
later developed into programmable workflow in Baatz et al. (2008).According to
the authors, this process used Cognition Network Technology (CNT), are based on
hierarchical networks of objects. In this sense, it is possible to address different object
classes with distinct object modification strategies. This algorithm can processed in
the software eCognition 9.1 (Trimble Germany GmbH, 2014) and they set some input
parameters1 to be used:

• Image Layer weights: the weight of any used band in the image;
1We point out that this algorithm is a blackbox, therefore it cannot be well described.
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Figure 2.3 - Illustration of an image segmentation.

Projection: UTM 22S
Ellipsoid: GRS80
Datum: SIRGAS2000

(a) RGB Image

Image: True Color Image
Sensor: MSI Sentinel-2

(b) Segmented image

Image in RGB composition. True Color Image (TCI) band from Sentinel-2 MSI Sensor
taken in 9th August 2020.

SOURCE: Author.

• Scale parameter: the scale of the object, where a higher scale tends to
create larger segments;

• Shape: defined the weight that the shape criterion would have in the pro-
cess;

• Compactness: the weight of compactness criterion.

In a second moment, features are extracted from the objects to be selected as ref-
erence data. The eCognition 9.1 (Trimble Germany GmbH, 2014) can extract several
features regarding the object shape (e.g. area, asymmetry, perimeter and border
length), spectral features (mean, mode and standard deviation). The extraction
can use Grey Level Co-occurrence Matrix (GLCM) or Gray-Level Difference Vector
(GLDV), proposed by Haralick et al. (1973). The image classification works in these
features as region vectors, for example, the jth region is represented by the vector
(Aj, sj,mj), the same format as the pixel vectors.
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2.3 Error source on classification systems

According to Elmes et al. (2020), acquiring training reference data2 for pattern
recognition if often done by the same approaches and usually are subjected to the
same errors despite the fact that not necessarily they are relevant for assessing the
impact of errors in the reference data.

These approaches regard how the reference data is obtained concerning (i) its purity,
i.e. how this sample characterises the studied label, whereas it comes from another
sensor or not, or if the sample relates to ground measurements; (ii) the sample
design, which, as explained by Stehman and Foody (2019) is the protocol of how the
reference data will be selected for later assessment. Both are to be reported herein.

Moreover, Elmes et al. (2020) also state few problems associated with training ref-
erence data, being: (i) the demand for reference data due to the great amount of
data; (ii) most of the reference data relies on human-generated products which may
inherit errors; (iii) the uncertainty of reference data acquisition is barely reported
or assessed, usually are considered as perfectly accurate and (iv) error propagation
from the not satisfactory reference data quality to further data analysis.

2.3.1 How to acquire reference data: sampling design

Brandt and Mather (2009) defines the sampling design, or as they call, sample
scheme, as selecting objects that characterise the thematic classes of interests from
a certain population. Elmes et al. (2020) state that the sampling design refers to
"where, when, how many, and what type of samples are placed". Besides that, Warner
et al. (2009) and Olofsson et al. (2014) affirm that the sampling design forms the
basis of the thematic map accuracy assessment and it must be done regarding the
specific objectives of the accuracy assessment.

Moreover, Stehman (1999) defines seven major sampling design criteria discussed
by Stehman (2009), in which aids the analyst to determine the optimum sampling
design for their need, being:

• C1 - The sampling protocol satisfies the requirements of a probability sam-
pling design: it justifies the accuracy estimates which are derived from the
sample;

2As mentioned in the Introduction, studies analysing accuracy of reference data are most com-
monly focused in training data rather than training and test data.
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• C2 - The sampling design must be practical: is it realistic to expect that
the protocol will be implemented correctly? This criteria considers the
limitations of collecting and analysing the reference data properly;

• C3 - The design must be cost effective: is the funding sufficient for the
sampling design?

• C4 - The sample is spatially well-distributed: spatially distributed samples
have a tendency of being more precise than those without a good spatial
distribution;

• C5 - The sampling variability of the accuracy estimates should be small:
the obtained accuracy estimate should be close to the same value inde-
pendently of the sample selected in a way the the assessment would be
repeatable;

• C6 - Sampling variability or precision of the accuracy estimator should
be estimated without undue reliance on approximations other than those
related to sample size: as some sampling designs require approximate stan-
dard errors;

• C7 - Ability to accommodate a change in sample size at any step in the
implementation of the design: this considers the fact the accuracy assess-
ment budgets may be unpredictable and may change after the protocol has
been initiated.

These sampling designs criteria can aid to determine the sampling design to use for
a specific study (STEHMAN, 2009) and, it depends on what are the requirements of
the pattern recognition approach is being used in case of training samples (ELMES

et al., 2020).

Stehman (1999), Stehman (2009),Olofsson et al. (2014), Stehman and Foody (2019)
and Elmes et al. (2020) present four sampling schemes: simple random, stratified
random, clustering and systematic. These designs can be combined forming other
sampling schemes depending on the study objective. We present here Simple Ran-
dom Sampling as well as Stratified Sampling. For more information, please refer to
Cochran (1977) and Stehman (1999).
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2.3.1.1 Simple random sampling

Simple random sampling is the idea of selecting samples randomly, as its name
define it. As it is random, it infers a probability sampling design (C1), as defined
by Stehman (2009) and it also infers simplicity (C2) as defined by Stehman (1999).
This sampling design is also easily adapted to further changes in the sample size
(C7) as defined by the author.

Usually, this design is used with another sampling design. According to Stehman
(2009), Olofsson et al. (2014), this sampling design can be directly applied to select
a set of clusters, a two-stage cluster sampling, which is a set of objects within a
cluster, or a set of objects within a stratum.

To illustrate this sampling design, Figure 2.4 presents randomly selected sample
from a box. We highlight that this sampling design alone may not meet spatial
distribution condition (C4).

Figure 2.4 - Sampling Design: Simple Random Sampling example.
Simple Random Sampling

Legend

Randomly selected samples

Available samples

SOURCE: Author.

2.3.1.2 Sampling design: stratified random sampling

When they are divided into classes, the number of samples for each stratum can be
defined so a precise estimate can be ensured (OLOFSSON et al., 2014). Each stratum
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size determination have a different objective (STEHMAN, 2009; OLOFSSON et al., 2014;
STEHMAN; FOODY, 2019).

Stratified random sampling is the design recommended by Olofsson et al. (2014) as
good practice. According to Stehman (2009) strata are groups of objects that belong
to one stratum in a way that the strata form part of the entire object population.
The author highlights that, for remote sensing, these strata can be divided according
to the map classes or according to their spatial location.

Figure 2.5 illustrate these two types of stratified sampling showing strata per class
in Figure 2.5(a), where the samples are grouped into different map classes and strata
per location, shown in Figure 2.5(b), where the samples are chosen according to their
location within the cells, so samples spatial distribution is achieved (C4) (STEHMAN,
1999).

When they are divided into classes, the number of samples for each stratum can
be defined so a precise estimate can be ensured (OLOFSSON et al., 2014). Obviously,
the stratum size will depend on availability of resources to collect it, therefore this
availability will be a constraint to determine it, as pointed out by Stehman and
Foody (2019).

Each stratum size determination has a different objective (STEHMAN, 2009; OLOF-

SSON et al., 2014; STEHMAN; FOODY, 2019). When there is an equal allocation of
sample size, all classes are considered to have equal importance, as mentioned by
the authors. On the other hand, if there is a difference in importance, priority classes
should have a greater sample size, so the confidence interval can be narrowed, as
explained by Stehman and Foody (2019). According to Stehman (1999), this design
may be used to certify that sample sizes for specific stratum meet the requirement
for each stratum (C6).

As drawback, this design may not be reliable when there are subgroups, or strata,
that are not of interest due to a poor distribution of sample among the strata which
are now the aim of the accuracy assessment (STEHMAN, 1999). Therefore, the author
emphasises that the best use of stratified sampling design when we are nearly sure
to retain the importance of identified strata.
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Figure 2.5 - Sampling Design: Stratified Sampling examples.

(a) Strata per class (b) Strata per spatial location

Legend

Selected samples of Stratum 1

Selected samples of Stratum 2

Selected samples of Stratum 3
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Strata division

Available samples

Strata from stratified sampling considering (a) strata per class, where the selected samples
are in groups of classes and (b) satrata per location where the samples are selected within
their regions divided with grey lines.

SOURCE: Adapted from Stehman (1999).

2.3.1.3 Comparing sampling designs

As Stehman (2009) studied specifically the sampling designs regarding the accuracy
assessment, they also compared their relative strengths according to the design cri-
teria, as presented in Table 2.1. We emphasise that the table presents all sampling
designs from the paper aiming to compare the effectiveness of the stratified sampling
with other sampling designs.

From Table 2.1, all designs where there is simple random protocol are considered as
strong regarding flexibility criteria (C7). The author highlights that stratified (map
class) random design is a prime candidate for class-specific accuracy objective, and
it is the most commonly employed design. In agreement with that, Olofsson et al.
(2014) recommends the use of stratified sampling as a good practice for remote
sensing image classification.
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Table 2.1 - Relative strengths ans weaknesses of basic sampling according to desirable
design criteria.

Design C1 C2 C3 C4 C5 C6 C7
Simple Random • • ◦ ◦ ◦ • •
Systematic • • ◦ • ◦ ◦ ◦
Stratified (map classes) random • • ◦ ◦ • • •
Stratified (map classes) systematic • ◦ • ◦ ◦
Stratified (spatial) random (ns = 1) • • ◦ • ◦ ◦
Stratified (spatial) random (ns > 1) • • ◦ ◦ • •
Stratified (spatial) systematic • • ◦ • ◦ ◦ ◦
Cluster random • • ◦ ◦ •
Cluster systematic • • ◦ ◦ ◦
Stratified random cluster • • ◦
Stratified systematic cluster • • ◦

The criteria are: C1) probability sample, C2) practical, C3) cost, C4) spatial balance,
C5) precise estimates of class-specific accuracy, C6) ability to estimate standard errors,
and C7) flexible to change in sample size. The rating symbols are • = strength and ◦
= weakness; absence of a symbol indicates the design is ‘neutral’ with regard to that
criterion. Besides, ns means the number of selected samples in the stratum.

SOURCE: Stehman (2009).

2.3.2 Sample size

When it comes to sample size n, for both scenarios, training and test data, Brandt
and Mather (2009) emphasise that nonparametric machine learning classifiers tend
not to significantly affect the map accuracy when a small sample set is used. Ad-
ditionally, Cochran (1977) mentions that larger sample set can result in waste of
resources whereas too small sample sizes may bias the outcomes hence the sample
size should be put into thought.

Nonetheless, Olofsson et al. (2014) and Cochran (1977) present methods for deter-
mining a minimum sample size according to the chosen sampling design. On the
other hand, Brandt and Mather (2009) points out a rule of thumb of using a sample
size 30 times the number of used features (bands)1, which will be considered in this
study.

1Considering this, the Brandt and Mather (2009) mention the case of hyperspectral data sets,
where the sample size could be "unfeasibly large" hence they recommend the use of dimentionality
reduction or feature selection techniques.
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2.4 Machine learning classifiers

In machine learning classification, there are two main groups of classifiers: paramet-
ric and nonparametric, as mentioned by Richards and Xiuping (2006). The former
assumes that the input data can be described using Gaussian probability distri-
bution function in the feature space, which is generally the case for multispectral
images, as the authors state. As example of parametric classifiers, Theodoridis and
Koutroumbas (2009) mention Maximum Likelihood and Minimum Distance. The lat-
ter, non-statistical or nonparametric is "an histogram approximation of a unknown
probability distribution function", hence the data are not required to be Gaussian, as
stated by Richards and Xiuping (2006). Some of the methodologies are Linear Dis-
crimination, Support Vector Machine, Neural Networks, Decision Trees and Random
Forests (RICHARDS; XIUPING, 2006).

This study is focused on nonparametric classification approaches and the ones used
for this study are described herein. These approaches are K-Nearest Neighbours
(KNN), Support Vector Machine (SVM), Decision Trees (DT) and Random Forests
(RF).

2.4.1 K-Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) is one of the simplest approaches for image classifica-
tion, being a nonparametric model and it does not require any assumptions regarding
the input data (RICHARDS; XIUPING, 2006; ABDOLLAHI; PRADHAN, 2021). The au-
thors also declare that its main hypothesis is that similar data tend to be neighbours
in the feature space, hence it considers proximity between data for the predictions;
in other words, it classifies the data based of k near neighbours samples. To define
the nearest neighbours, few distances can be used and this a parameter for using
this estimator (THEODORIDIS; KOUTROUMBAS, 2009). Among the distances, there
is the Euclidean Distance (Equation 2.1) or the Minkowsky Distance (Equation 2.2).
These distances are based on two samples, a and b regarding n features, hence, a
pixel or region vector is defined by a = (a1, a2, ..., an−1, an) is this example.

DE(a,b) =
√

(a1 − b1)2 + ...+ (an − bn)2 =
√√√√ n∑
i=1

(ai − bi)2 (2.1)

DM(a,b) =
(

n∑
i=1
|ai − bi|

) 1
r

(2.2)
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Where,
DE(a,b) is the Euclidean Distance;
DM(a,b) is the Minkowsky Distance and
r is constant to be defined during the process.

As for choosing the k values, k ∈ N and it is usually an uneven value (ABDOLLAHI;

PRADHAN, 2021). The lower the k value, more noises the classification may have.
On the other hand, the higher the k value, more generalised the classification can
be. In this sense, choosing k is an empiric process and it depends on the input data,
although Abdollahi and Pradhan (2021) mention the use of some approaches.

Figure 2.6 illustrates how the KNN Classifier works in a 2D feature space, considering
classes 1 (circles) and 2 (squares). The triangle is the object vector to be labelled.
This figure uses k = 1, k = 2 and k = 3 neighbours and it shows the distance
between the object vector in study to the training samples. When k = 1 and k = 3,
the object vector is labelled as Class 1 (circle). However, when k = 2, the object
vector cannot be labelled.

Figure 2.6 - Illustration of KNN classifier.
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Illustration of the KNN Classifier, observing the red triangle sample in a 2D feature space.
This sample is compared to Class 1 (pink circles) and to Class 2 (blue squares). When
k = 1 and k = 3, the sample is allocated to Class 1 and when k = 2, the sample cannot
be allocated.

SOURCE: Author.
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Once the KNNmodel is fit, a decision boundary is created, as presented in Figure 2.7,
which will determine the classification model. Moreover, Figure 2.7 also presents the
classes centroid, which is the average value for all classified vectors and training
samples allocated to that class. The centroid position express the importance of
selecting samples as close to this centroid as possible for a more accurate supervised
classification.

Additionally, Richards and Xiuping (2006) mentions that the nearest pixels can be
weighted according to the inverse of the used distance. This leads us to two forms of
performing the KNN Classifier: uniform, which considers the number of near pixels
and weighted, which considers the inverse of the distance.

Figure 2.7 - Illustration of KNN classifier with decision boundary.
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Illustration of the KNN Classifier, in a 2D feature space presenting the decision boundaries
created. When selecting the training samples, it is important to select classes as close to
the class centroid (crosses) as possible.

SOURCE: Author.
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2.4.2 Support Vector Machine (SVM)

As the KNN classifier, the Support Vector Machine (SVM) is a nonparametric clas-
sifier in which is based on computing distances measures between data vectors to
split the data according to decision boundaries in the feature space (CHANG; BAI,
2018). The difference is that SVM improves its robustness by creating a structural
risk minimisation when filtering noises in the training process and that leads to a
high classification accuracy, as stated by Brandt and Mather (2009), Chang and Bai
(2018).

The decision boundary for the SVM classifier is a hyperplane, which constructing it is
the main core of the classifier (BRANDT; MATHER, 2009). According to Richards and
Xiuping (2006), the SVM uses only object vectors near the separating hyperplane,
called support object vectors. Moreover, as stated by Theodoridis and Koutroumbas
(2009), the hyperplane is not unique, hence there is a need to find an optimal
hyperplane with the optimum distance from the support object vectors.

Likewise, Theodoridis and Koutroumbas (2009) state that an optimum hyperplane
has the highest margin on both sides so there is a smaller risk of causing an error,
hence being more trustworthy when dealing with unknown data. Another point
regarding the hyperplane is that it can be n-dimensional, where n is the number of
studied features (CHANG; BAI, 2018).

To illustrate how SVM works in a 2D feature space, Figure 2.8(a) presents few pos-
sibilities of linear hyperplanes and the selected optimum hyperplane with a thicker
line. The optimum hyperplane is defined as the one with the highest margin from
the near support object vectors, as showed in Figure 2.8(b).

When a linear hyperplane cannot separate the classes, it is named nonseparable and
some non-linear approaches are used, called the non-linear SVM (BRANDT; MATHER,
2009). The authors elucidate that in this case, it is usual to change the number of
used dimensions - usually for more - for a better separability of the hyperplane as
showed in Figure 2.9. For nonlinear SVM, kernel functions are used where the most
common ones are: linear kernel, polynomial kernel, radial basis function (RBF) and
sigmoid function (CHANG; BAI, 2018).
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Figure 2.8 - Illustration of SVM with the optimum hyperplane and the margin on a linear
separable case.
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A 2D feature space illustrating (a) few possible hyperplanes according to the object support
vectors and (b) the optimal hyperplane with the margin from the object support vectors.
This Figure considers a linear separable case.

SOURCE: Adapted from Richards and Xiuping (2006), Brandt and Mather (2009) and
Chang and Bai (2018).

To be more specific, concerning RBF, its equation is shown in Equation 2.3, showing
how the feature space is split considering two features (x, y). For this function, γ
defines the influence a training sample has in the modelling process; the other usual
input parameter is C, defined how smooth the decision surface will be, i.e. the error
penalty (BRANDT; MATHER, 2009).

K(xi,yi) = e−γ‖xi−yi‖2
, γ > 0 (2.3)
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Figure 2.9 - Illustration non-linear separation of the Support Vector Machine Classifier.

(a)
Non-linear boundary

(b)
Separating hyperplane

A (a) 2D feature space illustrating a non-linear boundary separating the classes and (b)
a 3D feature space with the data mapped into a higher dimensional space to increase
separability between classes.

SOURCE: Adapted from Brandt and Mather (2009).

All the explained above concerns a binary scenario, using only two classes. How-
ever, when there are more than two classes, there is the Multi-Class problem which
consists of combining a set of binary classifiers so they can form a multi-class classi-
fier (CHANG; BAI, 2018). The authors claim that there are two main approaches for
doing so: one-against-one and one-against-all.

When it comes to one-against-one classification strategy, Brandt and Mather (2009)
state that each classifier is trained on two of the M classes, with all possible com-
binations of one-against-one classes are evaluated from the M classes training set,
being a total of M(M − 1)/2 classes. For labelling an object, the majority of votes
from the classifiers is used as a decision ruler (BRANDT; MATHER, 2009; CHANG;

BAI, 2018).

Regarding the one-against-all strategy, there is M SVM classifiers for M classes
and each classifier is trained to separate that class to the M − 1 other classes, as
explained by Brandt and Mather (2009) and Theodoridis and Koutroumbas (2009).
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2.4.3 Decision Trees

Decision Trees (DT) is, as stated by Chang and Bai (2018), a nonparametric classifier
known to be a rather efficient classifier, being capable of handling nonlinear relations
between features and classes. It partitions the feature space into unique regions
corresponding to the classes as illustrated in Figure 2.10.

Figure 2.10 - Decision Tree partition of a 2D feature space.

ω1

ω3 ω4

ω2

ω3

ω1

1/4 1/2 3/4 1

1/4

1/2

3/4

1

x

y

A 2D feature space (x, y) divided based on decision tree rule regarding four classes: ω1,
ω2, ω3 and ω4.

SOURCE: Adapted from Theodoridis and Koutroumbas (2009).

The feature space in Figure 2.10 can be reinterpreted as presented in Figure 2.11,
based on decisions regarding a certain feature in a tree known as ordinary binary
classification trees (OBCTs), as stated by Theodoridis and Koutroumbas (2009),
which consists of binary splits (yes, no) and each split has binary subsets.

The trees have nodes, and it starts with the root node which usually is the entire
dataset and it is divided into internal nodes as stated by Chang and Bai (2018).
What controls the tree growth is a stop-splitting rule, known as leaf, according to
the Theodoridis and Koutroumbas (2009) and Chang and Bai (2018).
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Figure 2.11 - Binary tree with decision nodes and leaves.

x > 1/4
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no
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no

Internal node

Root node (root)

Leaf

Binary decision tree regarding Figure 2.10 considering two features, x, y, and four classes
ω1, ω2, ω3 and ω4.

SOURCE: Adapted from Theodoridis and Koutroumbas (2009).

Richards and Xiuping (2006) and Körthing (2012) explain that there are three tasks
for designing the decision trees: finding the optimal tree structure, choosing the
optimal subsets of features at each node and, finally, selecting the decision rule to
use at each node; these tasks must be completed in a way that there is a minimum
error rate, number of nodes or path length. In other words, the split rules are decided
according to computations considering statistical probability rather than randomly
(KÖRTHING, 2012).

When it comes to GeoDMA plugin, it uses a Decision Tree model entitled C5.0
(KÖRTHING et al., 2013). The Decision Tree C5.0 (DT5) algorithm is explained in
Kuhn and Johnson (2013), which considers input parameters to optimise the split-
ting efficiency. These input parameters for the C5.0 decision tree classifier are pre-
sented in Table 2.2.
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Table 2.2 - C5.0 Decision Trees input parameters for GeoDMA plugin.

Parameter Description
Boosting Boosting interactions or a single model to be used.
Trials Number of boosting iterations.
Global Pruning Using a global pruning to simplify the tree.

Minimum Cases The lowest number of samples put into two
or more splits.

Winnow Option to make a feature selection prior to
the classification.

Decomposed Rules Whereas the tree is decomposed into a rule
set based model.

Early Stopping Whereas the internal method for stopping is used.

Subset Whereas the model evaluates groups of splitting
discrete predictions.

Fuzzy Thresholds Evaluate possible advances data splits.
Confidence factor The confidence factor for splitting the tree.

SOURCE: Körthing et al. (2013), Kuhn and Johnson (2013).

2.4.4 Random Forests

The Random Forest (RF) prediction model was developed by Breiman (2001) and
its goal is to enhance the classification accuracy by using a combination of several
decision trees, trained features and labelled data. According to Brandt and Mather
(2009), each tree classifier is created by a random vector, which is sampled indepen-
dently from the training set of the input vector data.

Each tree has a unique vote for the most popular class and the majority of the
votes represent the assigned class (BRANDT; MATHER, 2009; HASTIE et al., 2009). To
illustrate the random forest structure, Figure 2.12 presents an input instance with n
random trees where most of the votes are to class ω2, which is the final classification
for that instance.

An important aspect of random forest classifier uses the idea of bagging for a random
feature selection, where a feature split in each node is selected as the one with best
outcomes among a set of n randomly chosen trees (THEODORIDIS; KOUTROUMBAS,
2009). The authors also state that this randomness characteristic effects virtually
the performance improvement.

Additionally, as stated by Chang and Bai (2018), not all input samples are used as
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training; usually about 2/3 of it is randomly selected as training and the remaining
third is used for a cross-validation to check the classifier performance. This perfor-
mance, pointed out by Hastie et al. (2009), is almost identical to the one obtained
using the k-fold cross-validation, hence statistically there may be no need for further
validation3.

This inner validation is entitled bagging, which, as described by Breiman (2001)
can not only "give estimates of the generalisation error of the combined ensemble
of trees" but it also "gives estimates for the classification strength and correlation"
and the author entitles out-of-bag (OOB) estimates. The OOB is also considered as
a feature selection once it computes the order of importance of the input features.
Breiman (2001) also points out that the OOB estimate is unbiased.

Figure 2.12 - Random Forest structure.

...

Instance

Tree 1 Tree 2 Tree n

Class ω1 Class ω2 Class ω2

Majority of voting

Final class
ω2

Structure of random forest with n trees showing the majority of votes for class ω2.
SOURCE: Adapted from Sothe (2019).

3This argument considers the quality of a classifier, although when it comes to a thematic map,
i.e., classified remote sensing image, an external validation is mandatory according to international
standards, ISO (2013) and the Brazilian regulation, DSG (2016).
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2.5 Image classification accuracy assessment

When performing a supervised classification, training data must be used; however, it
is trivial to assess the quality of the classification as stated by Richards and Xiuping
(2006). Additionally, Brandt and Mather (2009) define training and test data as:

• Train Data: "are used in supervised pattern recognition to ’teach’ a clas-
sifier the main characteristics of a class". They emphasise the need of a
minimum sample size assigned to each class to ensure their proper repre-
sentation;

• Test Data: are used for assessing the classification accuracy and are put
aside during the image classification. When the thematic map is produced,
these data are labelled using the same prediction model as the thematic
map so a comparison between the predicted data and the ’true’3 data is
made.

Besides that, in this study we understand that image classification accuracy can be
different from classification accuracy considering supervised classification depending
on the unit object used. It is possible to train a prediction model using regions and
assess it with pixels and vice-versa for remotely sensed data. In this case, there
is a difference between them, as the classification accuracy requires the same type
of object for training and test processes. This is not true for image classification
accuracy, as we are assessing how the remotely sensed cartographic product is close
to the "reality", considering land user and cover for that specific area. That said,
we present literature studies for splitting the reference data when they are from the
same type, i.e. when image classification accuracy is equal to the classifier’s accuracy.

For splitting the reference data intro training and test samples, there are some
statistical approaches that consider a finite number of samples and are presented in
Section 2.5.1.

2.5.1 Splitting reference data into training and test samples

This is the first step for assessing the accuracy of a classifier and it is conducted prior
to the classification depending on the splitting process, which may also be called as

3The usage of the expression "ground truth" is defined as misleading and inaccurate description
as "it is human to err, and one presumes that this aspect of human behaviour extends to the
collection of test and training data in remote sensing" (BRANDT; MATHER, 2009).
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resampling. This section will present some approaches, such as resubstitution, cross-
validation, bootstrap, leave-on-out and the holdout method (conventional split in
remote sensing).

2.5.1.1 Resubstitution

Theodoridis and Koutroumbas (2009) explains the resubstituion method as using
the same dataset for both test and train data, which may bias the error probability
optimistically.

2.5.1.2 k-fold Cross-validation

This is the recommended approach in the case of small reference data to be separated
into training and test dataset (BRANDT; MATHER, 2009; HASTIE et al., 2009; JAMES

et al., 2021). According to Hastie et al. (2009), Theodoridis and Koutroumbas (2009)
and Lyons et al. (2018) in this approach, we divide the entire dataset in k approx-
imately equal parts or subsets (ν), where the dataset is defined as {ν1, ν2, ..., νk}.
The first iteration, we holdout ν1 as test and train the model with the set {ν2, ...νk}.
The second iteration, we holdout ν2 and train the model with {ν1, ν3, ...νk} and so
on as shown in Figure 2.13.

Figure 2.13 presents a scheme with k = 10 where lighter (pink) subsets are heldout
as test data while blue subsets are training data. For each repetition a different
subset is used as test data until all subsets are used as test data (BISHOP, 2006).
Therefore, the model is always fit in k − 1 parts.

Figure 2.13 - k-fold Cross Validation scheme.

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10

ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9ν1 ν10

...

Repetition 1

Repetition 2

Repetition 10

...

A scheme of the k-fold cross validation, with k = 10. It partitions the data into k = 10
subsets {ν1, ...ν10}. The test sample for each repetition is in pink while training samples
are in blue.

SOURCE: Adapted from Bishop (2006).
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The estimate for the k-fold cross validation for each repetition, as determined by
Hastie et al. (2009) and James et al. (2021) is determined by the missclassified
observations (Err). The CV error rate for the entire cross-validation is determined
the same way.

CV(k) = 1
k

k∑
i=1

Erri (2.4)

Usually, the k-fold cross-validation uses k = 5 or k = 10 due to computational
advantages and bias-variance trade off (JAMES et al., 2021).

2.5.1.3 Leave-One-Out cross-validation

When the number of folds in the k-fold cross validation is the same as the number
of samples (k = n), then the technique name is leave-one-out cross-validation and
it is recommended to be used when data is scarce (BISHOP, 2006). Additionally,
Theodoridis and Koutroumbas (2009) claims that "the total number of errors leads
to the estimation of the classification error probability" while keeping independence
between training and test data.

According to Bishop (2006) and Hastie et al. (2009) this approach is rather expensive
computationally due to the number of repetitions used.

2.5.1.4 Bootstrap

As stated by Theodoridis and Koutroumbas (2009) and Hastie et al. (2009), this
approach is used when there is a limited amount of available data. The authors
explain this method by using an initial sample S, with sample size n and resample
it to S ′ with the same sample size n with repeated data as replacement. The test data
will be the samples not used for training data. Each bootstrap sample is selected
via simple random sampling from the original data.

To illustrate the bootstrap approach, Figure 2.14 shows an initial sample S with
sample size n = 5, where S = {ν1, ν2, ν3, ν4, ν5}. For the 1st bootstrap repetition,
the new sample S ′1 is {ν3, ν1, ν3, ν3, ν5} which will be the training sample set. Conse-
quently, {ν2, ν4} is the test sample set as this is the remaining data. This procedure
is repeated b times, producing b bootstrap datasets (HASTIE et al., 2009).

As this procedure carries out, an estimate α can be determined from it and for each
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bootstrap repetition, the estimation will be α̂′b and we can compute the bootstrap
standard error SEb(α̂) using Equation 2.5 as explained by James et al. (2021).

SEb(α̂) =

√√√√√ 1
b− 1

b∑
i=1

α̂′i − 1
B

b∑
j=1

α̂′j

2

(2.5)

This approach is used to estimate the accuracy of the Random Forest model (Sec-
tion 2.4.4). The bootstrap has been used widely in case of unknown distributions
(VRIGAZOVA, 2021).

Figure 2.14 - Bootstrap scheme.

ν1 ν2 ν3 ν4 ν5

S
n = 5

ν3 ν1 ν3 ν3 ν5 n = 5
S’1 ν2 ν4

ν5 ν5 ν3 ν1 ν2 n = 5
S’2 ν4

ν5 ν1 ν5 ν2 ν1 n = 5
S’3 ν3 ν4

ν4 ν4 ν4 ν4 ν1 n = 5
S’b ν2 ν3 ν5

..
...
.

Sets of training data Sets of test data

Original 
Dataset

Repetition 1

Repetition 2

Repetition 3

Repetition b

A scheme of the bootstrap validation with the original sample S in green with sample size
n = 5. From the original sample, for each bootstrap sample, there is a replacement of data
so all of them have sample size n = 5 and are the training data. The test data is formed
by the data not selected for the training.

SOURCE: Author.
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2.5.1.5 Holdout - conventional approach

This is the conventional approach for remotely sensed data. In this scenario, the
dataset is split into two subsets: one training and one test, which is not recommended
for small datasets (THEODORIDIS; KOUTROUMBAS, 2009).

Theodoridis and Koutroumbas (2009) state that splitting the data into two subsets
reduces the size of training and test data, which can be a drawback. Another point
that they mention is what ratio to use for splitting. The ratio to split the data
usually is 67% : 33% and 80% : 20% as they are analogous to bootstrap and 5-fold
cross-validation, as explained by Hastie et al. (2009) and Lyons et al. (2018).

Additionally, the error inherent of this approach tends to decrease as the sample size
n increases and for small test data, this approach may be unreliable (THEODORIDIS;

KOUTROUMBAS, 2009).

2.5.1.6 Monte Carlo Simulation

The Monte Carlo Simulation or Monte Carlo Cross-Validation was first proposed by
Picard and Cook (1984). It is based on randomly splitting the data, as the holdout
method, b times and "averaging the squared prediction errors over the splits" (SHAO,
1993). Additionally, the analyst defines the ratio to be used as well as the number
of repetition (KUHN; JOHNSON, 2013).

Kuhn and Johnson (2013) point out that the number of repetitions affects the un-
certainty of the performance estimates. In other words, the higher the number of
repetitions b, the more stable is the estimate, being b > 50.

An example of the Monte Carlo Simulation scheme is in Figure 2.15, with n = 10
samples defined by the set {ν1, ν2, ..., ν10}. This set is randomly split into training
and test sets in the ratio of 70% : 30%, respectively using simple random sampling.

Picard and Cook (1984) claim that this approach has a small computational cost
with moderate and large datasets and with superior results when compared to other
approach such as the bootstrap. Additionally, Haddad et al. (2013) concluded that
this approach produced a more stable estimate compared to the leave-one-out ap-
proach.
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Figure 2.15 - Monte Carlo Simulation scheme.
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A scheme of the Monte Carlo Simulation using a dataset with sample size n = 10. From
the original dataset, there is a simple random sampling to split the data into training and
test data without any replacement in the ratio 70% : 30%, respectively.

SOURCE: Author.

2.6 Spatial Data Quality - measuring image classification accuracy

In order to minimise cartographic incoherences, it is important to identify them
as well to assess as the data quality level (SANTOS, 2015). Taking this into ac-
count, the International Cartographic Association (ICA) in Guptill and Morrison
(1995) proposed seven elements of spatial data quality where positional and the-
matic accuracies are two of them4. Additionally, the International Organisation for
Standardisation (ISO) with the standard 19157:2013 defines six elements5 for spatial
data quality including thematic and positional accuracies, as well as completeness
(ISO, 2013).

4The seven elements according to ICA are: lineage, positional accuracy, attribute accuracy,
completeness, logical consistency, semantic accuracy and temporal information

5The six elements according to ISO 19157:2013 are: completeness, logical consistency, positional
accuracy, thematic accuracy, temporal quality and usability element.
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For assessing spatial data quality, there is the ISO 19157:2013 (ISO, 2013) as the in-
ternational regulation and, in Brazil, the Technical Specification for Quality Control
of Geospatial Data (ET-CQDG6) as an element of Brazil National Infrastructure for
Spatial Data - INDE7 (DSG, 2016).

Therefore, ISO 19157:2013 (ISO, 2013) and ET-CQDG (DSG, 2016) define Thematic
Accuracy as the correct feature and attribute interpretation as well as its place-
ment on the expected classes. Its subelements are: (i) classification correctness -
comparison of the classes or features found on geospatial dataset with a model data
(eg. ground truth); (ii) non-quantitative attribute correctness - evaluation of non-
quantitative attributes when comparing them to attributes from the same features
in a more accurate source and (iii) quantitative attribute accuracy - how close a
quantitative attribute value can be to a value accepted or known to be true. Figure
2.16 illustrates an error of classification thematic accuracy.

Figure 2.16 - Example of classification Thematic Accuracy.

Example of classification thematic accuracy where (a) is the ground truth and (b) is the
classification result in the same area.

SOURCE: Adapted from DSG (2016).

6In Portuguese: Especificação Técnica para Controle de Qualidade de Dados Geoespaciais.
7In Portuguese: Infraestrutura Nacional de Dados Espaciais
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Figure 2.17 - Example of Completeness - Omission and Commission errors.

Commission Error
(a)

(c) 

Omission Error

(b)

(d) 
Example of omission error (OE), where (a) is the reference data while (b) is the tested
data with absence of information. Also, as examples of commission error (CE), (c) is the
reference data and (d) is the tested data with more information than the reference data.

SOURCE: Adapted from DSG (2016).

Finally, Completeness is related to presence or absence of features in the geographic
information (ISO, 2013; DSG, 2016). According to both standards, there are two
subelements from completeness: commission and omission errors. Omission errors
are related to the absence of features when compared to the reference data. Mean-
while, commission errors are related to the presence of double data or missclassified
information. Both errors are shown in Figure 2.17.

2.6.1 Thematic accuracy

In order to understand how well the classification performed, ISO (2013) and DSG
(2016) recommend the use of few metrics.

When it comes to Confusion Matrix, it was suggested by Congalton (1991), Foody
(2002) and its structure is shown on Table 2.3. This matrix is formed by the same
amount of rows and columns, expressing the quantity of certain category of a tested
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product (t, rows) with respect to a reference (r, columns), which this category can
be either pixels or regions (DSG, 2016).

Table 2.3 - Confusion matrix structure.

1 2 … r-1 r

1 X11 X12 …........ X1,r-1 X1,r X1+

2 X21 X22 …........ X2,r-1 X2,r X2+

… …. …. …........ …. …. ….

t-1 Xt-1,1 Xt-1,2 …........ Xt-1,r-1 Xt-1,r Xt-1+

t Xt,1 Xt,2 …........ Xt,r-1 Xt,r Xt+

Total X+1 X+2 …........ X+r-1 X+r N

Reference Unit
Tested Unit Total

SOURCE: Adapted from DSG (2016).

From this matrix, DSG (2016) mentions two metrics for classification accuracy,
namely, overall accuracy (OA) and kappa index. The OA is expressed in percentage
(Equation 2.6), based on the confusion matrix ( Table 2.3).

OA = 1
N

r∑
i=1

Xi,i (2.6)

Where:
OA is the Overall Accuracy;
N is the total number of classified pixels;
r is the number of reference pixels;
Xi,i is the number of corrected classified pixels from the ith class.

Nonetheless, ISO (2013) recommend the use of kappa index, which is a discrete
multivariate metric used for thematic accuracy assessment. It is also based on the
confusion matrix (Table 2.3) and shown on Equation 2.7.

κ =
N ·

t∑
i=1

Xi,i −
t∑
i=1

Xi+ ·X+1

N2 −
t∑
i=1

Xi+ ·X+i

(2.7)

Where:
κ is the κ coefficient;
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N is the total of tested pixels;
Xr,t is the number of pixels in class r classified in class t;
Xt+ is the amount of pixels classified in t class (test);
X+r is the amount of pixels classified in the r class (reference).

Thematic Accuracy is understood as being part of the validation elements for clas-
sification; the other part is defined as Completeness and it is explained in the next
Section (2.6.2).

2.6.2 Completeness

Taking into account completeness data, there are commission and omission errors
(CE and OE, respectively). Commission Error relates to overcompleteness, when
there is excess of data while Omission relates to incompleteness, when there is ab-
sence of data (VAN OORT, 2006). According to Congalton (1991), ISO (2013), DSG
(2016). In general, their computations are given by Equations 2.8 and 2.9, respec-
tively.

CEi =

r∑
j=1

Xij

Xi+
(2.8)

OEi =

t∑
j=1

Xji

X+i
(2.9)

Where:
r is the reference unit;
t is the testes (or predicted) unit;
CEi is the commission error for class i;
OEi is the omission error for class i;

Other used metrics for remotely sensed data are user accuracy (UA) and producer
accuracy (PA). They are presented in Equation 2.10 and Equation 2.11 and are the
complement of CE and OE, respectively. Studying accuracy instead of error may
bring some easiness for data interpretation, depending on the used situation.

UAi = 1− CEi ∴ UAi = Xii

Xi+
(2.10)
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PAi = 1− COi ∴ PAi = Xii

X+i
(2.11)

All are usually expressed in percentage. These errors aid the Thematic Accuracy
for analysing the classification accuracy and are part of the validation process in
Remote Sensing data.
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3 PROPOSED APPROACH

In this chapter we will formally propose an approach for computing and defining
the quality of reference data for supervised image classification aiming to answer
the question: what is the influence of the reference data quality for classification
modelling, results and accuracy?

The quality of a pixel can be related to some questions, such as: does the pixel
present only the spectral response of a single class? Is it mixed to other classes? If
so, how much is it mixed? To answer these questions, in this study we use a higher
resolution classified image, entitled here as baseline image classified image, or HR,
applying the following conditions:

I. The baseline classified image is co-registered to the lower resolution image
(LR). In the case the images are not properly co-registered, there may be
misplacement of information leading to a gross errors during the validation
process;

II. The set of classes defined for HR and LR are the same. This condition aids
interpretation on this initial study although changes in this condition may
be applied in further studies;

III. The HR spatial resolution should be at least six times better than LR
resolution in a way that there must be at least 36 HR pixels inside a LR
pixel so the minimum number of samples for defining estimates with certain
stability and confidence;

IV. The baseline image thematic accuracy is considered very high, with OA
≥ 85% or kappa ≥ 0.80. A reason for that is that errors in the baseline
classification may affect directly the results therefore errors in this part
should be avoided;

V. The reference sample will be selected if the modal class proportion of HR
pixels within the LR pixel is equals to or greater than 50%, i.e., prop ≥
50%.

To illustrate the scenario with the conditions, Figure 3.1 shows an image from the
MultiSpectral Imager (MSI) sensor onboard Sentinel-2 satellite in two formats: orig-
inal 10m spatial resolution in true colour composition as a higher resolution image
(HR) and the same image resampled (using average) to 60m as the lower resolution
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image (LR). These images, Figure 3.1(a) and Figure 3.1(b), show a visual exam-
ple of the difference in spatial resolution. These first two images indicate that a
lower resolution image is likely to have mixed pixels regarding classes such as Bare
Soil, Forest and Water. Subsequently, Figure 3.1(c) presents the baseline classified
image with the classes Bare Soil (squares), Forest (triangles) and Water (circles).
Figure 3.1(d) presents the selected reference data, which is the Water class.

Figure 3.1 meets all five conditions. As both images are the same, though one is re-
sampled, they are perfectly registered, meeting condition I. Both images are studied
using the same classes (condition II). Third, this is simulated scenario, hence the
thematic accuracy of the baseline image, Figure 3.1(c), is perfect, meeting condition
III. Also, there are 36 HR pixels inside a LR pixel, meeting condition IV.

When it comes to pixel quality, in condition V, for the case of Figure 3.1 the reference
data is selected if, and only if, it has at least 90% of HR pixels within it from the
same class, i.e. the modal class proportion is ≥ 90%. Therefore, from the four LR
pixels, only the bottom-right pixel is selected as reference sample with modal class
proportion prop = 91.67%. The remaining pixels present 83.3% (upper-left), 55.5%
(upper-right) and 69.4% (bottom-left). Thus, even though not all pixels are selected
as reference data, all of them match condition V.

Once the pixel quality is defined, we can count the number of samples per class
and according to their quality, so a histogram can be created. This histogram can
aid us to understand how each class is distributed, computing measures of central
tendency. In other words, from the histogram, we can study about the class repre-
sentativity. As we have grouped data, for each class, the mean grouped value (g) and
its respective sample variance (s2) are defined by Equation 3.1 and Equation 3.2.
From the variance, the standard deviation (std) is computed as being the square
root of the variance (std =

√
s2).

g =

M∑
i=1

gifi

M∑
i=1

fi

(3.1)

s2 = 1
M∑
i=1

fi − 1


M∑
i=1

g2
i fi −

(
M∑
i=1

gifi

)2

M∑
i=1

fi

 (3.2)
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Figure 3.1 - Manual extraction of lower resolution reference pixels based on higher resolu-
tion pixels.

(a)	10m	spatial	resolution

(c)	Classified	10m	spatial	resolution

Classes
Forest

Water

Bare	Soil

Grid	60m

Grid	10m

Legend

(b)	60m	spatial	resolution

(d)	60m	spatial	resolution	with	selected
reference	data

Projection:	UTM	21S
Datum:	SIRGAS2000
Imagery:	RGB	composition	from	MSI
sensor	onboard	Sentinel-2

Illustration of reference data selection using an original MSI Sentinel-2 scene with (a)
10m spatial resolution as higher resolution image; (b) resampled to 60m spatial resolution
as lower resolution image (LR); (c) baseline classified image; (d) LR image with selected
reference data assuming the selected majority of elements (≥ 90%).

SOURCE: Author.

Where,
i is the group index, varying from 1 to the total number of groups M ;
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g is the group centre;
f is the frequency of each group.

We can also study about the probability distribution of the histogram using skewness
and kurtosis of the grouped data. According to Shanmugam and Chattamvelli (),
skewness "summarises the degree of asymmetry of a unimodal distribution", when
this value is positive, the mass is concentrated on the left of the chart; when the
value is negative, the mass concentration is of the right part of the chat and if it
is zero, then the curve is symmetric. On the other hand, the authors claim that
kurtosis "characterises the accumulation of probability mass toward the centre"; the
distribution can be (i) mesokurtic, where the is no excess1 and it is related to the
normal distribution; (ii) leptokurtic, where there is positive excess or (iii) platykurtic,
where there is negative excess. The equations to define these two measures are
Equation 3.3 and Equation 3.4.

skewness =

M∑
i=1

(g − g)3

M∑
i=1

fi ·


M∑

i=1
(g−g)2

M∑
i=1

fi


3 (3.3)

kurtosis =

M∑
i=1

(g − g)4

M∑
i=1

fi ·


M∑

i=1
(g−g)2

M∑
i=1

fi


4 (3.4)

After verifying the histogram, we verify the impact of its variation when measuring
the thematic and classification accuracies. For doing so, the first step is splitting the
reference data into training and test samples. The training reference data is divided
into two categories: (i) range quality, when groups of samples are clustered in 5%
range, indicated here as [prop, prop+5%[ and (ii) accumulated quality, when samples
are clustered into a defined minimum multiples of 5% until 100% quality, indicated
as [prop, 100%]2. On the other hand, the test samples are defined in three sets: (i)
the first summarises the quality of an entire image using modal class proportion in
the set [50%, 100%]; (ii) the second represents only pure pixels in the set [100%]

1Excess kurtosis is defined by kurtosis - 3. For more information, please refer to Shanmugam
and Chattamvelli ().
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and (iii) the last tests the classifier per se varying the quality of pixels in the set
[prop, 100%]. A summary of the sets is presented in Table 3.1, and combining all
options result in six different setups of experiment.

Table 3.1 - Sets of training and test data.

Train Samples Test Samples
[prop, 100%] [50%, 100%]

[prop, prop+ 5%[ [100%]
[prop, 100%]

SOURCE: Author.

These six setups are justified and explained in Table 3.2, showing the combinations
and the objectives of each of them, generalising situations where the aim is to test
either the classifier or the map. In this study, testing the image/map concerns us-
ing the representation of all possible pixels of classes, which can have mixed pixels
patterns. Contrarily, when testing the classifier, it is expected to input purer pixels.
Therefore, as there are two different objectives, the training and test sets combina-
tions aim to explore their outcomes for both situations in test and training. In order
to study these elements, three perspectives are analysed:

(i) the response of each used classifier to the variation of quality of the refer-
ence data;

(ii) how the convergence of reference data quality affects the classification as-
sessment and

(iii) the effect of quality training and test samples separately on the classifica-
tion assessment.

Another point of view of it is the study of the analyst evolution and its effects on the
image classification assessment. For this, Setup 3, 4 and 6 are used, being the latter
the most commonly used. Setup 6 shows the evolution of a least experienced analyst
up to a more experienced one for collecting reference data and for this reason is
presented in Figure 3.2. All other Setups feature spaces are shown in Appendix A.

2The notion [prop, prop+ 5%[ indicates closed interval at prop, i.e. it considers the value prop;
open interval at prop+ 5% indicating that this exact value is not used in the set.
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Table 3.2 - Setups combinations when splitting training and test samples.

Setup Train Set Test Set Simulation
1 [prop, prop+ 5%[ [50%, 100%] Tests the performance of increasingly purer sets of training samples though in a limited

range against a generalised test set, which is supposedly representative of typical modal
class areas.

2 [prop, prop+ 5%[ [100%] Tests the performance of increasingly purer sets of training samples though in a limited
range against a pure set of pixels within the modal class. Idealised test sets are the
ones supposedly chosen in supervised tasks.

3 [prop, 100%] [50%, 100%] Tests the performance of classifiers estimated with increasingly purer training samples
against a generalised test set, which is supposedly representative of typical modal class
areas.

4 [prop, 100%] [100%] Tests the performance of classifiers estimated with increasingly purer and complete
pure sets of training samples against an idealised test set.

5 [prop, prop+ 5%[ [prop, 100%] Tests the performance of increasingly purer sets of training samples in a limited range
against a generalised test set, which is supposedly representative of typical modal class
areas.

6 [prop, 100%] [prop, 100%] This is the scenario of common reference data acquisition, where the analyst acquire
both training and test data according to their collecting experience.

SOURCE: Author.
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Figure 3.2 - Illustration of Feature Space for Setup 6.
Feature Space - Setup 6

Training
[prop, 100%]

Test
[prop, 100%] Legend

Class centroid

Class ω1 sample

Class ω2 sample

... ......
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y
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x

[95%, 100%]
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x
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x

[70%, 100%]

y

x

[95%, 100%]

[50%, 100%]

Setup 6 has training in set [prop, 100%] and test samples in set [prop, 100%]. It shows the
feature space varying according to the increase of pixel quality.

SOURCE: Author.
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4 EXPERIMENTAL PLANNING

Once the theoretical idea is presented, in order to proceed with the development
of the methodology, the experiment is done in a controlled situation to study the
effect of samples quality when the image to be classified is perfectly registered to
the baseline image which is to be obtained by a simulation.

In a nutshell, the algorithm uses the higher-resolution image (HR) together with the
lower-resolution image(LR) and, for each LR pixel, it evaluates the number of HR
cells inside a LR cell and determines whereas that LR cell will be selected or not as
reference data. Figure 3.1 illustrates this approach.

Hence, by analysing a classified HR, the algorithm can determine which LR cells
have an acceptable proportion of the modal class. A LR cell is selected if and only if
the defined modal class proportion (prop) of HR cells from the modal class within it,
in equals to or greater than 50%. Once the algorithm is finished selecting candidate
samples, it can proceed to the LR classification and validating it (i.e. assessing
thematic accuracy and completeness), presented in Section 4.2.

In order to move on to to studying the quality of reference data, the used materials
for the stages are presented in Section 4.1.

4.1 Materials

The materials used for this study were softwares and programming environments as
well as satellite imagery. An important factor considered was the open-source policy
so this study can be easily reproduced.

Another point is that the author considered a colourblind friendly policy, therefore
the majority of images are presented in a manner that colourblind people can easily
read; if not, images in black & white (BW) format are presented in the Appendix C.

4.1.1 Study area

The study area lays in the Brazilian Amazon, located in Pará State, in the mesore-
gion of Sudoeste Paraense and microregion of Altamira. Its extents are: 3º36’48”S to
4º36’12”S, and 53°18’40”W to 54º21’0”W in geographical coordinates, Datum SIR-
GAS 2000. The area is approximately 12, 068km2. Most of the study area belongs
to the municipality of Altamira while the remaining area covers Placas and Uruará
municipalities, with their respective urban areas, as shown in Figure 4.1.
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Besides, Alvares et al. (2013) state that, according to Köppen classification, the
study area has a Tropical climate, mainly the AF type, and it presents an annual
rainfall between 2, 200 and 2, 700mm, and a mean annual temperature greater the
26°C. Regarding its hydrography, the area is located within the Amazon River basin,
in the Xingu Paru sub-basin.

The diversity of geographical characteristics made this area suitable to apply the
methodology proposed. The presence of urban areas along the Transamazônica High-
way is contrasted with Iriri river floodplain and a part of two protected areas: Ex-
tractive Reserve of Iriri river and Ecological Station of Terra do Meio. Furthermore,
as Pará is one of the Brazilian States that have presented greater deforestation
area in 2019 (ASSIS et al., 2019; INPE, 2019), a large part of the study area presents
fishbone deforestation pattern.

With the study area set, the imagery and it information are presented afterwards.
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Figure 4.1 - Study area - Amazon Rainforest.

(a)

Study Area Cities State of Para Countires

Legend

(b)

Projection: UTM Zone 22S
Datum: SIRGAS 2000
Ellipsoid: GRS80
Colours: RGB/True Colour
Imagery: Sentinel-2 MSI Sensor

(c)

Para

(a) South America and its countries boundaries, showing the State of Para in a lighter
colour and the study area. (b) The State of Para with the cities where the Study Area
lays in. (c) Study area in True Colour composition from Sentinel-2 MSI sensor taken in
09 August 2020.

SOURCE: Adapted from ESA (2015a) and IBGE (2020).

4.1.2 Used land cover classes for image classification

Nearby areas were studied by Reis (2014), Reis et al. (2018), Reis et al. (2020), Reis
et al. (2020) and Soares et al. (2020) and they all reported Land Cover trajectories
over time. Their studies used in situ data and remote sensing imagery for defining
the labels. Another study is Coutinho et al. (2013), which was used as base for the
other mentioned studies that used classes that will be summarised in this study
according to Table 4.1. The classes were summarised because when different classes
present same elements, they tend to present high confusion rate (REIS et al., 2018).
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Table 4.1 - Land cover classes used for this research.

Class Description
Bare Soil Exposed soils, with close to zero vegetation.
Crops Cultivation, Litter or Shrubs
Forest Mature Forest, or areas with dense forests and trees.
Water Water mass

SOURCE: Reis et al. (2018), Reis et al. (2020).

4.1.3 MultiSpectral Imager (MSI) sensor on-board Sentinel-2

The MultiSpectral Imeger (MSI) sensor on-board Sentinel-2-A was launched in 2015
by the European Spatial Agency (ESA) and its twin satellite, Sentinel-2-B, was
launched in 2017, hence being a mission composed by these two satellites (ESA,
2015b). The MSI sensor has twelve bands, as can be seen in Table 4.2. ESA (2015b)
points out some features from the MSI sensor, for example that it has bands on the
visible (VIS), infrared region as well as near infrared (NIR), vegetation red-edge and
short-wavelength infrared (SWIR) bands.

Such bands, together with a spatial resolution of 10m (VIS, NIR), 20m (SWIR and
vegetation red-edge) and 60m (SWIR and water vapour), as shown in Table 4.2, can
allow the monitoring of the land, oceans, emergency management and security, as
stated in ESA (2015b).

The Sentinel-2 mission covers continental land surfaces between latitudes 56◦S and
84◦N . When it comes to revisit time (temporal resolution), as the mission consists
of twin satellites, the revisit time is 5 days -10 days for each satellite. It has a sun-
synchronous orbit, being the satellites with 180◦ from each other and both with
inclination of 98.62◦ (ESA, 2015b).

Their product levels are: Level-0, Level-1A, Level-1B, Level-1C and Level-2A, being
the latter two available for users. According to ESA (2015b), Level-1C consists of or-
thorectified reflectance from the Top-of-Atmosphere (TOA) while Level-2A provides
reflectance from the Bottom-Of-Atmosphere (BOA).
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Table 4.2 - Sentinel-2 MSI sensor bands.

Band S2A S2B Spatial
Resolution (m)Central

Wavelength (nm) Bandwidth (nm) Central
Wavelength (nm) Bandwidth (nm)

1 - Coastal aerosol 442.7 21 442.3 21 60
2 - Blue 492.4 66 492.1 66 10
3 - Green 559.8 36 559 36 10
4 - Red 664.6 31 665 31 10
5 - Vegetation red-edge 704.1 15 703.8 16 20
6 - Vegetation red-edge 740.1 15 739.1 15 20
7 - Vegetation red-edge 782.8 20 779.7 20 20
8 - NIR 832.8 106 833 106 10
8A - Vegetation red-edge 864.7 21 864 22 20
9 - Water vapour 945.1 20 943.2 21 60
10 - SWIR Cirrus 1373.5 31 1376.9 30 60
11 - SWIR 1613.7 91 1610.4 94 20
12 - SWIR 2202.4 175 2185.7 185 20

SOURCE: Adapted from ESA (2015b).
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For this study, the sensing date was 09 August 2020, at UTC 14:01:01. Its processing
baseline number (N) is 02.14, its relative orbit number (R) is 067 and it tile number
field (T) is 21MZR. The processing level is 2-A, which corresponds to Bottom-Of-
Atmosphere (BOA) corrections. Cloud percentage of this image is 1.18% (0.018318).
The image in its true colour composition (TCI) is shown in Figure 4.1(c).

The number of pixels in the image with 10m spatial resolution was 10890 x 10890.
The bands used were Blue (B02), Green (B03), Red (B04) and Near-Infrared (NIR,
B08).

As this is a controlled situation, the original image was considered the higher-
resolution image and this image was resampled using mean values to 60m spatial
resolution to be the lower-resolution image (LR). Hence:

• Higher Resolution: Sentinel-2 MSI 10m (original);

• Lower Resolution (LR): Sentinel-2 MSI resampled to 60m, using average.

In case of clouds, as there was not a substantial percentage of them, these pixels
were excluded manually so they would not interfere in any further computations.

4.1.4 Software and used data

All the coding process was done in Python 3.7 environment (ROSSUM; DRAKE, 2009)
with the packages shown in Table 4.3. Aside from the coding processes, for Ge-
ographical Information Systems (GIS) manipulations, Quantum GIS (QGIS) 3.16
(QGIS DEVELOPMENT TEAM, 2009) was used. Moreover, for object-based segmen-
tation with Multiresolution Segmentation, eCognition 9.1 (Trimble Germany GmbH,
2014) was used and region-based classification was done in TerraView 5.5.1 (INPE,
2020).

All images used in this study were free of charge and can be found at the Sentinel Hub
Copercinus2 website, from the ESA. The used sensors are described in Section 4.1.3.

1Accessible at: https://scihub.copernicus.eu/dhus/#/home
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Table 4.3 - Python 3.7 packages used.

Name Description Version
NumPy Scientific computing 1.19.2
Rasterio Access and manipulate raster data 1.1.0
Pandas Data structure and analysis tools 1.2.3
Geopandas Geospatial vectorial data manipulation 0.8.1
Sci-kit learn Predictive data analysis 0.24.1
SciPy Scientific computing 1.1.6
Matplotlib Create visualizations 3.3.4
Plotly Create graphs 4.14.3

SOURCE: Hunter (2007), Pedregosa et al. (2011), Gillies et al. (2013–), Jordahl (2014),
PLOTY TECHNOLOGIES INC. (2015), Harris et al. (2020), THE PANDAS
DEVELOPMENT TEAM (2020), Bell et al. (2021).
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4.2 Reference Sample Selection - RSS

The proposed semi-automated method for defining the quality of reference samples
in a remote sensing image and assessing their effect on image classification is entitled
Reference Sample Selection (RSS). In this section, we explain step-by-step of how
this procedure is semi-automatically conducted in a controlled situation. Figure 4.2
presents a broader visualisation of the process according to how they are presented
in this manuscript. In a general form, the process is defined as follows:

i Baseline Classification: classification of the higher-resolution image pre-
sented in Section 4.2.1. This step firstly classifies the HR image using two
approaches: (i) supervised pixel-by-pixel Random Forest classifier and (ii)
region-based segmentation followed by supervised Decision Trees C5.0 clas-
sification. This step generates the baseline image (HR) that is later used
for RSS Part I. Also, at this point, Conditions I, II, III and IV3 must have
been met;

ii Reference Sample Selection (RSS) part I: which is divided into two
parts, both presented in Section 4.2.2:

a) Acquisition of modal class proportion (prop) of each cell of the cor-
registered lower-resolution image grid;

b) Selection of samples in LR image where the modal class proportion
meets Condition V, i.e. prop ≥ 50%;

c) Analysis of histogram of the distributed data.

iii Reference Sample Selection (RSS) Part II: which is also divided into
two parts and more detailed explained in Section 4.2.3:

a) Usage of subset of acquired samples to train the classifiers;

b) Supervised classification of the LR image using Monte Carlo Simula-
tion;

iv Spatial Data Quality: Accuracy computation and analysis, exposed in
Section 4.2.4

3All Conditions are presented in Section 3, page 39.
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Figure 4.2 - Flowchart for Reference Sample Selection (RSS) process.

High Resolution 

Image (HR)

Supervised Classification

of HR image 

Training samples 

Grid extraction 
Information of 

classes 
 to be used

Thematic 
Accuracy 
 > 95% ?

HR Classified Image 
(Baseline image)

Count frequency of

classes in each grid cell 

 
Geodataframe in
shapefile format

Containing, for each selected cell:

Modal class
Modal class proportion (%)
Grid centroid coordinates (E,N)

Training data: 
Select cells

meeting criteria

Training data criteria: 
propmin 
propmax

Test data: 
Select cells

meeting criteria

Test data criteria: 
propmin 
propmax

Randomly select ntest

samples per class

Thematic Accuracy and

Completeness 

Statistics 

Lower Resolution 

Image (LR)

Extract the corresponding
feature sample/vector from

the LR image for each selete
cell and assign them to the

modal class

Randomly select ntraining

samples per class

Training: 

Defining the prediction model

LR Image 

Classification
LR classified 

samples

RSS Part II 

Confusion 

Matrix 

NO

RSS Part IBaseline Classification 

Bag with n 
samples

Filter
geodataframe to
have n samples

YES

This flowchart is divided into Baseline Classification and RSS, as the subsequent subtopics
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SOURCE: Author.
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4.2.1 Baseline classification

The baseline Classification is the supervised image classification of the higher-
resolution image. This step directly affects the quality of the final classifications,
therefore it must be done thoroughly. We pointed out that the classes in the base-
line classification and for the RSS process are the same thus meeting Condition
II.

The higher-resolution image is classified using two approaches: (i) pixel-based su-
pervised Random Forest classification, (ii) region-based supervised Decision Trees
C5.0 classification. There are different classifiers due to the availability of using a
classifier with segmentation in a software and in a Python environment.

For the Pixel-based classification, the Random Forest classifier is set using Python
3.7 environment (ROSSUM; DRAKE, 2009) with the packages Numpy (HARRIS et al.,
2020) and Scikit-Learn (PEDREGOSA et al., 2011). For this classifier, the number of
trees was set to 100, the Out-Of-Bag (OOB) score was used with a random state of
9999. It was also set to a minimum number of 2 splits and 1 leaf. Due to the image
size, the HR image was cropped into four parts. The prediction model was defined
using the entire image and the classification was applied separately to each cropped
part. In this baseline classification, the same type of object is used for training and
test data: pixels. This way, the reference data is split into 70%/30% for training and
test, respectively.

Meanwhile, for the segmentation, the used metrics were Mean, Standard Deviation,
Geometric ones, such as Area, Length, Border Length, Number of Pixels, Relation
Border to Image border, Thickness, Volume, Width, Asymmetry, Density and Tex-
ture metrics, like Homogeneity, Contrast, Dissimilarity and Entropy. Once the image
was segmented, the region samples for training were selected manually. Regarding
test samples, they were randomly selected as 30% of total Pixel-based samples which
leads to a greater number of test samples than training samples.

In both cases, the Thematic Accuracy and Completeness - the validation process
- must be OA ≥ 85% (Condition IV); if possible, the analyst should correct the
misplaced classified pixels afterwards. An explanation for that is that the LR classi-
fication quality is affected by the Baseline Classification and errors inherent of this
first process are likely to bias any further decision-making process.

Once the Baseline Classification is conducted, the baseline image is generated and
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it is possible to carry out to the extraction of reference data of LR based on the
baseline image with the RSS process.

4.2.2 Reference Sample Selection part I - filtering candidate samples

This part, as presented in Figure 4.2 there is the grid extraction of both HR and
LR images. Then the algorithm counts the number of classified baseline cells within
the LR cell, defining the modal class and its frequency (modal class proportion).

This process follows the geographic extents of the LR cells, forming a mask with
the size of a LR cell, regarding its spatial resolution in x and y axes. The mask is
used to delineate the crop extents of the baseline image for each analysed LR cell,
as shown in Figure 4.3.

This grid mask runs along all LR cells within the cropped area and, for each LR
cell, the modal class, its respective proportion and the LR cell centroid coordinates
(Easting and Northings) are computed and stored in the geodataframe. As this is
a vectorial grid mask, it considers explicitly the HR cells inside of it, regarding
intersected cells to the mask. Considering the possibility to apply this algorithm
to a real scenario, the vectorial characteristics of the grid mask overcome possible
registration errors or non-integer number of HR within a LR cell, both likely situ-
ations. Hence, even though this algorithm consumes a greater processing time and
has greater computational effort, it was chosen for this study.

To illustrate how the grid mask runs through the baseline image, Figure 4.3 shows
the first four cells runs to acquire the LR cell information so a geodataframe is
created. Once the mask runs the entire baseline image acquiring information, the
geodataframe is exported in a in a shapefile5 format.

The geodataframe in a shapefile format was chosen so it could be used for GIS
analysts in common GIS softwares and it also has vectorial information over the
database. This geofdataframe is later transformed into raster information if Geo-
TIFF6 format with bands informing the modal class and modal class proportion.
Therefore, the geodataframe is formed by candidate cells to be reference data for
image classification, as all of them have prop ≥ 50%, meeting Condition V.

5ESRI Shapefile format is a vectorial data storage format. It stores the position, shape and
attributes of geographic features. Please refer to ESRI (2020) for more information.

6GeoTIFF is a format extension that stores geocoding and georeference informations in a raster
file by tying a raster image to a known map projection or model space. For more information,
please refer to Ritter and Rith (2000).
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Figure 4.3 - RSS part I - running the grid mask through the LR image.
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The grid mask runs through all LR pixels in order to acquire the modal class and the
modal class proportion and add them to a geodataframe. (a) is the Thematic map or
baseline image containing pixel row/column number and (b) is the attribute table of the
geodataframe indicating which pixels are selected as candidate samples. This image in
Black and White is Figure C.1, referred to in Appendix C, page 197.

SOURCE: Author.

From the generated geodataframe, it is possible to analyse the distribution of can-
didate data (prop ≥ 50%) among the used classes, so it is possible to understand
the class representativity regarding sample quality.

At this point, all Conditions should be met to move on to RSS Part II, which is
the process of selecting the training and test data as well as the image classification
using Monte Carlo Simulation.

4.2.3 Reference Sample Selection part II - selecting reference data and
image classification

In this part of the processes, as presented in Figure 4.2, the candidate samples are
filtered to a bag. Then, the samples into the bag are selected as reference samples so it
is possible to carry on to the image classification using the Monte Carlo Simulation.
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In this sense, a stratified random sampling is used.

The first part is to filter the data to the bag, a process occurred once per
Setup. Its main goal is to set the same number of samples per stratum, nsamples,
so the probability of randomly selecting samples from all strata is the same.
The strata are divided per class and per intervals of [prop, prop + 5%[ ∀ prop
∈ {50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%}, as shown in Fig-
ure 4.4.

The number of samples per stratum (nsamples)is defined according to the less occurred
stratum and can be rounded as it best fit the analyst. This way, the total amount of
sample in the bag, nbag, is defined by the number of strata per class, 11 (Figure 4.4),
the number of used classes, nclasses and nsamples, as shown in Equation 4.1. This
number nsamples is later divided intro training (ntrain) and test (ntest) samples in a
ratio of 2/3 and 1/3, respectively.

nbag = 11× nclasses × nsamples (4.1)

A point to be addressed is that the bag availability according to each Setup and prop
used thus nbag will not be the same. In case of Setups 1, 2 and 5, the bag availability
for training samples to be selected will always be nsamples per class as it regards
an specific strata. On the other hand, for Setups 3, 4 and 6, as they use sets of
[prop, 100%], defining accumulated strata, the bag availability will vary accordingly.
As there are 11 strata per class in this methodology, the bag availability will vary
according to Table 4.4.

Table 4.4 - Reference Sample Selection - Bag size.

Proportion (prop) Available samples in Bag
≤ 50% 11 ·nclasses · nsampĺes
≤ 55% 10 ·nclasses · nsampĺes
≤ 60% 09 ·nclasses · nsampĺes

... ...
≤ 95% 02 · nclasses · nsampĺes
= 100% 01 · nclasses · nsampĺes

The number of available strata per used prop for Setups 3, 4 and 6. Thus nbag will be
reduced according to it.
SOURCE: Author.
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Figure 4.4 - Illustration of how the bag is stratified for the RSS process.
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SOURCE: Author

After filtering the data in RSS Part I, defining the bag hence the determining candi-
dates for reference data, the supervised classification using the Monte Carlo Simu-
lation takes place. This process is repeated 100 times for each prop. Hence, for each
Setup, there are 1, 100 image classifications. Two supervised non-parametric clas-
sifiers are used: K-Nearest Neighbours, with k = 5 (KNN-5) and Support Vector
Machine One-Against-One (SVM-OAO). The classification is only conducted on the
test samples for optimising the process.

The parameters used for each classifier during the Monte Carlo simulation were:

• KNN-5: considered an uniform weight for all neighbours with a leaf-size
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of 30; Euclidean distance;

• SVM-OAO: regularisation parameter: 1.0; the kernel being Radial Basis
Function (RBF); gamma = scale; uses the shrinking heuristic and without
iterations limit;

4.2.4 Reference Sample Selection - Thematic Accuracy and Complete-
ness

At the end of each Monte Carlo repetition, the confusion matrix, overall accuracy
and kappa index are computed in a way that, for each prop in a certain Setup,
these average values and respective standard deviations are calculated and stored.
Later, Completeness elements are computed in their averages, thus Omission Error
(OE) and Commission Error (OE) are also computed, and their complements, which
are Producer’s Accuracy (1 − OE, PA) and User Accuracy (1 − CE, UA). After
performing the classifications, charts are created so all objectives shown in Chapter 3
can be interpreted and discussed.
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5 RESULTS AND DISCUSSION

The presented results refer to the two used Baseline approaches: Pixel-based (PIX)
and Region-based (REG) and their results are presented separately in Sections 5.1
and 5.2, respectively.

For both situations, the results are presented as follows: (i) the Baseline Classifica-
tions results with the regions of interests (ROI), thematic accuracy, completeness
and the baseline map followed by (ii) the extraction of candidate data in RSS Part
I and (iii) the selection of reference data with the supervised image classification
using Monte Carlo simulation in RSS Part II and (iv) spatial data quality regarding
thematic accuracy and completeness separately for each used Setup.

We emphasise the amount of resulting charts and tables hence, for RSS results, only
thematic accuracy is shown, though all results are presented in Appendix B.

5.1 Pixel-based baseline classification

5.1.1 Baseline classification

For the pixel-based baseline classification, the analyst manually selected the refer-
ence data, assuming approximately the same amount of samples for class, with their
values shown in Table 5.1. The spatial distribution of these samples is presented in
Figure 5.1. Also, these samples were randomly divided into 70% for training and
30% for test (spatial data quality). Therefore, the sampling design is the stratified
random sampling.

This approach used the Random Forest classifier (RF) and, for this classification, the
OOB score was 97.84%, with an order of importance and their respective percentage
of importance shown in Table 5.2. The order of importance showed that the Green
band (B03) was the most relevant feature for separating the classes followed by NIR
(B08), Blue (B02) and Red (B04).

Table 5.1 - Pixel-based First Classification Total number of samples per class.

Class Water Forest Crops Bare Soil
Total number
of samples 26,576 20,226 28,429 20,323

SOURCE: Author.
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Figure 5.1 - Pixel-based Baseline Classification using Random Forest - Reference samples.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80

Bare	Soil
Forest

Crops
Water

Classes

Selected samples presented over a Sentinel-2A image TCI band from 9 August 2020. The
polygons have been augmented for better visualisation. This Figure in Black and White
is presented in Figure C.2, page 198.

SOURCE: ESA (2015a).
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Table 5.2 - Pixel-based Baseline Classification using Random Forest - Order of Impor-
tance.

Band Order of Importance (%)
Green (B03) 35.36
NIR (B08) 31.78
Blue (B02) 16.72
Red (B04) 16.19

SOURCE: Author.

When it comes to Spatial Data Quality, the confusion matrix generated from RF is
presented in Table 5.3. From this table, Thematic Accuracy was computed, where
overall accuracy was 98.096% and kappa index was 0.974, meeting Condition IV. As
we can see, OOB Score and OA present similar results, as it is expected due to RF
characteristics that may put the need of presenting a thematic accuracy in question.
In this case, as there are two approaches for baseline classification, the thematic
accuracy is used for comparisons and for being in accordance with the Brazilian
Standards of Spatial Data Quality (DSG, 2016). This high value indicates that there
are almost no errors, and this is endorsed by the confusion matrix.

Additionally, the completeness elements were computed and are presented in Ta-
ble 5.4. The least accurate class regarding user accuracy (UA) is Crops that con-
fuses with Forest and Bare Soil, while for Producer Accuracy, Forest is the least
accurate one, confusing with Crops. Nonetheless, the total percentage of errors is
considerably small, hence may be neglected.

Therefore, at the end of this step, Conditions I, II, III and IV are met. The next step
is to determine the quality of LR cells with modal class proportion (prop), which is
part of the Reference Sample Selection (RSS) Part I.

Table 5.4 - Pixel Based First Classification using Random Forest - Completeness.

Class User Accuracy (%) Producer Accuracy (%)
Water 100.000 100.000
Forest 97.198 96.414
Crops 96.244 97.047

Bare Soil 98.712 98.375

SOURCE: Author.
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Table 5.3 - Pixel-based Baseline Classification using Random Forest - Confusion Matrix.

Predicted
Class Water Forest Crops Bare Soil Total

Truth

Water 8035 0 0 0 8035
Forest 0 5862 169 0 6031
Crops 0 218 8149 100 8467
Bre Soil 0 0 79 6055 6134
Total 8035 6080 8397 6155 28667

SOURCE: Author.

Figure 5.2 - Pixel based First Classification using Random Forest - classified image.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80

	
No	Data

Water
Forest

Crops
Bare	Soil

Classes

White pixels correspond to NoData values. This image in Black and White is presented
in Figure C.3, page 199

SOURCE: Author.
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5.1.2 Reference Sample Selection part I - filtering candidate samples

After the baseline image is generated, the first step of the RSS approach is to acquire
the modal class and its frequency in each LR cell considering a minimum prop of 50%
to meet Condition V (chapter 3). More than half the image was selected as candidate
reference data, in a total of 3, 320, 844 cells. Three different ways of presenting these
candidate samples are used: Histogram, Pie Chart, Table and Frequency Map.

The first ones is the Histogram (Figure 5.3) of (i) accumulated number of samples
per class in the upper chart and (ii) number of samples per stratum in the lower
chart. This Histogram is in logarithm scale due to the great amount of candidate
cells for Forest class with prop = 100%. This figure can aid the interpretation of
class representativity: the majority of Forest and Water candidate samples belongs
to prop = 100%, which is not true for the other classes. Crops and Bare Soil visually
present a more balanced distribution.

The second way are pie charts showing the distribution of candidate data for each
stratum (Figure 5.11). These charts illustrate that Water and Forest have their great
majority of data on prop = [100%] whilst this is not true for the other classes, imply-
ing the importance that the study of class’ representativity, as shown in Table 5.5.

The third way is Table 5.6, which created the former figure. This table also presents
the percentage of candidate samples per stratum in a certain class. When analysing
the number of candidate samples in classes with prop = 100%, Water and Forest
have values in 61.37% and 85.87%, respectively. For this specific study area, these
values strongly indicate that these two classes, purer samples are representative
of them. Bare Soil and Crops have their percentages of samples for pure samples
at 21.81% and 27.82%. Even though most of the samples in these classes are in
prop = 100%, the majority does not achieve half of the candidate data. Therefore,
these classes’ representatives are more distributed, leading us to the conclusion that
a variety of sample quality may be better when choosing samples for theses classes
than homogeneous samples.
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Figure 5.3 - Pixel-based Baseline Classification using Random Forest - histogram.
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SOURCE: Author.

Additionally, from the Table 5.6, we can analyse the class distribution, as presented
in Table 5.5. For PIX, the averages grouped values varied from 83% up to 97%. Forest
class showed the lowest std indicating a low distribution of the class; the negative
skewness indicates the central mass on the right side of the histogram, as can be
perceived in Figure 5.3; the positive excess kurtosis shows a leptokurtic distribution
in a shape of an inverted "V". Crops and Bare Soil presented similar values of
distribution; their skewness are closer to zero, indicating slightly more symmetric
tail compared to the other classes; their excess kurtosis are negative, indicating
platykurtic curve (i.e. a more flattened distribution). Water class presented negative
skewness indicating that the mass centre is more to the right side of the histogram
and negative excess kurtosis, indicating a more platykurtic curve than the other
classes. From these information, we can study each class representativiness with
respect to the sample quality. Bare Soil, Crops and Water are more represented by
mixed quality sample, while Forest are best represented by pure samples.
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Table 5.5 - Pixel-based Baseline Classification using Random Forests - histogram distri-
bution statistics.

Class Grouped mean
(%)

Grouped std
(%) Skewness Excess kurtosis

Water 91.116 14.438 -1.485 -2.591
Forest 97.754 7.807 -4.156 17.312
Crops 81.440 16.093 -0.382 -1.246

Bare Soil 83.084 16.125 -0.513 -1.161

SOURCE: Author.

Finally, a spatial representation of the proportion is shown in Figure 5.5. The
spatial distribution varies from lighter colours (prop = 50%) to darker colours
(prop = 100%). This image particularly aggregated pair of stratum to ease the
image visualisation hence it used the interval [prop, prop+ 10%[ and prop = 100%.
This map can delineate border LR cells, showing the fishbone pattern of deforesta-
tion in this area as well as river margins. Another point is that the noises from the
baseline classification reflect directly to the RSS process and can be seen in this
figure. This fact highlights how the quality of the baseline classification affects the
RSS process.

All these representations infer that, as expected, border samples would present a
lesser quality (prop), and, for this specific scenario, Water and Forest classes showed
a better representation with prop = 100% whilst Crops and Bare Soil are not well
represented by it. Thus, selecting higher quality, or pure, samples may not always
be the best choice to represent all the classes. The questions remaining are: to what
extent this statement is valid? And for which classes? Subsequent analyses of RSS
approach may aid to some conclusions.
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Figure 5.4 - Pixel-based Baseline Classification using Random Forest - pie charts of dis-
tributed data per class.
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5.1.3 Reference Sample Selection part II - selecting reference data and
image classification

Once the modal class proportion is studied in RSS Part I, the next step is defining the
bag size. From Table 5.6, the least occurring stratum is Water in the set [70%, 75%[,
which is 870. In order to compare these outcomes with those from the region-based
baseline, we set nsamples to 750. Hence, for each stratum - determined by intervals
of 5% proportion per class - there will be 750 samples per stratum in the bag.

Consequently, the bag size is 33, 000 (750 × 11intervals × 4classes). For the Monte
Carlo simulation, the split of the reference data was 500 for training and 250 for
test samples per class, in a total of 2, 000 training samples and 1, 000 test samples
for each image classification. Although the number of total reference data should
be greater for an image this size, this could not be achieved due to the number of
samples for Water class in all strata so the analysis could be affected.

For each Setup, the Monte Carlo Simulation with 100 repetitions run in an average
of of three minutes and are presented in Spatial Data Quality section.

5.1.4 Reference Sample Selection - Spatial Data Quality

RSS Part II with Monte Carlo Simulation considered the six different Setups, using
the bag to determine ntrain and ntest, as presented herein. This simulation run 100
repetitions per modal class proportion or interval of proportion, in a total of 1, 100
repetitions per Setup. The classifiers used were SVM-OAO and KNN-5, as presented
in Section 4.2.3. Additionally, thematic accuracy and completeness were computed,
considering their respective means and standard deviations.

These two Spatial Data Quality components were treated separately so we can fo-
cus firstly on thematic accuracy (Section 5.1.4.1), and later on completeness (Sec-
tion 5.1.4.2), mainly observing how the used classes respond to the quality variation
of reference data.

Additionally, the tables with exact information regarding Spatial data Quality are
presented in Appendix B.1.2. These tables present values of kappa index and overall
accuracy (OA) with their respective std. They also present User Accuracy (UA) and
Producer Accuracy (PA) in percentage values for each class.

The confusion matrices for all setups and intervals are presented from page 151 on,
in Appendix B.1.3.
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5.1.4.1 Thematic accuracy

The results for thematic accuracy were separated in two groups of discussion. The
first group concerns Setups 3, 4 and 6 (Figure 5.6) and the second group concerns
Setups 1, 2 and 5 (Figure 5.7). A reason for this division lies on how the training
samples were set, as the former 3 Setups could be performed by an analyst. Also, the
analyses take into account three points to answer the scientific question: (i) how the
used classifier responds to the variation of reference data quality; (ii) how thematic
accuracy is affected by the convergence of reference data quality and (iii) how the
thematic accuracy is affected by training and test samples separately. Addisionally,
these results are also presented in tabular results in Table 5.7 and Table 5.8.

Firstly considering the first group (Figure 5.6), containing Setups 3, 4 and 6, with
training samples in set [prop, 100%]. This set evolution can be comparable to the
evolution in experience of an analyst. In this group, all kappa values were greater
than 0.75. Setup 3, with test samples in set [50%, 100%] had its kappa values de-
creasing as prop increased; this setup shows how training and test samples react as
their quality diverge from each other, once the quality of test samples was invariant
and training samples increased their quality. In this case, KNN-5 seemed to be more
sensitive to this divergence as the kappa decreased and the std increased. For SVM-
OAO, the kappa values stabilised, showing a more flexible feature space separation
which is inherent of this classifier.

Moreover, for both classifiers, KNN-5 and SVM-OAO, Setup 4 had its results close
to 1.00; this Setup has test samples in [100%]. So this Setup results are very high
independently of the quality of training samples for both classifiers, which implies
that the quality of test samples may be more relevant than the quality of training
samples though it cannot be yet confirmed.

Finally, for Setup 6, with test in [prop, 100%], the qualities of both test and training
data increase together. Even though there is a growth on the kappa, it starts at
≈ 0.85 (SVM-OAO), which may be explained by the classes’ divergent spectral
responses. This shows that, as the analyst experience increase, so does the resulting
thematic accuracy, reaching up to almost kappa = 1.00. Probably, if there were more
similar classes used and if it was not a controlled situation, this initial kappa would
be smaller. Despite of that, considering the classifiers sensibility, SVM-OAO seemed
to be slightly more sensitive to the quality of both training and test data quality, as
initial kappa (i.e. prop = 50%) was inferior for this classifier.
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Moving on to the analysis of the second group (Figure 5.7), formed by Setups 1,
2 and 5, their training set are in [prop, prop + 5%[, these setups are completely
theoretical and were created to aid discussions over each reference data quality.

Beginning with Setup 1, with test set in [50%, 100%], it is clear that the qualities of
test and training samples are always different, so we cannot infer over convergence
of training and test data. However, a fact to be pointed out is that both classifiers
responded differently to this Setup: KNN-5 decreased while SVM-OAO stabilised
when prop ≥ 65%. A likely reason for that is on the way each classifier works to sep-
arate the feature space into classes. For SVM-OAO, the creation of hyperplanes can
already be satisfactory with training data in a quality around 65%. Controversially,
for KNN-5 the resulting kappa decreased, inferring that this classifier relies mostly
on the quality of the training data, if the test data has mixed quality. Therefore,
SVM-OAO seems to separate better theses classes when modelling the prediction
model than KNN-5.

Setup 2, with test set in [100%] showed that, for both classifiers, independently of
the quality of training data, when above 60%, the kappa index reaches values close
to 1.00. Still, when analysing other prop values, all of them presented relatively high
kappa (≥ 0.80), which restated the conclusion for Setup 4: the thematic accuracy is
most affected by the quality of test data than training data. Hence, the outcomes
for this Setup emphasises that the quality of training data, as long as it is above
60%, is almost irrelevant for defining a high thematic accuracy when compared to a
pure test data.

The last Setup to be studied is Setup 5 (test in [prop, 100%]). The test set can
be compared to an analyst experience while we analyse strata of quality. For both
classifiers there was an increase though kappa stabilised in KNN-5 and kept growing
in SVM-OAO. We can observe that, once prop ≥ 70%, the kappa values are above
0.95. This indicates that sample quality above 70%, for training and test data, may
already present high thematic accuracy.

Focusing on the training samples, we can study pairs of Setups: 1 and 3, 2 and 4, 5
and 6. All of them showed a tendency to converge as prop grew indicating that the
higher the prop the lower the influence of training samples in the thematic accuracy.
For all the three pairs, when prop ≤ 75%, training samples tend to affect more this
metric. This shows that the thematic accuracy is not strongly sensitive to training
samples.
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Therefore, when analysing thematic accuracy for Pixel-based Baseline classification
and for the four classes studied (Water, Forest, Crops and Bare Soil), we can observe
that (i) SVM-OAO may separate better the feature spaces, hence it differentiates
better the classes during the prediction model; (ii) the quality of test data affects
more significantly the thematic accuracy outcomes; (iii) when there is difference
in the quality of test/training data, the classifier may respond poorly to it. From
these observations, few questions came up: to what extent can we trust the thematic
accuracy as a metric to determine a good image classification? Is it possible that the
thematic accuracy can be biased by the quality of the test data? How can we relate
the class representativity with a high kappa index? Obviously, this is a simulated
data with very separable classes and this may overestimate the outcomes. Still, when
analysing group 2 (Setup 1, 2 and 5), it is clear that the quality of reference data
affects the image classification.
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Figure 5.6 - Pixel-based Baseline Classification using Random Forest - Thematic Accuracy
with error bars for Setups 3, 4 and 6.
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Where Setup 3 corresponds to train: [prop, 100%] / test:[50%, 100%]; Setup 4 corresponds
to train: [prop, 100%] / test:[100%]; Setup 6 corresponds to train: [prop, 100%] / test:
[prop, 100%]. More detailed results are presented in Appendix B.1.

SOURCE: Author.
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Figure 5.7 - Pixel-based Baseline Classification using Random Forest - Thematic Accuracy
with error bars for Setups 1, 2 and 5.
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Where Setup 1 corresponds to train: [prop, prop + 5%[ / test:[50%, 100%]; Setup 2
corresponds to train: [prop, prop + 5%[ / test:[100%]; Setup 5 corresponds to train:
[prop, prop+5%[ / test: [prop, 100%]. More detailed results are presented in Appendix B.1.

SOURCE: Author.
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Table 5.7 - Pixel-based Baseline Classification - Thematic accuracy and standard deviation for KNN-5.

prop Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6
kappa std kappa std kappa std kappa std kappa std kappa std

50% 0.747 0.017 0.887 0.021 0.881 0.014 0.996 0.003 0.734 0.021 0.891 0.013
55% 0.843 0.014 0.955 0.015 0.883 0.014 0.997 0.002 0.891 0.012 0.925 0.010
60% 0.883 0.015 0.993 0.005 0.881 0.015 0.998 0.001 0.944 0.009 0.951 0.008
65% 0.884 0.015 0.998 0.002 0.878 0.015 0.999 0.001 0.969 0.006 0.966 0.007
70% 0.879 0.015 0.999 0.001 0.871 0.016 0.999 0.002 0.977 0.005 0.973 0.006
75% 0.876 0.016 0.999 0.001 0.864 0.016 0.999 0.001 0.982 0.005 0.979 0.005
80% 0.866 0.016 0.999 0.001 0.850 0.018 1.000 0.001 0.984 0.005 0.983 0.005
85% 0.838 0.019 0.999 0.001 0.830 0.021 1.000 0.001 0.985 0.004 0.985 0.004
90% 0.837 0.018 1.000 0.001 0.812 0.023 1.000 0.001 0.988 0.004 0.988 0.004
95% 0.805 0.023 1.000 0.001 0.786 0.024 1.000 0.000 0.992 0.003 0.991 0.003
100% 0.752 0.024 0.999 0.001 0.752 0.024 0.999 0.001 0.999 0.001 0.999 0.001

SOURCE: Author.
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Table 5.8 - Pixel-based Baseline Classification - Thematic accuracy and standard deviation for SVM-OAO.

prop Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6
kappa std kappa std kappa std kappa std kappa std kappa std

50% 0.700 0.010 0.807 0.017 0.864 0.011 0.996 0.002 0.699 0.009 0.864 0.013
55% 0.751 0.013 0.920 0.014 0.872 0.013 0.997 0.002 0.758 0.012 0.895 0.012
60% 0.826 0.013 0.988 0.005 0.878 0.012 0.998 0.002 0.858 0.012 0.924 0.011
65% 0.873 0.012 0.997 0.002 0.879 0.012 0.998 0.002 0.933 0.009 0.945 0.008
70% 0.878 0.012 0.997 0.002 0.881 0.012 0.998 0.002 0.952 0.007 0.958 0.007
75% 0.883 0.012 0.999 0.001 0.881 0.012 0.998 0.001 0.969 0.006 0.969 0.006
80% 0.882 0.012 0.998 0.002 0.882 0.013 0.999 0.001 0.977 0.006 0.977 0.006
85% 0.886 0.012 0.998 0.002 0.882 0.013 0.999 0.001 0.983 0.004 0.983 0.004
90% 0.882 0.013 0.998 0.001 0.879 0.014 0.999 0.001 0.987 0.004 0.987 0.004
95% 0.886 0.011 0.999 0.001 0.881 0.013 0.999 0.001 0.991 0.003 0.991 0.003
100% 0.872 0.015 0.999 0.001 0.872 0.015 0.999 0.001 0.999 0.001 0.999 0.001

SOURCE: Author.
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5.1.4.2 Completeness

Completeness refers to a over or under-completeness analysis of the image classi-
fication. This study will analyse it separately from thematic accuracy in order to
compare the classes performance for each Setup. The charts for this section are pre-
sented in Appendix B.1 and are presented per Setup. Regarding the tables, they are
presented in Appendix B.1.2 with the confusion matrices from page 152.

5.1.4.2.1 Setup 1

These Setup studies intervals of increasingly reference data quality (training in set
[prop, prop+5%[ ) against a fixed mixed data quality ([50%, 100%]). For Pixel-Based
Baseline Classification, the images with results are shown in Figure B.1 and Fig-
ure B.2. Also, an illustration of this Setup classes’ pattern is presented in Figure A.1.

Forest presented decreasing user accuracy for KNN-5 and SVM-OAO, though SVM-
OAO had a lower variation (max 99.60% and min 94.63%) than KNN-5 (max 93.38%
and min 75.96%). This indicates that the usage of a certain classifier may have some
effect upon the the resulting completeness. When it comes to producer accuracy,
there was also a variation between the two classifiers, as KNN-5 rose from 75.78%
to 98.18% while SVM-OAO rose from 68.41% to 88.33%, showing a similar range.
This indicates that, generally, producer accuracy in Forest class is more sensitive
to quality variation than user accuracy. This means that, for the Forest scenario,
the higher the quality we use for training the classifier, the more classes will be
mistakenly assigned to it. A probable reason for that is how the division of the
feature space given the quality of reference data for Setup 1, which is illustrated in
Figure A.1. This Setup increases the quality of training data, hence the classifiers
tend to separate better the feature spaces. However, the test samples are always
mixed, showing that SVM-OAO dealt better with this situation than KNN-5 mainly
because KNN-5 is distance dependent.

Crops presented a high range of user and producer accuracies for both classifiers.
Regarding the user accuracy, it varied from 48.36% to 94.52% in KNN-5 and from
13.95% to 82.12%. This shows that, unlike Forest, the quality of training data has a
relevant effect on Crops UA, when test data is mixed and SVM-OAO seemed to be
more sensitive to that. On the other hand, when analysing producer accuracy, the
accuracy decreased for both classifiers: KNN-5 started its PA at 70.01%, raised to
86.07% (prop = 65%) then fell to 68.39%; while SVM-OAO started at 96.30%, had
its maximum value at 96.61% (prop = 55%) then decreased to 81.78%. Hence, in

81



general, the greater the prop, the greater the absence of data as Crops is. This class
presented the highest variation and, when compared to other classes, had a different
pattern of UA and PA. A likely reason for that is that Crops seems to be dispersed
in the feature space. As KNN-5 and SVM-OAO use distances in the feature space
to delineate classes divisions, then when a class presents dispersed characteristics,
it does not seem to be well divided with pure training samples.

In general, Bare Soil varied differently in both classifiers UA and PA. For KNN-5
UA, this class started at 82.41% increased to 92.94% (prop = 65%) then fell to
79.19%. On the other hand, in SVM-OAO UA, it varied from 99.87% to 91.21%.
This showed that as prop increased, the less the reliability on this class was. although
SVM-OAO seemed to have dealt better with this quality variation. Regarding PA,
for KNN-5, it started at 78.70%, rose to 91.65% (prop = 70%) then fell to 73.03%.
In SVM-OAO PA, it started at 70.41% then rose up to 92.82%. This elucidates the
discrepancy in which the classifiers affect completeness: KNN-5 is more sensitive to
the class dispersion in the feature space than SVM-OAO.

For this Setup in almost all situations the accuracy values were above 75%, showing
that Water class seems to be more homogeneous and well divided in the feature
space, independently on the used training quality set. Water PA values converged to
100% for both classifiers and had some decreased in UA values. KNN-5 UA fell from
99.82% to 75.94% and SVM-OAO UA fell from 96.53% to 92.23%. This emphasises
that the higher the prop the lower the class reliability is when test samples are
mixed.

Then, from this Setup we can conclude that the classifiers affect the completeness,
varying drastically the feature space separability. Also, considering mixed test sam-
ples, purer training samples did not present the best outcomes.

5.1.4.2.2 Setup 2

Setup 2, with training samples in [prop, prop+5%[ and test samples in [100%], has its
graphs shown for Pixel-Based Baseline Classification, in Figure B.3 and Figure B.4.
Also, an illustration of this Setup classes’ pattern is presented in Figure A.2.

This Setup presented KNN-5 and SVM-OAO UA converging to 100% when prop ≥
65%. For KNN-5 UA, Water and Forest were always close to 100% while Bare Soil
and Crops had greater variation. For SVM-OAO UA, Crops was the only class that
diverged from the remaining, with its lowest UA of 42.87%.
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Consequently, as thematic accuracy concluded, the quality of test samples interfere
more dramatically in the accuracy assessment if the quality of training samples is
≥ 65%, independently of how the class is distributed in the feature space.

5.1.4.2.3 Setup 3

Setup 3, with training samples in [prop, 100%] and test samples in [50%, 100%],
has its graphs shown for Pixel-Based Baseline Classification, in Figure B.5 and Fig-
ure B.6. Also, an illustration of this Setup classes’ pattern in presented in Figure A.3.

Similarly to Setup 1, Forest presented different accuracy pattern for UA and PA: it
fell in the former while it rose in the latter. Regarding KNN-5 UA, it fell from 90.60%
to 75.95% and for SVM-OAO UA, it fell from 97.81% to 96.12%. When analysing
PA, for KNN-5 it rose from 91.78% to 98.18% and for SVM-OAO the rise was from
82.40% to 88.33%. These outcomes confirm the interference of the used classifier to
divide the feature space and it also shows that the likelihood of having samples from
other classes increased as prop increased, showing that other classes dispersion in
the feature space affects the UA of more homogeneous classes. This does not occur
for PA, as prop increases together with PA, pointing out the homogeneity of this
class.

Considering UA, for KNN-5 it rose from 82.62% to 94.52% and for SVM-OAO, it
grew from 67.60% to 82.12%. This pattern did not occur for PA, since it fell from
83.95% to 68.39% (KNN-5) and from 92.28% to 81.78% (SVM-OAO). These values,
as expected, are similar to Setup 1 and shows that for more dispersed classes in the
feature space, when trained in better sample qualities, these classes tend to be more
mistakenly assigned to other classes.

Regarding user accuracy, this class showed similar results to Forest, presenting a
falling curve for both classifiers. KNN-5 fell from 90.04% to 73.03% while SVM-
OAO fell from 97.47% to 91.21%. For producer accuracy, it fell in KNN-5 from
91.90% to 79.19% and in SVM-OAO from 88.43% to 92.82%, which reiterates Setup
1 results.

Water class presented its greatest range in KNN-5 UA, falling from 99.27% to
75.94%. This indicates similar results to Forest regarding the interference of hetero-
geneous classes for well defined classes, like Water, in KNN. This interference exists
though in a smaller scale for SVM-OAO, where the UA fall varied from 96.46% to
92.23%. Regarding producer accuracy, as this is a homogeneous class, both classi-
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fiers seem to converge to ≈ 100%: 98.48% to 99.92% (KNN-5) and 98.61% to 99.71%
(SVM-OAO).

In general, results from this Setup are similar to the outcomes from Setup 1, showing
the relevance of lesser quality data for the study of spatial data quality. Clearly,
heterogeneity of classes interfere drastically in completeness studies.

5.1.4.2.4 Setup 4

Setup 4, with training samples in [prop, 100%] and test samples in [100%], has its
graphs shown for Pixel-Based Baseline Classification, in Figure B.7 and Figure B.8.
Also, an illustration of this Setup classes’ pattern is presented in Figure A.4.

These results, Similarly to Setup 2, show that all classes tend to converge to accuracy
of 100% in SVM-OAO. However, KNN-5 seems to be more sensitive to the quality of
training samples, mainly concerning Forest and Crops. Forest KNN-5 UA varied from
37.18% to 89.18% while Crops varied from 57.86% to 92.22%, indicating substantial
confusion between these two classes for lower pixel qualities, which is related to KNN-
5 ability to divide the feature space according to the classes. An interesting point is
that even though training classes was considered pure, UA did not approximate to
100% as other classes did, emphasising this KNN-5 drawback.

Analysing KNN-5 PA, Water and Bare Soil converged to 100% though Water had
and increasing range from 67.15% to 98.53%. When it comes to Crops, it varied from
67.82% to 90.15% and Forest varied from 43.27% to 91.29%. This also emphasises
the classifier response to the quality of training data.

5.1.4.2.5 Setup 5

Setup 5, with training samples in [prop, prop+5%[ and test samples in [prop, 100%],
has its graphs shown for Pixel-Based Baseline Classification, in Figure B.9 and
Figure B.10. Also, an illustration of this Setup classes’ pattern is presented in Fig-
ure A.5. Unlike other Setups, Setup 5 presented somewhat similar results for both
classifiers, indicating that the growth of quality of training and test samples infer in
a good completeness.

All classes converged their accuracies to 100%. Regarding user accuracy, Forest,
Bare Soil and Water showed consistent class reliability for all prop values in both
classifiers. Crops, on the other hand, grew from 44.95% to 99.94% (KNN-5 UA)
and from 13.72% to 99.94% (SVM-OAO UA), showing that SVM-OAO seems to be
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more sensitive to training purity when there is mixed testing samples in this specific
situation.

When it comes to producer accuracy, Water presented its values close to 100%. For-
est increased from 76.05% to 100.00% (KNN-5 PA) and 68.42% to 100.00% (SVM-
OAO PA), proving the interference of non-homogeneous classes in this class’ accu-
racy. Bare Soil also grew from 76.03% to 100.00% (KNN-5 PA) and from 70.28% to
100.00% (SVM-OAO PA), highlighting the conclusion regarding class homogeneity.
Finally, Crops had its variation in between 68.31% and 99.72% (KNN-5 PA) and
96.56% and 99.83% (SVM-OAO PA).

All results indicate the interference of reference data quality on spatial data quality,
mainly for lower prop.

5.1.4.2.6 Setup 6

Setup 6, with training samples in [prop, 100%] and test samples in [prop, 100%],
has its graphs shown for Pixel-Based Baseline Classification, in Figure B.11 and
Figure B.12. Also, an illustration of this Setup classes’ pattern is presented in Fig-
ure A.6.

In general, all classes presented increasing accuracies converging to 100%, with min-
imum accuracy value of ≈ 68% (Crops). This Setup indicates that, regardless of the
class heterogeneity, the higher the quality of training and test sample, the higher
the accuracy.

5.2 Region-based baseline classification

5.2.1 Baseline classification

The second baseline classification used region-based segmentation followed by Deci-
sion Trees 5.0 classifier using eCognition 9.1 and TerraView (Trimble Germany GmbH,
2014; INPE, 2020). For the segmentation, the input parameters were scale = 50,
compactness = 0.5 and shape = 0.3. Also, all possible object (and all possible an-
gles) features were extracted, being: area, asymmetry, average branch length, average
length of edges, average area represented by segments, border index, border length,
brightness, compactness, curvature, degree of skeleton branching, density, distance
to scene border, elliptic fit, GLCM ang. 2nd moment, GLCM contrast, GLCM cor-
relation, GLCM dissimilarity, GLCM entropy, GLCM homogeneity, GLCM mean,
GLCM standard deviation, GLDV ang. 2nd moment, GLDV contrast, GLDV en-
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tropy, GLDV mean, is 3D, is at active pixel, is connected, length, length of longest
edge, length of main line, thickness, width, level, level number, main direction, max.
diff., maximum branch length, mean layer (1, 2, 3, 4), number of edges, number of
higher levels, number of neighbours, number of pixels, number of segments, number
of sublevels, number of sub-objects, perimeter, polygon sel-intersection, radius of
largest/smallest enclosing, rectangular fit, rel. border to image border, roundness,
shape index, standard deviation (layer 1, 2, 3, and 4), standard deviation curvature,
standard deviation of area represented by segment, standard deviation of length of
edges.

Once the image was segmented and had the features extracted, the region samples
for training were selected manually, considering stratified sampling with 160 samples
per class as shown in Table 5.9, in a total of 640 training samples. Regarding test
samples, they were randomly selected as 30% of total Pixel-based samples and this
is the reason why there are more test samples than training samples, in a total of
28, 667 samples. The training regions are shown in Figure 5.8. We point out that
the same analyst selected both sets using the same criteria.

Table 5.9 - Region-based Baseline Classification number of training samples per class.

Class Forest Crops Bare Soil Water Total
Number of training

samples 160 160 160 160 640

Number of test
samples 6,068 8,529 6,097 7,973 28,667

SOURCE: Author.

The training samples followed by the image classification led to the confusion ma-
trix presented in Table 5.10. From the confusion matrix, the computed thematic
accuracy showed a kappa index of 0.82619 with an OA of 86.933%, hence Condition
IV is satisfied. This thematic accuracy is lower than the one from Pixel-based Base-
line image classification (PIX) (Section 5.1.1) even though when visually analysing
the resulting classified map, this classification seems more coherent with the orig-
inal image, as shown in Figure 5.9. We point out that the noise presented in this
classification is substantially smaller than the one from the Pixel-based Baseline
classification.
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A point to be addressed regarding the thematic accuracy is that the object for train-
ing the classifier is different than the object for testing it. Therefore, this analysis
is purely cartographic and not over the classifier. Assuming that image segmenta-
tion followed by classification generally presents better outcomes than PIX we can
suppose that the training data quality was better than the test data quality. In this
sense, a likely reason for this thematic accuracy being smaller than the one from
Pixel-based Baseline Classification is that the quality of the test data influences
more directly the thematic accuracy than training data, as previously discussed in
Section 5.1.4. Another probability is that when we segment an image in several
region-objects, border pixels will necessarily occur in the border of segments, which
leads to a less noisy classification, hence more homogeneous pixels.
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Figure 5.8 - Region-based Baseline Classification using Decision Trees - training objects.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80

Bare	Soil
Forest

Crops
Water

Classes

Training objects for region-based presented over a Sentinel-2A TCI image from 09 August
2020. This image with ROI in Black and White (BW) is shown in Figure C.4, page 200.
Crops and Bare soil had their objects resized so they could be seem from the used scale.

SOURCE: Author.
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Table 5.10 - Region-based Baseline Classification using Decision Trees - Confusion Matrix.

Truth

Predicted
Class Forest Crops Bare Soil Water Total
Forest 6068 0 0 0 6068
Crops 966 5354 2209 0 8529

Bare Soil 0 571 5526 0 6097
Water 0 0 0 7973 7973
Total 7034 5925 7735 7973 28667

SOURCE: Author.

Regarding the completeness elements, user and producer accuracies are shown in
Table 5.11. When it comes to user accuracy (UA), i.e. when samples from another
class are mistakenly assigned to that class, Forest and Water presented no errors
while Crops presented UA = 62.774% and Bare Soil, 91.635%. For producer accuracy
(PA), Water samples were not omitted (100.00% PA), Crops showed 90.363% and
Forest, 86.627%; Bare Soil had the lowest PA value of 71.441%. Comparing the
confusion, Crops were confused with Forest and Bare Soil though in a higher rate
than PIX. Besides the likely reason points out, there is also the possibility of the
segmentation using different criteria for determining border pixels between these
three classes which may have influenced on these outcomes.

At this point, Conditions, I, II, III and IV have all been met, then, it is possible
to carry on to the Reference Sample Selection (RSS) process for the region-based
baseline classification (REG).

Table 5.11 - Region-based Baseline Classification using Decision Trees - Completeness.

Class User accuracy (%) Producer accuracy (%)
Forest 100.000 86.267
Crops 62.774 90.363

Bare Soil 90.635 71.441
Water 100.000 100.000

SOURCE: Author.
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Figure 5.9 - Region based First Classification using Decision Trees - classified image.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80

	
No	Data

Water
Forest

Crops
Bare	Soil

Classes

White pixels correspond to NoData values. This image in Black andWhite is on Figure C.5,
page 201.

SOURCE: Author.

5.2.2 Reference Sample Selection part I - filtering candidate samples

Similarly to PIX, the data is presented in four formats: histogram, pie charts, table
and frequency map, each one providing a distinct interpretation of the data.
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The first one is the histogram (Figure 5.10), divided into histogram of accumulated
modal class proportion, assuming the set [prop, 100%] and histogram of samples per
stratum in the set [prop, prop+ 5%[. These histograms are in logarithmic scale due
to the amount of Forest class data in prop = 100%. Once again, Forest had the
great majority of its candidate samples in pure quality. Meanwhile, Crops, Bare Soil
and Water presented a more flattened pattern, showing a better distribution of their
candidate data over all prop values. In this sense, these graphs reinforce that the
class representativity varies according to sample quality.

The second are the pie charts, in Figure 5.11 visually showing the variability of
the class’ representativiness as prop varies. These charts imply that, for REG, over
50% of the data for all classes are in prop = 100% indicating that REG may have
generalised quality information.

The third format is the table (Table 5.13) with the exact amount of data and their
respective percentage regarding the total number of candidate samples per class.
Firstly analysing Forest class, 94.43% of this class is at prop = 100%; while the
other strata of this class present percentages under 1.00%. When it comes to the
other classes, Water, Crops and Bare Soils had their percentages with pure samples
in 69.04%, 65.08% and 64.34%, respectively. In spite of these three classes having a
considerable more flattened distribution, the majority (over 50%) of their candidate
data lays in pure pixels.

Also, from Table 5.13, we can analyse central tendency with grouped mean and std
values, presented in Table 5.12. From this table, we see that the average values lay
in prop ≥ 91%, showing the central mass around purer samples and Crops, Bare Soil
and Water present similar std while Forest showed a lesser variation. When analysing
the distribution, all classes present negative skew, which means that the central mass
is on the right part of the chart, hence it is in accordance with Figure 5.10. Also,
Forest presents a higher absolute skew value, indicating that the central mass is
more to the right. Regarding kurtosis, Water presented a negative excess kurtosis,
being platykurtic meaning that its peak is more in a shape of an inverted "U", hence
having more distributed quality values. Crops and Bare Soil present slightly positive
excess kurtosis, indicating leptokurtic distribution, meaning that theses classes have
a slightly more accentuated peak, indicating less varied distribution. Finally, Forest
presented substantially positive excess kurtosis, almost in a shape of an inverted "V",
hence being the less distributed value. To conclude, for this baseline classification,
all classes are best represented by samples with higher quality.
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Table 5.12 - Region-based Baseline Classification using Decision Trees - Histogram Distri-
bution Statistics.

Class Grouped mean
(%)

Grouped std
(%) Skewness Excess kurtosis

Water 92.71% 13.30% -1.71 -2.46
Forest 98.66% 6.47% -5.40 29.63
Crops 91.69% 14.03% -1.53 0.96

Bare Soil 91.51% 14.10% -1.490 0.81

SOURCE: Author.

When comparing these results with the ones from PIX (Table 5.6), there is a sub-
stantial difference on percentage of Bare Soil (27.32% to 65.08%) and Crops (21.81%
to 64.34%) classes. This fact, is likely related to inherent characteristics of image
segmentation followed by classification. Additionally, this fact may affect how we
understand classes representativity, once it seems to vary according to the baseline
image. Apparently, the definition of class representativiness depends on what criteria
we use to define that certain class for that certain area, instead of having a defined
pattern for classifications, as shown in Table 5.5 and Table 5.12. For example, when
the analyst selects points/pixels as classification object, they may need to consider
a broader variety of quality; however in the case of segmentation, the analyst may
want to select purer objects.
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Figure 5.10 - Region-based based First Classification using Decision Trees - histogram.
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SOURCE: Author.

Finally, the third format shows the spatial distribution of the candidate samples
in Figure 5.12, with summarised strata for a better image visualisation, in the set
[prop, prop + 10%[ ∀ prop ∈ {50%, 60%, 70%, 80%, 90%, 100%} with the increasing
values from lighter to darker colours. This format is generalised for all classes, show-
ing explicitly the modal class proportion and not the land cover class defined as most
frequent class. For the REG image, border pixels seem visually more delineated. Ad-
ditionally, it is possible to observe more clearly the fishbones, which are areas more
likely to present Crops and Bare Soil classes. Even so, image border pixels in this
situation are related to border from the segments, hence this classification tends to
have more homogeneous areas.

Therefore, this baseline classification generated different results from the Pixel-based
Baseline Classification, specially when it comes to number of candidate samples per
stratum. A plausible reason for that lies in the segmentation characteristics that
generate a less noisy classified image. These characteristics may also affect the study
of class representativity, which may influence further studies of the RSS process.
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Figure 5.11 - Region-based Baseline Classification using Random Forest - pie charts of
distributed data per class.
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Table 5.13 - Region-based based First Classification - number of samples per stratum and their respective percentage per class.

prop
Number of samples per stratum

Water Forest Crops Bare Soil Total
N. (%) N. (%) N. (%) N. (%) N. (%)

50% 55% 858 1.73% 14,916 0.56% 10,905 2.50% 4,639 2.31% 31,318 0.94%
55% 60% 1,614 3.25% 13,141 0.49% 15,386 3.53% 7,532 3.75% 37,673 1.13%
60% 65% 1,518 3.06% 13,206 0.50% 14,867 3.41% 7,298 3.63% 36,889 1.10%
65% 70% 1,907 3.84% 16,655 0.63% 17,863 4.09% 8,403 4.18% 44,828 1.34%
70% 75% 756 1.52% 7,184 0.27% 8,129 1.86% 3,835 1.91% 19,904 0.60%
75% 80% 1,622 3.27% 14,721 0.55% 15,704 3.60% 7,453 3.71% 39,500 1.18%
80% 85% 2,006 4.04% 17,697 0.67% 18,309 4.20% 8,713 4.34% 46,725 1.40%
85% 90% 1,781 3.59% 17,012 0.64% 17,725 4.06% 8,265 4.11% 44,783 1.34%
90% 95% 2,133 4.30% 21,687 0.82% 22,164 5.08% 10,323 5.14% 56,307 1.68%
95% 100% 1,179 2.37% 11,591 0.44% 11,290 2.59% 5,199 2.59% 29,259 0.88%

100% 34,276 69.04% 2,507,228 94.43% 283,892 65.08% 129,292 64.34% 2,954,688 88.41%
Total 49,650 100.00% 2,655,038 100.00% 436,234 100.00% 200,952 100.00% 3,341,874 100.00%

SOURCE: Author.
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Figure 5.12 - Region-based based Baseline Classification using Decision Trees: frequency map.
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SOURCE: Author.
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5.2.3 Reference Sample Selection part II - selecting reference data and
image classification

RSS Part II process filters the candidate samples to form the bag so the reference
samples can be selected, as showed in the methodology flowchart in Figure 4.2.

To determine the bag size, Table 5.13 is used where the lowest value in a stratum is
756 in the set [70%, 75%[. Then, the chosen value for the bag size was nsamples = 750
as this is the nearest round number. Consequently, there are 750 samples per stratum
in the bag.

Furthermore, as nbag in this process is the same as the one set for the PIX approach,
the available reference data varies from 3, 000 (750 × 4classes × 1interval) to 33, 000
(750 × 11intervals × 4classes) samples, depending on in what prop the simulation is
working on.

Analogously, splitting the data follows the proportion of 2/3 and 1/3 for training
and test samples, respectively. Thus, for the four classes, ntrain = 500 × 4 = 2, 000
and ntest = 250× 4 = 1, 000.

Defined the number of training and test samples as well as nbag, the image classifi-
cation with the Monte Carlo simulation as sequence of the RSS - Part II approach
follows.

5.2.4 Spatial data quality

Following the process presented in the methodology flowchart (Figure 4.2), the im-
age classification using the Monte Carlo simulation was conducted, where there
was 100 repetitions per modal class proportion (either set [prop, 100%], or set
[prop, prop + 5%[). Therefore, the total number of repetitions per Setup was 1, 100
for each classifier (KNN-5 and SVM-OAO). The spatial data quality (SDQ) consid-
ering thematic accuracy and completeness with their respective standard deviations
were evaluated.

The first studied SDQ component was thematic accuracy, in Section 5.2.4.1, fol-
lowed by completeness, in Section 5.2.4.2. Besides, due to the substantial number of
resulting data, they are presented hereafter in Appendix B.2: firstly the charts with
kappa index and producer and user accuracies (Appendix B.2.1), followed by the
tables with their exact values and standard deviation (Appendix B.2.2) and, finally,
the confusion matrices (Appendix B.2.3).
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5.2.4.1 Thematic accuracy

The thematic accuracy of the Region-based Baseline Classification (REG) approach
are shown in Figure 5.13 and Figure 5.14 for each Setup in the upper chart for
KNN-5 classifier and in the bottom chart for SVM-OAO classifier. Despite the
charts presenting the kappa index, the tables containing overall accuracy are in
Appendix B.2.2. The charts also show errors bars. The results are also presented in
tabular results in Table 5.14 and Table 5.15.

Similarly to Pixel-based Baseline Classification results, the Setups are divided into
two groups: the first group has Setups 3, 4 and 6 while the second group has Setups
1, 2 and 5 concerning three mains points: (i) response of the classifier to the quality
of reference data; (ii) how convergence of reference data quality affects the thematic
accuracy and (iii) how training and test samples affect the thematic accuracy.

Firstly analysing thematic accuracy of the first group (Figure 5.13), with their train-
ing samples in the set [prop, 100%], all its Setups presented different patterns, varying
from kappa ≈ 0.65 to 0.95. Finally, for Setup 6 with test in set [prop, 100%], we can
perceive almost linear increase in both classifiers, increasing up to 0.90.

Setup 3, with test set in [50%, 100%], expresses mainly how each classifier respond to
increasingly divergence of training and test data qualities. An interesting fact is that
kappa values for this Setup were all below 0.70 indicating that, when using mixed
quality as test samples, we may not achieve exceptional results. As this divergence
increased, so did the thematic accuracy, showing that the thematic accuracy may
not be so dependent on training samples quality even though their quality increased.

Studying Setup 4, with test in [100%], the first point to observe is that its thematic
accuracy was higher than the one from Setup 3. The differences between these Setups
are in the test data quality and its lowest kappa value was ≈ 0.85. This fact leads us
to the understanding that test sample quality in fact affect the thematic accuracy
more dramatically. Still, for this baseline experiment, training samples seemed to
have some influence on the thematic accuracy, once kappa varied from 0.85 to 0.90.

Finally, for Setup 6 with test in set [prop, 100%], we can perceive an almost linear
increase in both classifiers, increasing up to 0.90. There are two likely analyses
regarding this Setup: the first is that the thematic accuracy increased alongside
with the analyst experience, hence the higher the analyst’s experience, the better.
The other point of view is related to the quality of test samples that increased,
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leading to a higher thematic accuracy.

Comparing these three Setups from the first group, a funny fact is that Setup 6
starts together with Setup 3 and finished together with Setup 4. Clearly, the reason
is that the qualities of training and test samples for these two points is the same.
Another meaningful point of comparison is the difference in the thematic accuracy
for same prop values. The difference in treatment was exclusively in the quality
of training data and yet, both classifiers presented the similar response pattern.
Therefore, answering the three analysis points: (i) there was no significant difference
in the classifier response to these three Setups; (ii) for this baseline classification,
the convergence of the quality between training and test data has some influence
though it is not so symbolic and (iii) the thematic accuracy is clearly very sensible
to the test samples quality.

Moving on to the second group (Figure 5.14), all of them presented training set in
[prop, prop + 5%[, hence they are not realistic. Analysing firstly Setup 1, with test
samples in [50%, 100%], it showed the lowest values for this group and also the lowest
kappa range. This Setup explains mostly convergence of the qualities of training and
test data: the curve is close to an inverted "U", indicating that for when they diverge
the most, the thematic accuracy is lower and when they converge the accuracy is
higher. The convergence, in this Setup, relates to training samples in their average,
prop around 70% and 75%, which is around the average of quality between 50% and
100%. Besides that, this Setup also indicates how each classifier responds to this
divergence: KNN-5 showed a higher kappa variation which may be related to the
ability to separate the classes in the feature space.

Setup 2 with test set in [100%] presented the highest kappa values for this group
although it showed a growth according to the quality of training samples. Also,
differently from this Setup in Pixel-based Baseline Classification, there was an actual
variation of kappa index. This indicates that the defining criteria of pixel quality
in this experiment infer more influent training samples for the thematic accuracy.
Nevertheless, the quality of test samples still has an impact on that. If we compare
the classifiers, we can see that SVM-OAO presented, in general, higher kappa, mainly
for lower prop values, expressing that it may deal better with separating the feature
space than KNN-5.

The last one is Setup 5 with its test in the set [prop, 100%]. We can see a linear
increase of the thematic accuracy as the quality of training samples increases and
that there is a more homogeneous quality of test samples. Regarding this Setup, we
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cannot take any specific conclusions in spite of its importance to general assessment.

To compare these three Setups, again, we see clearly the effect of test samples on the
thematic accuracy. Setups 1 and 2 present a fixed quality of test data while Setup 3
varies it. If we observe the difference between Setups 1 and 2, we see the discrepancies
of kappa values and this verifies the sensibility of the thematic accuracy regarding
test samples. Another point is that SVM-OAO generally presented more accurate
results than KNN-5 even though both classifiers presented similar curve patterns
for the three Setups. The third point is that both classifiers responded poorly to
divergence of training and test data in spite of the used prop.

To study the effect of training data, we can also compare these pair of Setups: 1
and 3, 2 and 4, 5 and 6. All the pairs tended to converge their kappa as prop in-
creased and there was higher difference in the thematic accuracy for prop ≤ 75%.
This corroborates with the idea that test samples tend to have stronger influence on
the thematic accuracy than training samples. However, the lower the sample qual-
ity, the higher the influence of training samples on thematic accuracy. Additionally,
when comparing the classifiers, SVM-OAO presented higher accuracy values, but
both classifiers presented similar curve patterns for all Setups in this baseline classi-
fication. This means that the classifier has some influence on the thematic accuracy
though the variation of sample quality seems to be stronger.
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Figure 5.13 - Region-based Baseline Classification using Decision Trees C5.0 - Thematic
Accuracy with error bars for Setups 3, 4 and 6.
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Where Setup 3 corresponds to train: [prop, 100%] / test: [50%, 100%] and Setup 4 corre-
sponds to train: [prop, 100%] / test: [100%] and Setup 6 corresponds to train: [prop, 100%]
/ test: [prop, 100%]. More detailed results are presented in Section B.2.

SOURCE: Author.
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Figure 5.14 - Region-based Baseline Classification using Decision Trees C5.0 - Thematic
Accuracy with error bars for Setups 1, 2 and 5.
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Where Setup 1 corresponds to train: [prop, prop + 5%] / test: [50%, 100%]; Setup 2 cor-
responds to train: [prop, prop + 5%] / test: [100%] and Setup 5 corresponds to train:
[prop, prop+ 5%[ / test: [prop, 100%]. More detailed results are presented in Section B.2.

SOURCE: Author.
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Table 5.14 - Region-based Baseline Classification - Thematic accuracy and standard deviation for KNN-5.

prop Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6
kappa std kappa std kappa std kappa std kappa std kappa std

50% 0.513 0.023 0.580 0.034 0.674 0.018 0.843 0.013 0.500 0.023 0.667 0.020
55% 0.596 0.019 0.692 0.023 0.678 0.017 0.853 0.013 0.606 0.017 0.701 0.018
60% 0.637 0.020 0.775 0.015 0.679 0.020 0.864 0.012 0.662 0.018 0.730 0.017
65% 0.658 0.016 0.804 0.014 0.679 0.018 0.869 0.014 0.714 0.019 0.754 0.017
70% 0.673 0.020 0.820 0.014 0.680 0.020 0.877 0.013 0.746 0.017 0.777 0.014
75% 0.675 0.019 0.852 0.012 0.681 0.020 0.884 0.012 0.785 0.016 0.803 0.016
80% 0.678 0.019 0.863 0.012 0.678 0.018 0.891 0.011 0.809 0.013 0.826 0.016
85% 0.685 0.018 0.884 0.011 0.673 0.019 0.897 0.011 0.839 0.013 0.844 0.014
90% 0.668 0.019 0.888 0.010 0.667 0.019 0.902 0.009 0.859 0.013 0.862 0.013
95% 0.670 0.020 0.891 0.010 0.662 0.019 0.912 0.010 0.870 0.010 0.877 0.010
100% 0.637 0.022 0.931 0.009 0.637 0.022 0.931 0.009 0.910 0.009 0.910 0.009

SOURCE: Author.
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Table 5.15 - Region-based Baseline Classification - Thematic accuracy and standard deviation for SVM-OAO.

prop Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6
kappa std kappa std kappa std kappa std kappa std kappa std

50% 0.620 0.013 0.704 0.011 0.696 0.016 0.851 0.012 0.620 0.013 0.696 0.017
55% 0.650 0.015 0.742 0.013 0.697 0.016 0.857 0.010 0.665 0.014 0.726 0.017
60% 0.674 0.016 0.787 0.010 0.697 0.017 0.862 0.011 0.706 0.014 0.747 0.016
65% 0.684 0.017 0.809 0.009 0.696 0.016 0.862 0.011 0.741 0.013 0.771 0.016
70% 0.691 0.016 0.833 0.010 0.695 0.017 0.869 0.010 0.768 0.014 0.791 0.014
75% 0.696 0.017 0.848 0.010 0.694 0.017 0.874 0.010 0.799 0.015 0.814 0.016
80% 0.693 0.015 0.863 0.009 0.690 0.017 0.879 0.010 0.821 0.012 0.834 0.012
85% 0.690 0.016 0.875 0.011 0.684 0.016 0.884 0.010 0.843 0.014 0.849 0.013
90% 0.686 0.016 0.881 0.010 0.681 0.017 0.889 0.010 0.857 0.013 0.867 0.013
95% 0.682 0.017 0.891 0.010 0.672 0.019 0.897 0.010 0.875 0.011 0.881 0.011
100% 0.644 0.020 0.903 0.010 0.644 0.020 0.903 0.010 0.905 0.010 0.905 0.010

SOURCE: Author.
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5.2.4.2 Completeness

The completeness elements will study thematic accuracy results of the RSS pro-
cess for REG, by analysing results for each class using user accuracy and pro-
ducer accuracy. Due to the amount of resulting charts (12), they are presented
in Appendix B.2.1, the tables are in Appendix B.2.2 and confusion matrices in Ap-
pendix B.2.3 alongside with the thematic accuracy per Setup.

5.2.4.2.1 Setup 1

This Setup has training samples in [prop, prop + 5%[ and its test samples are in
[50%, 100%]. Its resulting charts are in Figure B.13 and Figure B.14. Additionally,
an illustration of Setup 1 feature space is presented in Figure A.1.

Firstly, concerning Forest class, both classifiers responded differently for UA and PA.
Regarding user accuracy, Forest varied from 70.67%, rose up to 82.36% (prop = 70%)
then fell to 53.16% in KNN-5 while, for SVM-OAO it fell from 91.37$ to 60.13%
showing that each classifier responds differently to this class when there is a variation
of reference data. When it comes to producer accuracy, it grew from 58.39% to
88.35% (KNN-5 PA) and from 61.93% to 86.19% (SVM-OAO PA). Similarly to
Water, this class is understood to be spectrally homogeneous and lower PA indicated
some heterogeneity, which is uncommon.

For Crops class, its UA rose for both classifiers, varying from 34.09% to 79.52$
(KNN-5 UA) and from 10.86% to 76.38% (SVM-OAO UA), showing the lack of
reliability of this class for lower prop values. When it comes to producer accuracy,
Crops varied from 39.16%, rose up to 61.52% (prop = 70%) then fell to 51.77% in
the case of KNN-5 PA. For SVM-OAO PA, it fell from 77.69% to 53.20%, showing
that other classes interfere with this class’ PA, which happened for PIX studies.
These outcomes also show the difference of how the classifiers respond to this class
considering variety in quality of reference data.

When it comes to Bare Soil, firstly analysing user accuracy, it varied from 54.31%
to 75.84% (prop = 65%) then fell to 65.41% in KNN-5. Now, SVM-OAO UA varied
from 85.10% to 66.10%. Together with Crops class, we may suggest that there was
confusion between these two classes and, as segmentation tends to generalise the
pixel quality information, this may have affected this situation. Moving on to pro-
ducer accuracy, KNN-5 PA grew from 64.64% to 73.77% and, for SVM-OAO PA,
rose from 66.68% to 73.61% (prop = 80%) then fell to 72.19%. In general, Bare
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Soil varied its completeness around 70%, which may be related to the definition of
sample quality, that segmentation infers to worse values.

For Water, it presented the highest completeness values. Concerning user accuracy,
it varied from 94.94% to 92.89% (KNN-5 UA) and from 98.82% to 90.73% (SVM-
OAO UA). Indicating that the generalisation of segments for this class was more
trustworthy. Analysing samples mistakenly assigned to Water, it also showed good
accuracy, presenting values of PA from 87.99% to 95.20% (KNN-5 PA) and from
89.14% to 95.40%. Therefore, this class seemed to have discrepant generalised value,
when compared to other classes.

5.2.4.2.2 Setup 2

This Setup has training samples in [prop, prop + 5%[ and its test samples are in
[100%]. Its resulting charts are in Figure B.15 and Figure B.16. Additionally, an
illustration of Setup 2 feature space is presented in Figure A.2. In general, Forest
and Water converged to 100.00% for user accuracy. The remaining class presented
variations in their accuracy assessment values.

Bare Soil varied from 57.86% to 92.22% for KNN-5 UA and, for SVM-OA UA, it
fell from 94.33% to 90.51%. These values indicate that the generalisation of regions
may have increased Bare Soil homogeneity for pure test samples. Analysing producer
accuracy, its variations were from 67.82% to 90.15% (KNN-5 PA) and from 69.38%
to 84.80% (SVM-OAO PA).

Crops presented higher discrepancy in UA values: grew from 37.18% to 89.18%
(KNN-5 UA) and from 18.07% up to 81.77% (SVM-OAO UA). Regarding producer
accuracy, Crops rose in KNN-5 (43.27% to 91.29%) and in SVM-OAO, it fell from
94.82% to 89.64%., showing that SVM-OAO was able to deal better with prop

variation.

5.2.4.2.3 Setup 3

This Setup has training samples in [prop, 100%] and its test samples are in
[50%, 100%]. Its resulting charts are in Figure B.17 and Figure B.18. Addition-
ally, an illustration of Setup 3 feature space is presented in Figure A.3. In general,
user accuracy presented similar patterns for all classes for both classifiers, indicating
that, for accumulated quality of training samples against mixed text quality, both
classifiers respond similarly, unlike Setup 1.
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Forest had its user accuracy decrease from 78.30% to 53.16% (KNN-5) and from
83.37$ to 61.13% inferring that spectral dispersion of other classes influences directly
this class’ reliability. When it comes to producer accuracy, this class varied from
74.73% to 88.35% (KNN-5 PA) and from 74.76% to 86.16% (SVM-OAO PA). This
elucidates the fact that this class tends to be best separated in the feature space as
prop increases, but other classes are mistakenly assigned to it as a drawback.

Crops rose from 55.44% to 79.52% (KNN-5 UA) and from 49.12% to 76.38% (SVM-
OAO UA), showing that this class reliability increased as prop rose although it did
not reach 100%. For producer accuracy, it fell from 59.97% to 51.77% (KNN-5 PA)
and from 65.62% to 53.20% (SVM-OAO PA), implying that, the higher the quality
of training samples, if test samples are mixed, heterogeneous classes tend to be
mistakenly assigned to this class.

Bare Soil had its user accuracy varying from 72.50% to 65.41% (KNN-5 UA) and
from 79.00% to 66.10% (SVM-OAO UA), showing that, as Setup 1, as porp increased,
UA had a slight decrease for both classifiers, indicating that the classification did
not separate this heterogeneous class for higher quality samples.

Water presented general high values: its user accuracy varied form 95.84% to 92.89%
(KNN-5 UA) and from 97.28% to 90.73% (SVM-OAO). And for producer accuracy,
it varied from 93.20% to 95.20% (KNN-5 PA) and from 92.78% to 95.40% (SVM-
OAO PA). Emphasising this class’ homogeneity in both aspects.

5.2.4.2.4 Setup 4

This Setup has training samples in [prop, 100%] and its test samples are in [100%].
Its resulting charts are in Figure B.19 and Figure B.20. Additionally, an illustration
of Setup 4 feature space is presented in Figure A.4.

Regarding Forest and Water, both classes presented all their UA near 100% for both
classifiers. Nonetheless, their PA varied: Water kept accuracy close to 100% while
Forest had a growing pattern: from 87.49% to 98.53% (KNN-5 PA) and from 88.16%
to 97.12% (SVM-OAO PA). These values points out these classes’ reliability against
pure test samples, indicating their homogeneity, as previously mentioned.

Crops presented a growth for its user accuracy, varying its KNN-5 from 64.62% to
89.18% and its SVM-OAO from 60.34% to 81.77%, showing almost a linear corre-
lation between prop and UA, therefore, considering pure test samples, we can rely
better in this class. This reliability changes when we analyse producer accuracy; this
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class varied from 87.70% to 91.29% (KNN-5 PA) and from 95.93% to 89.64%. This
indicates that higher prop values for this class affects differently both classifiers’
responses.

Finally, Bare Soil did not present substantial changes in its user accuracy, with
variations in between 89.51% and 92.22% (KNN-5 UA) and in between 95.33% and
90.51% (SVM-OAO UA). This shows that this class in not highly dependent on the
quality training samples when testing the image classification with pure samples,
indicating that both classifiers may rely more in mixed quality training samples for
separating their feature space.

5.2.4.2.5 Setup 5

This Setup has training samples in [prop, prop + 5%[ and its test samples are in
prop, [100%]. Its resulting charts are in Figure B.21 and Figure B.22. Additionally,
an illustration of Setup 5 feature space is presented in Figure A.5. In this Setup,
there was difference in the classifier’s responses. Water kept with the highest PA
and UA values with its lower value in KNN-5 PA (87.83%).

Forest presented growing or unchanging pattern for all cases. Beginning with user
accuracy, it rose from 69.68% to 97.84% (KNN-5 UA) and varied from 99.68% to
99.01% (SVM-OAO UA). This showes that KNN-5 seems to be more susceptible to
interference from dispersed classes for lower prop values. When it comes to producer
accuracy, it rose from 57.86% to 98.28% (KNN-5) and from 61.96% to 97.83%.

Crops presented distinguishing values from both classifiers: had a growing pattern in
KNN-5 and a decreasing pattern for SVM-OAO. For KNN-5 user accuracy, it grew
from 32.57% to 86.25% and for SVM-OAO, its UA varied from 60.34% to 81.77%.
Regarding producer accuracy, it varied from 37.25% to 88.03% (KNN-5 PA) and
from 78.81% to 88.63% (SVM-OAO PA).

Bare Soil increased all its values. Its user accuracy varied from 52.87% to 89.45%
(KNN-5 UA) and from 85.08% to 89.58% (SVM-OAO UA). Its producer accuracy
varied from 62.83% to 87.31% (KNN-5) and from 66.52% to 85.69%, presenting
similar confusions in this metric.

Water, presented all values converging to 100% elucidating its class heterogeneity.
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5.2.4.2.6 Setup 6

This Setup has training samples in [prop, 100%] and its test samples are in
[prop, 100%]. Its resulting charts are in Figure B.23 and Figure B.24. Addition-
ally, an illustration of Setup 6 feature space is presented in Figure A.6. In general,
all Water and Forest metric converged to 100% with low range of accuracy for prop
variations. Another point is that all metrics showed a rising pattern, showing higher
accuracy for higher prop.

Forest varied from 77.97% to 97.84% (KNN-5 UA) and from 83.48% to 98.68%
(SVM-OAO UA). Also, it varied from 74.15% to 98.28% (KNN-5 PA) and from
74.61% to 97.83% (SVM-OAO PA).

Crops, showed a higher variation, presenting variations between 54.28% to 86.25%
(KNN-5 UA) and from 48.97% to 83.87% (SVM-OAO UA). Ia also rose from 58.91%
to 88.03% (KNN-5 PA) and from 65.68% to 88.63% (SVM-OAO PA)

Regarding Bare Soil, its growth varied from, in user accuracy, from 72.07% to 89.45%
(KNN-5 UA) and from 79.04% to 89.58% (SVM-OAO UA). And its producer accu-
racy varied from from 71.99% to 87.31% (KNN-5 PA) and from 72.68% to 85.69%
(SVM-OAO PA).

Water, similarly to the other Setups, presented high accuracy values. Both Forest and
Water converged to 100% UA and PA and this did not happen for Crops and Bare
Soil. It is possible that this convergence value is related to the fact the segmentation
forces classes’ pixels values to an average value and that minimised the quality of
heterogeneous classes.

5.3 General discussion

The first and perhaps the most important point of this research is the possibility to
define the quality of reference data prior to an Remote Sensing image classification.
Even though it needs a classified higher-resolution image as auxiliary data, this is a
first step towards working on image classifications taking pixel quality into account.

A general comparison between Pixel-based (PIX) and Region-based (REG) baseline
classifications lays on the fact that, when using segmentation, there are mode uni-
form regions, less noisy. This resulted in a lower thematic accuracy. A likely reason
for that is on the fact that segmentation forces the region to average pixel values,
i.e. mixed within that certain region. This may have affected the image classification
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analysing purer samples hence not being typical scenarios within regions.

Another point to be addressed in the effect of the baseline classifications on spa-
tial data quality using thematic accuracy and completeness. Both baseline images
seemed to define differently the quality of a pixel: PIX seemed to more trustworthy
to determine sample quality whereas REG, as part of its characteristics, summarises
the quality values.

When comparing thematic accuracy, all Setups for PIX and REG were somehow im-
portant to understand to what extent the pixel quality implies the resulting map spa-
tial data quality. A general observation is that using pure test samples (prop = 100%)
against mixed training samples implied on higher kappa values, indicating that test
samples have greater impact on the thematic accuracy assessments. Nonetheless, for
thematic accuracy, there was no significant difference between the used classifiers.

Contrarily to thematic accuracy, completeness analysis showed to be dependent on
the used classifier, thus indicating that the confusions per class are balanced when
thematic accuracy (kappa and OA) are used.

Also, even though the four used classes (Forest, Water, Bare Soil and Crops) tend
to be spectrally distinct from each other, a minimum sign of correlation between
classes seemed to have had drastic effects on user accuracies and producer accuracies,
mainly for non-pure pixels (prop 6= 100%). Therefore, analysing class’s response to
each combination of reference data quality leads us to a better understanding of how
it is spectrally divided and how each classifier deals with with.
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6 CONCLUSIONS

In a nutshell, we aimed to verify how the selection of reference samples aided by
higher resolution imagery could affect the quality assessment of an image classifi-
cation. The initial step was to build an algorithm to assess the pixel quality of the
studied image using statistics of central tendencies. Then, the quality of samples
were separated into groups of 5% quality. After that, six selection scenarios (Setups)
were tested, combining different variations of training and test quality.

Regarding the algorithm created to define the sample quality, it works successfully
and its resulting database is able to be applied for several further analyses for Pattern
Recognition applied to Remote Sensing studies. The algorithm is also easy to use
and its results are in a GIS familiar format (shapefile), hence people non-familiar
with programming language can run it.

From the results in the Reference Sample Selection (RSS) approach, the following
conclusions are listed:

a) Class representativity is dependent on the sample quality

From the four used classes, each of them presented different probability
distribution function when analysing sample quality, shown by grouped
mean, kurtosis and skewness values. Even though the most frequent quality
was 100% in all cases, their average value (mass centre) varied and some
classes presented broader distribution thus indicating that pure samples
may not always describe the studied class.

b) Different baseline classifications represent different perspective for defining
the quality of reference data

Pixel-based baseline classification presented to have their metrics more
likely to converge to 100.00 than region-based baseline classification. There-
fore, some segmentation characteristics to force region values to their aver-
age impacted to determine the quality of reference data, hence pixel-based
classification, for this specific scenario, seemed to be reliable.

c) Different classifiers may impact the image classification assessment though
not as strongly as the quality of the reference data

Up to the date of this manuscript, several studies tried to find the best
image classifier. However, for this study, difference in the classifier had
an effect on the thematic accuracy assessment, but this effect was smaller
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than the effect of the quality of reference data. This shows that selecting
reference samples affects more radically the thematic accuracy studies than
the classifier per se.

The usage of different classifiers showed to be more relevant for complete-
ness assessment, mainly when there is some heterogeneity in a class, i.e.
more dispersed. The classifier ability to differentiate these classes changed
drastically for some Setups.

d) The quality of reference samples has an important role in the image clas-
sification accuracy assessment

This fact has been already been proven and it is a usual statement in
Remote Sensing but it is confirmed in this manuscript. The purer the
pixels, the higher the image classification accuracy.

e) The quality of test samples influence the most on the image classification
accuracy assessment

From all the studied experiments, independent on the situation, we con-
firmed that this influence is dramatically more significant than the influ-
ence of training samples.

To conclude, this study adds a new point of view in Remote Sensing analyses: the
importance of the variation of the quality of training and test data as well as the
understanding of class representativiness in image classification.

6.1 Recommendations

This manuscript presents an initial study regarding the definition of reference sample
quality and analysis of the impact of this quality on the image classification accuracy.
As this is an initial study, there are several further questions that raised that may
be answered in future research.

The first recommendation is to use more classes to check how Reference Sample
Selection responds to more correlated and also heterogeneous classes and verify, or
not, the conclusions of this manuscript.

Also, studying the classes’ feature spaces, considering class heterogeneity and dis-
persion in the feature space may aid to further conclusions.

Another point is that more classifiers could be tested to confirm the effect of the
classifier on the accuracy assessment.
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Regarding combination of Setups, different combinations may be used, using fixed
training quality over varied test quality for example so more conclusions over the
entire image classification process can be done. There are several Setup combinations
and should be testes.

Additionally, image corregistration errors are still common in Remote Sensing and
not perfectly corrregistered images may impact the RSS approach. Thus, we recom-
mend to firstly study this error in a controlled environment, testing the registration
main parameters separately: shift, rotation, scale and shear.

Finally, this study was completely simulated and theoretical, which implies that this
methodology needs to be applied in a real situation, considering different sensors
with different spectral responses and a probable corregistration error. Only then, it
is possible to determine if this initial research can be applied for the academy.
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GLOSSARY

Accuracy assessment analysis of a thematic map, combining two elements of spa-
tial data quality: Thematic Accuracy and Completeness 83, see spatial data
quality

Baseline image classified higher-resolution image used as basis for Reference Sam-
ple Selection approach 39, 110

Class representativiness how a certain class is distributed considering its average
quality and standard deviation. 58, 67, 68, 76, 92

Classification model models used draw conclusions from the input values given
from the training samples. It is supposed to predict the class category/label
for new data. 5, 20

Completeness part of the analysis of a thematic map. It is an element of Spatial
data quality. It is divided into Commission and Omission errors (%), or
Producer and User Accuracy (%) 65, 81, 82, 84, 89, 105, 106, 110, see
spatial data quality

Feature space in Remote Sensing, it is a n-dimensional space according to the
number of studied bands (features) where each pixel is a vector of greyscale
values 5–7, 18–24, 74–76, 81–84, 105–109

Producer accuracy PA, part of the analysis of a thematic map. It is a metric
of Completeness, it is related to Omission Error (OE), defined by PA =
1−OE. It is related to the absence of data in the studied class, resulting
in incompleteness. 37, 81, 83, 85, 105–110

Reference data qata used as reference for a certain process, which can be the
classification model or accuracy assessment in this study. Also called as
reference sample, labelled samples or even labelled data. 1, 7, 9, 12, 13, 28,
29, 35, 39–44, 47, 56, 57, 60, 63, 67, 73–76, 81, 85, 97, 98, 105, 110–112

Spatial data quality a degree of data excellency to satisfy a given objective 33,
84, 85, 110, 123, 124

Test sample data used for assessing thematic accuracy of the classification result.
Also called as classification validation reference. xix, 2, 3, 7, 28, 42–44, 56,
60, 73, 74, 81–86, 97–100, 105–109
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Thematic accuracy part of the analysis of a thematic map. It is an element of
Spatial data quality. It is represented by overall accuracy (%) or kappa
index 81, 83, 86, 87, 97–100, 105, 109, 110, see spatial data quality

Training sample set of pixels or segmented region used define the parameters for
the classification model. Also called as classification training reference. xix,
13, 19, 20, 30, 44, 56, 59, 73–75, 82–86, 98–100, 105–109

User accuracy UA, part of the analysis of a thematic map. It is a metric for
Completeness, it is related to Commission Error (CE), defined by UA =
1−CE. It is related to the excess of data in the studied class, resulting in
overcompleteness. 37, 65, 81, 83, 84, 89, 105–110
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APPENDIX A - SIMULATED FEATURE SPACE PER SETUP

This appendix presented the simulated features spaces of all six Setups to comple-
ment the understanding in Chapter 3.

Figure A.1 - Simulated Feature Space for Setup 1.
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Figure A.2 - Simulated Feature Space for Setup 2.
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Figure A.3 - Simulated Feature Space for Setup 3.
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Figure A.4 - Simulated Feature Space for Setup 4.
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Figure A.5 - Simulated Feature Space for Setup 5.
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Figure A.6 - Simulated Feature Space for Setup 6.
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APPENDIX B - THEMATIC ACCURACY AND COMPLETENESS
FROM REFERENCE SAMPLE SELECTION METHODOLOGY

This appendix presents the charts regarding the elements of Thematic Accuracy
and Completeness from Spatial Data Quality. Each Figure presents the Thematic
Accuracy represented by the kappa index and Completeness represented by User
Accuracy (UA) and Producer Accuracy (PA).

B.1 RSS part II - classification results for Pixel-based baseline classifi-
cation

In this part, the results for data with the Pixel-based Baseline classification spa-
tial data quality are presented. Firstly the Graphic results are presented (Ap-
pendix B.1.1) leading to a visual interpretation of the data. Afterwards the tables
with exact data are presented (Appendix B.1.2).

B.1.1 Graphic results

The graphic results present graphs with the mean kappa index and the error bars
representing their respective standard deviation (std) in the upper area. The middle
area presents the mean User Accuracy (UA) whilst the lower area presents the
Producer Accuracy (PA).

We note that the vertical scale of all graphs may change according to minimum and
maximum value of the presented information.

All figures in this section refer to Section 5.1.4, in page 73.
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Figure B.1 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO for
Setup 1.
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Figure B.2 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 1.
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Figure B.3 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO for
Setup 2.
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Figure B.4 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 2.
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Figure B.5 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO for
Setup 3.
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Figure B.6 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 3.
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Figure B.7 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO for
Setup 4.
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Figure B.8 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 4.
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Figure B.9 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO for
Setup 5.
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Figure B.10 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 5.
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Figure B.11 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO
for Setup 6.
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Figure B.12 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 for
Setup 6.
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B.1.2 Tabular results

The tabular results for Stage 1 Pixel-based Baseline Classification are presented
in this appendix in two setups per page. Firstly the results regarding SVM-OAO
classifier are presented followed by KNN-5 results.

The tables present the mean overall accuracy for the 100 Monte Carlo repetitions
with the standard deviation. They also present the User Accuracy (UA) and Pro-
ducer Accuracy (PA) in percentage for the four used classes.

These tables refer to Section 5.1.4, in page 73.
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Table B.1 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO Setups 1 and 2.Summary Pixel

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 1 Train: [prop, prop+0.05[

Test: [0.5, 1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.7749 0.0075 0.6998 0.0100 96.53% 99.60% 13.95% 99.87% 98.41% 68.41% 96.30% 70.41%
55% 60% 0.8133 0.0098 0.7510 0.0131 96.54% 99.53% 29.44% 99.79% 98.55% 72.83% 96.61% 73.97%
60% 65% 0.8697 0.0094 0.8262 0.0125 96.29% 98.55% 53.25% 99.77% 98.98% 80.82% 95.02% 79.98%
65% 70% 0.9049 0.0091 0.8732 0.0122 96.31% 97.82% 70.58% 97.24% 99.11% 83.53% 91.83% 89.33%
70% 75% 0.9081 0.0089 0.8775 0.0119 96.10% 97.55% 74.02% 95.59% 99.29% 84.43% 89.68% 90.92%
75% 80% 0.9125 0.0094 0.8833 0.0125 95.86% 96.45% 77.98% 94.72% 99.34% 86.76% 87.76% 91.53%
80% 85% 0.9115 0.0093 0.8820 0.0124 95.41% 96.04% 79.45% 93.71% 99.45% 87.37% 86.16% 91.94%
85% 90% 0.9142 0.0092 0.8855 0.0123 94.83% 96.05% 80.94% 93.84% 99.42% 88.48% 86.07% 91.98%
90% 95% 0.9112 0.0099 0.8816 0.0132 93.93% 95.37% 82.30% 92.88% 99.58% 89.05% 83.95% 92.38%
95% < 100% 0.9147 0.0085 0.8863 0.0114 94.75% 94.63% 84.06% 92.45% 99.61% 90.37% 83.93% 92.45%

100% 100% 0.9042 0.0111 0.8723 0.0148 92.23% 96.12% 82.12% 91.21% 99.71% 88.33% 81.78% 92.82%

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 2 Train: [prop, prop+0.05[

Test: [1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.8550 0.0131 0.8067 0.0174 100.00% 100.00% 42.87% 99.13% 98.98% 82.49% 99.62% 73.59%
55% 60% 0.9400 0.0103 0.9200 0.0138 100.00% 100.00% 77.17% 98.83% 98.54% 92.69% 99.99% 87.11%
60% 65% 0.9909 0.0034 0.9879 0.0045 100.00% 100.00% 96.49% 99.87% 99.57% 99.48% 99.99% 97.38%
65% 70% 0.9979 0.0014 0.9971 0.0018 100.00% 100.00% 99.54% 99.60% 99.38% 99.84% 100.00% 99.92%
70% 75% 0.9978 0.0017 0.9971 0.0023 100.00% 100.00% 99.71% 99.42% 99.24% 99.91% 99.99% 100.00%
75% 80% 0.9990 0.0009 0.9987 0.0012 100.00% 100.00% 99.84% 99.78% 99.66% 100.00% 99.96% 100.00%
80% 85% 0.9982 0.0013 0.9976 0.0017 100.00% 100.00% 99.90% 99.39% 99.39% 100.00% 99.90% 100.00%
85% 90% 0.9985 0.0013 0.9980 0.0017 100.00% 100.00% 99.90% 99.51% 99.51% 100.00% 99.90% 100.00%
90% 95% 0.9987 0.0010 0.9983 0.0014 100.00% 100.00% 99.93% 99.55% 99.59% 100.00% 99.90% 100.00%
95% < 100% 0.9992 0.0008 0.9990 0.0011 100.00% 100.00% 99.94% 99.75% 99.80% 100.00% 99.90% 100.00%

100% 100% 0.9996 0.0006 0.9994 0.0008 100.00% 100.00% 99.92% 99.90% 99.97% 99.95% 99.90% 100.00%

Interval OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa User Accuracy Producer Accuracy

Página 1

SOURCE: Author.
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Table B.2 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 Setups 1 and 2.Summary_pxl

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 1 Train: [prop, prop+0.05[

Test: [0.5, 1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.8099 0.0128 0.7466 0.0170 99.82% 93.38% 48.36% 82.41% 96.92% 75.78% 70.01% 78.70%
55% 60% 0.8820 0.0106 0.8426 0.0141 98.87% 92.77% 67.79% 93.36% 98.65% 83.55% 84.71% 85.89%
60% 65% 0.9124 0.0113 0.8832 0.0151 97.56% 91.80% 81.62% 93.99% 99.25% 90.52% 86.07% 89.13%
65% 70% 0.9128 0.0110 0.8837 0.0147 96.34% 90.10% 85.74% 92.94% 99.44% 92.05% 84.03% 90.06%
70% 75% 0.9093 0.0114 0.8791 0.0152 95.24% 89.60% 87.51% 91.37% 99.44% 90.82% 82.66% 91.65%
75% 80% 0.9070 0.0119 0.8760 0.0159 95.22% 88.09% 88.74% 90.75% 99.52% 92.17% 81.15% 91.30%
80% 85% 0.8998 0.0122 0.8663 0.0163 94.91% 86.52% 89.04% 89.43% 99.37% 93.08% 79.41% 89.96%
85% 90% 0.8782 0.0143 0.8376 0.0191 90.56% 83.89% 90.82% 86.01% 99.53% 95.24% 75.73% 85.15%
90% 95% 0.8781 0.0137 0.8375 0.0182 90.46% 83.75% 90.03% 87.00% 99.60% 94.03% 76.02% 85.56%
95% < 100% 0.8537 0.0173 0.8049 0.0231 86.19% 80.42% 92.34% 82.53% 99.68% 96.80% 72.14% 80.55%

100% 100% 0.8140 0.0181 0.7520 0.0242 75.94% 75.96% 94.52% 79.19% 99.92% 98.18% 68.39% 73.03%

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 2 Train: [prop, prop+0.05[

Test: [1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.9150 0.0158 0.8866 0.0211 100.00% 99.08% 75.26% 91.64% 97.90% 86.17% 91.38% 91.17%
55% 60% 0.9665 0.0110 0.9553 0.0146 100.00% 99.97% 87.85% 98.78% 99.12% 90.76% 99.67% 97.96%
60% 65% 0.9945 0.0036 0.9927 0.0048 100.00% 100.00% 98.26% 99.55% 99.70% 98.92% 99.92% 99.27%
65% 70% 0.9987 0.0013 0.9982 0.0017 100.00% 100.00% 99.56% 99.92% 99.88% 99.92% 100.00% 99.67%
70% 75% 0.9990 0.0008 0.9986 0.0011 100.00% 100.00% 99.78% 99.81% 99.85% 99.85% 99.96% 99.92%
75% 80% 0.9995 0.0006 0.9993 0.0008 100.00% 100.00% 99.93% 99.87% 99.97% 99.94% 99.91% 99.98%
80% 85% 0.9995 0.0007 0.9993 0.0009 100.00% 100.00% 99.94% 99.85% 99.88% 99.97% 99.97% 99.97%
85% 90% 0.9996 0.0005 0.9995 0.0007 100.00% 100.00% 99.87% 99.97% 99.98% 99.95% 99.99% 99.92%
90% 95% 0.9998 0.0005 0.9997 0.0006 100.00% 100.00% 99.94% 99.97% 99.98% 99.99% 100.00% 99.94%
95% < 100% 0.9998 0.0004 0.9998 0.0005 100.00% 100.00% 99.96% 99.98% 100.00% 99.97% 99.98% 99.99%

100% 100% 0.9996 0.0005 0.9995 0.0007 100.00% 99.98% 99.89% 99.97% 100.00% 100.00% 99.95% 99.89%

Interval OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa User Accuracy Producer Accuracy
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SOURCE: Author.
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Table B.3 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO Setups 3 and 4.Summary Pixel

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 3 Train: [prop, 1]

Test: [0.5,1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.8984 0.0083 0.8645 0.0111 96.46% 97.81% 67.60% 97.47% 98.61% 82.40% 92.28% 88.43%
0.9037 0.0096 0.8716 0.0128 96.39% 97.56% 70.93% 96.62% 98.84% 83.68% 91.03% 89.48%
0.9084 0.0091 0.8778 0.0122 96.30% 97.24% 73.82% 95.98% 99.07% 84.82% 90.05% 90.41%
0.9095 0.0088 0.8793 0.0118 96.24% 96.96% 75.44% 95.17% 99.18% 85.34% 88.92% 91.06%
0.9108 0.0089 0.8810 0.0119 96.08% 96.61% 77.09% 94.52% 99.32% 86.19% 87.87% 91.38%
0.9110 0.0092 0.8813 0.0123 95.64% 96.36% 78.35% 94.03% 99.40% 86.77% 86.91% 91.67%
0.9119 0.0097 0.8825 0.0130 95.20% 95.94% 80.00% 93.60% 99.50% 87.80% 85.91% 91.84%
0.9114 0.0099 0.8819 0.0132 94.39% 95.86% 81.13% 93.19% 99.64% 88.29% 84.85% 92.20%
0.9096 0.0105 0.8795 0.0139 93.50% 95.47% 82.11% 92.78% 99.66% 88.85% 83.53% 92.36%
0.9109 0.0096 0.8812 0.0128 93.73% 95.16% 83.00% 92.47% 99.66% 89.51% 83.39% 92.39%
0.9042 0.0111 0.8723 0.0148 92.23% 96.12% 82.12% 91.21% 99.71% 88.33% 81.78% 92.82%

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 4 Train: [prop, 1]

Test: [1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.9973 0.0016 0.9964 0.0021 100.00% 100.00% 99.25% 99.68% 99.36% 99.69% 100.00% 99.88%
0.9980 0.0015 0.9973 0.0020 100.00% 100.00% 99.50% 99.69% 99.42% 99.84% 99.98% 99.96%
0.9983 0.0013 0.9978 0.0017 100.00% 100.00% 99.66% 99.67% 99.47% 99.90% 99.97% 100.00%
0.9984 0.0014 0.9979 0.0019 100.00% 100.00% 99.73% 99.63% 99.51% 99.92% 99.93% 100.00%
0.9985 0.0013 0.9980 0.0018 100.00% 100.00% 99.78% 99.63% 99.55% 99.93% 99.93% 100.00%
0.9987 0.0011 0.9983 0.0015 100.00% 100.00% 99.84% 99.65% 99.62% 99.98% 99.90% 100.00%
0.9990 0.0011 0.9987 0.0014 100.00% 100.00% 99.91% 99.68% 99.70% 100.00% 99.90% 100.00%
0.9991 0.0009 0.9988 0.0013 100.00% 100.00% 99.93% 99.70% 99.73% 100.00% 99.90% 100.00%
0.9993 0.0008 0.9991 0.0010 100.00% 100.00% 99.94% 99.79% 99.84% 100.00% 99.89% 100.00%
0.9995 0.0006 0.9993 0.0008 100.00% 100.00% 99.95% 99.85% 99.91% 100.00% 99.90% 100.00%
0.9996 0.0006 0.9994 0.0008 100.00% 100.00% 99.92% 99.90% 99.97% 99.95% 99.90% 100.00%

95%
100%

70%
75%
80%
85%
90%

Producer Accuracy

50%
55%
60%
65%

100%

Threshold OA Kappa User Accuracy
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Table B.4 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 Setups 3 and 4.Summary_pxl

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 3 Train: [prop, 1]

Test: [0.5,1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.9110 0.0108 0.8813 0.0144 99.27% 90.60% 82.62% 91.90% 98.48% 91.78% 83.95% 90.04%
0.9126 0.0108 0.8834 0.0144 98.42% 90.26% 84.56% 91.78% 98.97% 92.34% 83.41% 90.49%
0.9106 0.0116 0.8808 0.0155 97.74% 89.28% 86.02% 91.21% 99.18% 92.54% 82.27% 90.82%
0.9087 0.0114 0.8783 0.0152 97.36% 88.72% 87.20% 90.21% 99.22% 92.83% 81.20% 91.20%
0.9036 0.0120 0.8714 0.0161 96.48% 87.68% 87.92% 89.34% 99.34% 92.72% 79.87% 90.95%
0.8977 0.0121 0.8636 0.0161 95.63% 86.40% 88.59% 88.45% 99.43% 93.47% 78.52% 89.73%
0.8872 0.0137 0.8496 0.0183 93.08% 85.04% 89.49% 87.26% 99.51% 94.59% 77.03% 86.94%
0.8725 0.0161 0.8301 0.0215 89.60% 83.31% 90.43% 85.67% 99.71% 95.17% 75.11% 83.83%
0.8592 0.0170 0.8122 0.0226 85.58% 82.49% 91.02% 84.57% 99.79% 95.67% 74.05% 80.46%
0.8395 0.0180 0.7860 0.0240 81.42% 79.98% 92.38% 82.01% 99.87% 96.66% 71.56% 76.91%
0.8140 0.0181 0.7520 0.0242 75.94% 75.96% 94.52% 79.19% 99.92% 98.18% 68.39% 73.03%

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 4 Train: [prop, 1]

Test: [1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.6851 0.0257 0.5802 0.0343 79.70% 37.18% 57.86% 99.30% 67.15% 43.27% 67.82% 90.21%
0.7691 0.0174 0.6922 0.0232 91.04% 36.22% 80.71% 99.68% 74.25% 61.16% 69.25% 98.10%
0.8312 0.0114 0.7750 0.0152 95.70% 49.68% 87.44% 99.68% 81.39% 79.58% 73.87% 98.08%
0.8527 0.0106 0.8036 0.0141 98.13% 54.24% 89.04% 99.66% 84.32% 82.88% 75.63% 99.23%
0.8648 0.0102 0.8197 0.0136 99.12% 60.67% 86.47% 99.66% 86.84% 83.29% 76.72% 99.35%
0.8888 0.0088 0.8518 0.0117 98.75% 64.85% 92.13% 99.80% 88.62% 90.40% 79.21% 99.28%
0.8976 0.0088 0.8634 0.0117 99.09% 70.72% 89.65% 99.57% 91.50% 87.43% 80.89% 99.58%
0.9131 0.0085 0.8841 0.0114 99.22% 75.19% 91.21% 99.61% 91.98% 90.21% 83.92% 99.51%
0.9164 0.0074 0.8885 0.0099 99.14% 77.77% 90.27% 99.36% 93.62% 89.12% 84.27% 99.63%
0.9186 0.0076 0.8914 0.0101 99.20% 77.87% 90.68% 99.67% 94.94% 89.66% 83.58% 99.50%
0.9486 0.0070 0.9314 0.0093 98.48% 89.18% 92.22% 99.55% 98.53% 91.29% 90.15% 99.49%

95%
100%

70%
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80%
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90%
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Table B.5 - Pixel-based Baseline Classification - Accuracy Assessment for SVM-OAO Setups 5 and 6.Summary Pixel

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 5 Train: [prop, prop+0.05[

Test: [prop, 1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.7743 0.0066 0.6991 0.0087 96.54% 99.59% 13.72% 99.88% 98.37% 68.42% 96.56% 70.28%
55% 60% 0.8189 0.0089 0.7585 0.0119 96.60% 99.84% 31.32% 99.79% 98.91% 73.44% 97.40% 74.34%
60% 65% 0.8939 0.0088 0.8585 0.0117 96.34% 99.70% 61.55% 99.96% 99.31% 84.76% 97.61% 81.73%
65% 70% 0.9496 0.0064 0.9328 0.0086 96.55% 99.81% 83.96% 99.53% 99.46% 90.18% 97.75% 93.58%
70% 75% 0.9641 0.0055 0.9522 0.0073 96.39% 99.86% 90.06% 99.34% 99.57% 92.56% 97.74% 96.29%
75% 80% 0.9766 0.0045 0.9688 0.0060 96.43% 99.87% 94.76% 99.59% 99.66% 95.79% 97.89% 97.46%
80% 85% 0.9824 0.0043 0.9765 0.0057 96.51% 99.89% 96.89% 99.68% 99.72% 97.21% 98.07% 98.04%
85% 90% 0.9869 0.0033 0.9826 0.0044 96.51% 99.94% 98.65% 99.67% 99.79% 98.32% 98.31% 98.39%
90% 95% 0.9899 0.0028 0.9865 0.0038 97.02% 100.00% 99.36% 99.59% 99.81% 99.01% 98.37% 98.80%
95% < 100% 0.9934 0.0023 0.9912 0.0031 97.86% 100.00% 99.81% 99.68% 99.84% 99.38% 98.78% 99.37%

100% 100% 0.9994 0.0007 0.9992 0.0009 100.00% 100.00% 99.94% 99.83% 99.94% 100.00% 99.83% 100.00%

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 6 Train: [prop, 1]

Test: [prop, 1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.8978 0.0097 0.8638 0.0130 96.46% 97.84% 67.40% 97.43% 98.62% 82.18% 92.27% 88.50%
0.9209 0.0092 0.8945 0.0122 96.40% 98.64% 74.98% 98.35% 99.21% 85.47% 94.63% 90.89%
0.9432 0.0081 0.9243 0.0108 96.41% 99.26% 82.87% 98.74% 99.41% 89.36% 96.08% 93.43%
0.9589 0.0062 0.9452 0.0083 96.54% 99.64% 88.47% 98.91% 99.56% 92.21% 96.92% 95.38%
0.9684 0.0054 0.9579 0.0073 96.36% 99.72% 92.04% 99.23% 99.69% 94.02% 97.34% 96.61%
0.9768 0.0044 0.9691 0.0059 96.42% 99.88% 94.95% 99.49% 99.69% 95.89% 97.78% 97.52%
0.9830 0.0042 0.9773 0.0056 96.44% 99.93% 97.15% 99.67% 99.81% 97.45% 98.03% 97.98%
0.9870 0.0033 0.9827 0.0045 96.50% 99.92% 98.75% 99.64% 99.88% 98.34% 98.16% 98.48%
0.9900 0.0029 0.9867 0.0039 97.01% 99.99% 99.36% 99.64% 99.94% 98.99% 98.34% 98.76%
0.9933 0.0023 0.9911 0.0030 97.85% 100.00% 99.74% 99.74% 99.90% 99.32% 98.77% 99.36%
0.9994 0.0007 0.9992 0.0009 100.00% 100.00% 99.94% 99.83% 99.94% 100.00% 99.83% 100.00%100%

75%
80%
85%
90%
95%

50%
55%
60%
65%
70%

User Accuracy Producer Accuracy

Threshold OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa

Página 3

SOURCE: Author.

149



Table B.6 - Pixel-based Baseline Classification - Accuracy Assessment for KNN-5 Setups 5 and 6.Summary_pxl

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 5 Train: [prop, prop+0.05[

Test: [prop,1]

Inf Sup Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
50% 55% 0.8007 0.0154 0.7343 0.0205 96.49% 90.76% 44.95% 88.08% 97.47% 76.05% 68.31% 76.03%
55% 60% 0.9183 0.0092 0.8910 0.0122 96.55% 96.48% 77.16% 97.12% 98.57% 90.01% 91.76% 87.67%
60% 65% 0.9579 0.0068 0.9439 0.0091 96.40% 98.29% 89.93% 98.56% 99.15% 95.66% 95.15% 93.40%
65% 70% 0.9770 0.0044 0.9694 0.0058 96.55% 99.24% 95.94% 99.09% 99.36% 97.73% 96.98% 96.80%
70% 75% 0.9827 0.0039 0.9769 0.0052 96.33% 99.45% 97.75% 99.54% 99.76% 98.17% 97.32% 97.89%
75% 80% 0.9865 0.0034 0.9820 0.0045 96.42% 99.70% 98.86% 99.63% 99.79% 98.71% 97.63% 98.53%
80% 85% 0.9879 0.0040 0.9838 0.0053 96.53% 99.63% 99.36% 99.63% 99.64% 98.99% 97.75% 98.80%
85% 90% 0.9891 0.0030 0.9854 0.0040 96.68% 99.75% 99.39% 99.81% 99.79% 99.11% 98.02% 98.75%
90% 95% 0.9909 0.0027 0.9878 0.0037 97.02% 99.80% 99.73% 99.80% 99.86% 99.41% 98.15% 98.97%
95% < 100% 0.9939 0.0023 0.9919 0.0031 97.85% 99.96% 99.89% 99.87% 99.90% 99.49% 98.83% 99.36%

100% 100% 0.9992 0.0009 0.9989 0.0011 100.00% 99.82% 99.94% 99.90% 99.94% 100.00% 99.72% 100.00%

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 6 Train: [prop, 1]

Test: [prop, 1]

Mean std Mean std Water Forest Crops Bare Soil Water Forest Crops Bare Soil
0.9181 0.0099 0.8908 0.0132 96.38% 92.93% 82.89% 95.04% 98.80% 90.96% 86.15% 91.32%
0.9439 0.0074 0.9251 0.0099 96.44% 95.88% 88.18% 97.04% 99.28% 93.79% 91.17% 93.39%
0.9632 0.0063 0.9509 0.0084 96.40% 97.59% 93.10% 98.18% 99.40% 96.21% 94.20% 95.55%
0.9748 0.0049 0.9663 0.0066 96.55% 98.75% 95.83% 98.77% 99.57% 97.50% 95.94% 96.96%
0.9797 0.0048 0.9729 0.0064 96.37% 99.10% 97.26% 99.16% 99.69% 97.74% 96.68% 97.86%
0.9846 0.0041 0.9794 0.0054 96.43% 99.57% 98.38% 99.44% 99.65% 98.54% 97.33% 98.35%
0.9874 0.0037 0.9832 0.0049 96.54% 99.71% 99.01% 99.70% 99.74% 98.80% 97.77% 98.70%
0.9889 0.0029 0.9852 0.0039 96.54% 99.78% 99.50% 99.74% 99.86% 99.04% 97.95% 98.76%
0.9910 0.0028 0.9879 0.0038 97.02% 99.84% 99.80% 99.72% 99.92% 99.34% 98.22% 98.94%
0.9935 0.0025 0.9913 0.0034 97.84% 99.90% 99.85% 99.79% 99.90% 99.46% 98.66% 99.38%
0.9992 0.0009 0.9989 0.0011 100.00% 99.82% 99.94% 99.90% 99.94% 100.00% 99.72% 100.00%100%
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B.1.3 Confusion matrices

The confusion matrices regarding pixel-based baseline classification are presented in
this appendix. Firstly the results of the SVM-OAO classifier is presented followed
by KNN-5.
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Table B.7 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
1.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 1 Train: [prop, prop + 5%[

Test: [50% 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.32 3.73 1 3.95 250 Forest 241.35 3.43 1.74 3.48 250

Grass 0.77 249 0.22 0.01 250 Grass 0.32 248.83 0.84 0.01 250

Bare Soil 2.91 111.24 34.88 100.97 250 Bare Soil 2.69 89.42 73.6 84.29 250

Water 0.21 0 0.12 249.67 250 Water 0.53 0 0 249.47 250

Total 245.21 363.97 36.22 354.6 1000 Total 244.89 341.68 76.18 337.25 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.73 2.91 2.99 3.37 250 Forest 240.78 2.86 3.63 2.73 250

Grass 0.15 246.37 3.48 0 250 Grass 0.1 244.55 5.35 0 250

Bare Soil 2.28 55.54 133.13 59.05 250 Bare Soil 1.9 45.35 176.44 26.31 250

Water 0.06 0 0.51 249.43 250 Water 0.17 0 6.72 243.11 250

Total 243.22 304.82 140.11 311.85 1000 Total 242.95 292.76 192.14 272.15 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.24 2.81 4.32 2.63 250 Forest 239.65 2.64 5.22 2.49 250

Grass 0.02 243.88 6.1 0 250 Grass 0.01 241.12 8.87 0 250

Bare Soil 1.56 42.17 185.04 21.23 250 Bare Soil 1.47 34.16 194.94 19.43 250

Water 0.15 0 10.88 238.97 250 Water 0.11 0 13.09 236.8 250

Total 241.97 288.86 206.34 262.83 1000 Total 241.24 277.92 222.12 258.72 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 238.52 2.55 6.48 2.45 250 Forest 237.08 2.54 8 2.38 250

Grass 0.03 240.09 9.88 0 250 Grass 0.39 240.13 9.48 0 250

Bare Soil 1.12 32.17 198.62 18.09 250 Bare Soil 0.87 28.71 202.34 18.08 250

Water 0.17 0 15.55 234.28 250 Water 0.13 0 15.27 234.6 250

Total 239.84 274.81 230.53 254.82 1000 Total 238.47 271.38 235.09 255.06 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 234.83 2.53 10.11 2.53 250 Forest 236.88 2.44 8.04 2.64 250

Grass 0.01 238.42 11.57 0 250 Grass 0.03 236.58 13.39 0 250

Bare Soil 0.84 26.78 205.75 16.63 250 Bare Soil 0.84 22.78 210.15 16.23 250

Water 0.14 0 17.65 232.21 250 Water 0.05 0 18.82 231.13 250

Total 235.82 267.73 245.08 251.37 1000 Total 237.8 261.8 250.4 250 1000

CLASS Water Forest Crops Bare Soil Total

Forest 230.58 2.83 14.06 2.53 250

Grass 0 240.3 9.7 0 250

Bare Soil 0.68 28.92 205.29 15.11 250

Water 0 0 21.97 228.03 250

Total 231.26 272.05 251.02 245.67 1000
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Table B.8 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 1.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 1 Train: [prop, prop + 5%[

Test: [50%, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 249.54 0.2 0.09 0.17 250 Forest 247.18 2.22 0.08 0.52 250

Grass 4.02 233.45 12.3 0.23 250 Grass 0.85 231.93 17 0.22 250

Bare Soil 0 73.75 120.9 55.35 250 Bare Soil 0 42.92 169.47 37.61 250

Water 3.9 0.68 39.39 206.03 250 Water 2.54 0.54 13.52 233.4 250

Total 257.46 308.08 172.68 261.78 1000 Total 250.57 277.61 200.07 271.75 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 243.9 4.19 0.08 1.83 250 Forest 240.85 6.64 0.08 2.43 250

Grass 0.62 229.51 19.67 0.2 250 Grass 0.49 225.25 24.04 0.22 250

Bare Soil 0 19.33 204.05 26.62 250 Bare Soil 0.04 12.63 214.34 22.99 250

Water 1.23 0.52 13.28 234.97 250 Water 0.82 0.19 16.63 232.36 250

Total 245.75 253.55 237.08 263.62 1000 Total 242.2 244.71 255.09 258 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 238.1 9.53 0.06 2.31 250 Forest 238.04 7.49 0.16 4.31 250

Grass 0.3 224.01 25.44 0.25 250 Grass 0.39 220.22 29.18 0.21 250

Bare Soil 0 12.98 218.77 18.25 250 Bare Soil 0 11.05 221.85 17.1 250

Water 1.03 0.14 20.4 228.43 250 Water 0.76 0.17 22.2 226.87 250

Total 239.43 246.66 264.67 249.24 1000 Total 239.19 238.93 273.39 248.49 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 237.28 6.02 0.08 6.62 250 Forest 226.39 1.91 0.13 21.57 250

Grass 0.33 216.3 32.44 0.93 250 Grass 0.16 209.73 38.75 1.36 250

Bare Soil 0 10 222.59 17.41 250 Bare Soil 0 8.39 227.04 14.57 250

Water 1.17 0.06 25.19 223.58 250 Water 0.92 0.18 33.88 215.02 250

Total 238.78 232.38 280.3 248.54 1000 Total 227.47 220.21 299.8 252.52 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 226.14 3.75 0.11 20 250 Forest 215.48 0.16 0.19 34.17 250

Grass 0.19 209.37 39.36 1.08 250 Grass 0.12 201.05 45.87 2.96 250

Bare Soil 0 9.31 225.07 15.62 250 Bare Soil 0 6.47 230.85 12.68 250

Water 0.72 0.24 31.53 217.51 250 Water 0.57 0.02 43.09 206.32 250

Total 227.05 222.67 296.07 254.21 1000 Total 216.17 207.7 320 256.13 1000

CLASS Water Forest Crops Bare Soil Total

Forest 189.85 0.08 0.21 59.86 250

Grass 0.08 189.89 57.06 2.97 250

Bare Soil 0 3.44 236.29 10.27 250

Water 0.07 0 51.96 197.97 250

Total 190 193.41 345.52 271.07 1000
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Table B.9 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
2.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 2 Train: [prop, prop + 5%[

Test: [100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0.82 53.06 107.18 88.94 250 Bare Soil 0.78 19.73 192.93 36.56 250

Water 1.76 0 0.41 247.83 250 Water 2.92 0 0.01 247.07 250

Total 252.58 303.06 107.59 336.77 1000 Total 253.7 269.73 192.94 283.63 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0.76 1.3 241.23 6.71 250 Bare Soil 0.56 0.39 248.86 0.19 250

Water 0.31 0 0.02 249.67 250 Water 1.01 0 0 248.99 250

Total 251.07 251.3 241.25 256.38 1000 Total 251.57 250.39 248.86 249.18 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0.5 0.22 249.28 0 250 Bare Soil 0.4 0.01 249.59 0 250

Water 1.41 0 0.03 248.56 250 Water 0.45 0 0.1 249.45 250

Total 251.91 250.22 249.31 248.56 1000 Total 250.85 250.01 249.69 249.45 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0.26 0 249.74 0 250 Bare Soil 0.25 0 249.75 0 250

Water 1.27 0 0.26 248.47 250 Water 0.98 0 0.25 248.77 250

Total 251.53 250 250 248.47 1000 Total 251.23 250 250 248.77 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0.18 0 249.82 0 250 Bare Soil 0.14 0 249.86 0 250

Water 0.86 0 0.26 248.88 250 Water 0.36 0 0.26 249.38 250

Total 251.04 250 250.08 248.88 1000 Total 250.5 250 250.12 249.38 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 250 0 0 250

Bare Soil 0.07 0.12 249.81 0 250

Water 0 0 0.26 249.74 250

Total 250.07 250.12 250.07 249.74 1000
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Table B.10 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 2.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 2 Train: [prop, prop + 5%[

Test: [100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 247.71 2.29 0 250 Grass 0 249.93 0.07 0 250

Bare Soil 0 39.66 188.15 22.19 250 Bare Soil 0 25.25 219.62 5.13 250

Water 5.35 0.1 15.46 229.09 250 Water 2.21 0.19 0.66 246.94 250

Total 255.35 287.47 205.9 251.28 1000 Total 252.21 275.37 220.35 252.07 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 2.52 245.66 1.82 250 Bare Soil 0.09 0.2 248.89 0.82 250

Water 0.74 0.2 0.19 248.87 250 Water 0.2 0 0.01 249.79 250

Total 250.74 252.72 245.85 250.69 1000 Total 250.29 250.2 248.9 250.61 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.37 249.44 0.19 250 Bare Soil 0 0.12 249.82 0.06 250

Water 0.38 0 0.1 249.52 250 Water 0.07 0.03 0.22 249.68 250

Total 250.38 250.37 249.54 249.71 1000 Total 250.07 250.15 250.04 249.74 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.08 249.84 0.08 250 Bare Soil 0 0.13 249.68 0.19 250

Water 0.3 0 0.07 249.63 250 Water 0.04 0 0.03 249.93 250

Total 250.3 250.08 249.91 249.71 1000 Total 250.04 250.13 249.71 250.12 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.01 249.85 0.14 250 Bare Soil 0 0.07 249.9 0.03 250

Water 0.06 0.01 0 249.93 250 Water 0 0 0.06 249.94 250

Total 250.06 250.02 249.85 250.07 1000 Total 250 250.07 249.96 249.97 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 249.95 0.05 0 250

Bare Soil 0 0 249.72 0.28 250

Water 0 0 0.07 249.93 250

Total 250 249.95 249.84 250.21 1000
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Table B.11 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
3.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 3 Train: [prop, 100%]

Test: [50% 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.15 2.82 3.24 2.79 250 Forest 240.97 2.8 3.45 2.78 250

Grass 0.69 244.53 4.78 0 250 Grass 0.39 243.89 5.72 0 250

Bare Soil 2.5 49.41 169 29.09 250 Bare Soil 2.29 44.77 177.32 25.62 250

Water 0.2 0 6.12 243.68 250 Water 0.14 0 8.31 241.55 250

Total 244.54 296.76 183.14 275.56 1000 Total 243.79 291.46 194.8 269.95 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.74 2.73 3.75 2.78 250 Forest 240.61 2.73 4.07 2.59 250

Grass 0.2 243.1 6.7 0 250 Grass 0.12 242.39 7.49 0 250

Bare Soil 1.97 40.79 184.56 22.68 250 Bare Soil 1.73 38.91 188.59 20.77 250

Water 0.09 0 9.95 239.96 250 Water 0.13 0 11.95 237.92 250

Total 243 286.62 204.96 265.42 1000 Total 242.59 284.03 212.1 261.28 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.2 2.66 4.58 2.56 250 Forest 239.11 2.63 5.67 2.59 250

Grass 0.09 241.52 8.39 0 250 Grass 0.11 240.91 8.98 0 250

Bare Soil 1.5 36.04 192.73 19.73 250 Bare Soil 1.27 34.09 195.88 18.76 250

Water 0.06 0 13.63 236.31 250 Water 0.07 0 14.85 235.08 250

Total 241.85 280.22 219.33 258.6 1000 Total 240.56 277.63 225.38 256.43 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 238.01 2.55 6.82 2.62 250 Forest 235.97 2.55 8.91 2.57 250

Grass 0.09 239.86 10.05 0 250 Grass 0.02 239.66 10.32 0 250

Bare Soil 1.05 30.79 200 18.16 250 Bare Soil 0.8 29.23 202.83 17.14 250

Water 0.06 0 15.94 234 250 Water 0.03 0 16.99 232.98 250

Total 239.21 273.2 232.81 254.78 1000 Total 236.82 271.44 239.05 252.69 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 233.74 2.57 11.12 2.57 250 Forest 234.33 2.62 10.44 2.61 250

Grass 0.03 238.67 11.3 0 250 Grass 0.01 237.91 12.08 0 250

Bare Soil 0.74 27.37 205.27 16.62 250 Bare Soil 0.78 25.27 207.51 16.44 250

Water 0.02 0 18.04 231.94 250 Water 0 0 18.82 231.18 250

Total 234.53 268.61 245.73 251.13 1000 Total 235.12 265.8 248.85 250.23 1000

CLASS Water Forest Crops Bare Soil Total

Forest 230.58 2.83 14.06 2.53 250

Grass 0 240.3 9.7 0 250

Bare Soil 0.68 28.92 205.29 15.11 250

Water 0 0 21.97 228.03 250

Total 231.26 272.05 251.02 245.67 1000
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Table B.12 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 3.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 3 Train: [prop, 100%]

Test: [50%, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 248.17 0.72 0.12 0.99 250 Forest 246.05 2.54 0.11 1.3 250

Grass 1.74 226.5 21.56 0.2 250 Grass 0.91 225.65 23.24 0.2 250

Bare Soil 0.01 19.21 206.56 24.22 250 Bare Soil 0 15.99 211.41 22.6 250

Water 2.09 0.35 17.81 229.75 250 Water 1.65 0.2 18.7 229.45 250

Total 252.01 246.78 246.05 255.16 1000 Total 248.61 244.38 253.46 253.55 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 244.34 3.54 0.14 1.98 250 Forest 243.4 4.09 0.14 2.37 250

Grass 0.76 223.2 25.75 0.29 250 Grass 0.71 221.8 27.29 0.2 250

Bare Soil 0 14.18 215.05 20.77 250 Bare Soil 0 12.82 218 19.18 250

Water 1.27 0.26 20.44 228.03 250 Water 1.21 0.23 23.04 225.52 250

Total 246.37 241.18 261.38 251.07 1000 Total 245.32 238.94 268.47 247.27 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.2 4.9 0.13 3.77 250 Forest 239.07 3.54 0.16 7.23 250

Grass 0.55 219.21 29.9 0.34 250 Grass 0.47 216 32.72 0.81 250

Bare Soil 0 12.09 219.8 18.11 250 Bare Soil 0 11.26 221.47 17.27 250

Water 1.05 0.23 25.37 223.35 250 Water 0.89 0.28 27.7 221.13 250

Total 242.8 236.43 275.2 245.57 1000 Total 240.43 231.08 282.05 246.44 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 232.71 1.81 0.14 15.34 250 Forest 224.01 1.23 0.17 24.59 250

Grass 0.31 212.59 35.75 1.35 250 Grass 0.16 208.28 39.65 1.91 250

Bare Soil 0 10.18 223.73 16.09 250 Bare Soil 0 9.13 226.07 14.8 250

Water 0.84 0.17 30.84 218.15 250 Water 0.5 0.21 35.11 214.18 250

Total 233.86 224.75 290.46 250.93 1000 Total 224.67 218.85 301 255.48 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 213.95 0.63 0.17 35.25 250 Forest 203.55 0.16 0.17 46.12 250

Grass 0.13 206.22 41.57 2.08 250 Grass 0.09 199.96 46.84 3.11 250

Bare Soil 0 8.44 227.56 14 250 Bare Soil 0 6.74 230.95 12.31 250

Water 0.33 0.26 37.99 211.42 250 Water 0.17 0.02 44.78 205.03 250

Total 214.41 215.55 307.29 262.75 1000 Total 203.81 206.88 322.74 266.57 1000

CLASS Water Forest Crops Bare Soil Total

Forest 189.85 0.08 0.21 59.86 250

Grass 0.08 189.89 57.06 2.97 250

Bare Soil 0 3.44 236.29 10.27 250

Water 0.07 0 51.96 197.97 250

Total 190 193.41 345.52 271.07 1000
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Table B.13 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
4.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 4 Train: [prop, 100%]

Test: [100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.32 3.73 1 3.95 250 Forest 241.35 3.43 1.74 3.48 250

Grass 0.77 249 0.22 0.01 250 Grass 0.32 248.83 0.84 0.01 250

Bare Soil 2.91 111.24 34.88 100.97 250 Bare Soil 2.69 89.42 73.6 84.29 250

Water 0.21 0 0.12 249.67 250 Water 0.53 0 0 249.47 250

Total 245.21 363.97 36.22 354.6 1000 Total 244.89 341.68 76.18 337.25 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.73 2.91 2.99 3.37 250 Forest 240.78 2.86 3.63 2.73 250

Grass 0.15 246.37 3.48 0 250 Grass 0.1 244.55 5.35 0 250

Bare Soil 2.28 55.54 133.13 59.05 250 Bare Soil 1.9 45.35 176.44 26.31 250

Water 0.06 0 0.51 249.43 250 Water 0.17 0 6.72 243.11 250

Total 243.22 304.82 140.11 311.85 1000 Total 242.95 292.76 192.14 272.15 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.24 2.81 4.32 2.63 250 Forest 239.65 2.64 5.22 2.49 250

Grass 0.02 243.88 6.1 0 250 Grass 0.01 241.12 8.87 0 250

Bare Soil 1.56 42.17 185.04 21.23 250 Bare Soil 1.47 34.16 194.94 19.43 250

Water 0.15 0 10.88 238.97 250 Water 0.11 0 13.09 236.8 250

Total 241.97 288.86 206.34 262.83 1000 Total 241.24 277.92 222.12 258.72 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 238.52 2.55 6.48 2.45 250 Forest 237.08 2.54 8 2.38 250

Grass 0.03 240.09 9.88 0 250 Grass 0.39 240.13 9.48 0 250

Bare Soil 1.12 32.17 198.62 18.09 250 Bare Soil 0.87 28.71 202.34 18.08 250

Water 0.17 0 15.55 234.28 250 Water 0.13 0 15.27 234.6 250

Total 239.84 274.81 230.53 254.82 1000 Total 238.47 271.38 235.09 255.06 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 234.83 2.53 10.11 2.53 250 Forest 236.88 2.44 8.04 2.64 250

Grass 0.01 238.42 11.57 0 250 Grass 0.03 236.58 13.39 0 250

Bare Soil 0.84 26.78 205.75 16.63 250 Bare Soil 0.84 22.78 210.15 16.23 250

Water 0.14 0 17.65 232.21 250 Water 0.05 0 18.82 231.13 250

Total 235.82 267.73 245.08 251.37 1000 Total 237.8 261.8 250.4 250 1000

CLASS Water Forest Crops Bare Soil Total

Forest 230.58 2.83 14.06 2.53 250

Grass 0 240.3 9.7 0 250

Bare Soil 0.68 28.92 205.29 15.11 250

Water 0 0 21.97 228.03 250

Total 231.26 272.05 251.02 245.67 1000
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Table B.14 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 4.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 4 Train: [prop, 100%]

Test: [100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.52 248.69 0.79 250 Bare Soil 0 0.27 249.17 0.56 250

Water 1.62 0.02 0.12 248.24 250 Water 0.98 0.05 0.07 248.9 250

Total 251.62 250.54 248.81 249.03 1000 Total 250.98 250.32 249.24 249.46 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.19 249.53 0.28 250 Bare Soil 0 0.21 249.62 0.17 250

Water 0.66 0.02 0.04 249.28 250 Water 0.51 0.01 0.11 249.37 250

Total 250.66 250.21 249.57 249.56 1000 Total 250.51 250.22 249.73 249.54 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 249.99 0.01 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.18 249.66 0.16 250 Bare Soil 0 0.13 249.72 0.15 250

Water 0.54 0.05 0.07 249.34 250 Water 0.32 0.02 0.07 249.59 250

Total 250.54 250.22 249.74 249.5 1000 Total 250.32 250.15 249.79 249.74 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0.06 249.82 0.12 250 Bare Soil 0 0.02 249.91 0.07 250

Water 0.13 0 0.06 249.81 250 Water 0.04 0.02 0.07 249.87 250

Total 250.13 250.06 249.88 249.93 1000 Total 250.04 250.04 249.98 249.94 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250 Forest 250 0 0 0 250

Grass 0 250 0 0 250 Grass 0 250 0 0 250

Bare Soil 0 0 249.89 0.11 250 Bare Soil 0 0.03 249.96 0.01 250

Water 0.02 0 0.06 249.92 250 Water 0 0 0.07 249.93 250

Total 250.02 250 249.95 250.03 1000 Total 250 250.03 250.03 249.94 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 249.95 0.05 0 250

Bare Soil 0 0 249.72 0.28 250

Water 0 0 0.07 249.93 250

Total 250 249.95 249.84 250.21 1000
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Table B.15 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
5.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.35 3.7 0.98 3.97 250 Forest 241.49 3.03 1.82 3.66 250

Grass 0.82 248.97 0.2 0.01 250 Grass 0.12 249.61 0.27 0 250

Bare Soil 2.9 111.2 34.29 101.61 250 Bare Soil 2.02 87.23 78.29 82.46 250

Water 0.27 0 0.04 249.69 250 Water 0.53 0 0 249.47 250

Total 245.34 363.87 35.51 355.28 1000 Total 244.16 339.87 80.38 335.59 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.85 2.63 2.98 3.54 250 Forest 241.38 2.36 3.37 2.89 250

Grass 0.03 249.24 0.73 0 250 Grass 0 249.52 0.48 0 250

Bare Soil 1.61 42.19 153.87 52.33 250 Bare Soil 1.11 24.81 209.91 14.17 250

Water 0.04 0 0.05 249.91 250 Water 0.2 0 0.98 248.82 250

Total 242.53 294.06 157.63 305.78 1000 Total 242.69 276.69 214.74 265.88 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.98 2.75 3.46 2.81 250 Forest 241.08 2.53 3.77 2.62 250

Grass 0 249.65 0.35 0 250 Grass 0 249.67 0.33 0 250

Bare Soil 0.77 17.33 225.14 6.76 250 Bare Soil 0.81 8.43 236.89 3.87 250

Water 0.26 0 1.39 248.35 250 Water 0.02 0 1 248.98 250

Total 242.01 269.73 230.34 257.92 1000 Total 241.91 260.63 241.99 255.47 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.27 2.37 3.87 2.49 250 Forest 241.28 2.57 3.5 2.65 250

Grass 0 249.72 0.28 0 250 Grass 0 249.84 0.16 0 250

Bare Soil 0.48 4.8 242.22 2.5 250 Bare Soil 0.26 1.69 246.62 1.43 250

Water 0.2 0 0.61 249.19 250 Water 0.24 0 0.58 249.18 250

Total 241.95 256.89 246.98 254.18 1000 Total 241.78 254.1 250.86 253.26 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 242.54 1.64 3.41 2.41 250 Forest 244.64 1.37 2.54 1.45 250

Grass 0 249.99 0.01 0 250 Grass 0 250 0 0 250

Bare Soil 0.13 0.85 248.4 0.62 250 Bare Soil 0.14 0.2 249.52 0.14 250

Water 0.33 0 0.69 248.98 250 Water 0.26 0 0.53 249.21 250

Total 243 252.48 252.51 252.01 1000 Total 245.04 251.57 252.59 250.8 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 250 0 0 250

Bare Soil 0.14 0 249.86 0 250

Water 0 0 0.43 249.57 250

Total 250.14 250 250.29 249.57 1000

MEAN CONFUSION MATRIX MEAN CONFUSION MATRIX

5
0

-5
5

%

5
5

-6
0

%

MEAN CONFUSION MATRIX MEAN CONFUSION MATRIX

6
0

-6
5

%

6
5

-7
0

%

MEAN CONFUSION MATRIX MEAN CONFUSION MATRIX

7
0

-7
5

%

7
5

-8
0

%

MEAN CONFUSION MATRIX MEAN CONFUSION MATRIX

8
0

-8
5

%

8
5

-9
0

%

MEAN CONFUSION MATRIX MEAN CONFUSION MATRIX

9
0

-9
5

%

9
5

-1
0

0
%

MEAN CONFUSION MATRIX

1
0

0
%

SOURCE: Author.

160



Table B.16 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 5.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.23 2.98 2.54 3.25 250 Forest 241.37 2.37 3.08 3.18 250

Grass 2.1 226.91 20.98 0.01 250 Grass 0.08 241.19 8.73 0 250

Bare Soil 2.99 68.48 112.37 66.16 250 Bare Soil 1.74 24.41 192.89 30.96 250

Water 1.18 0 28.62 220.2 250 Water 1.68 0 5.52 242.8 250

Total 247.5 298.37 164.51 289.62 1000 Total 244.87 267.97 210.22 276.94 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241 2.29 3.65 3.06 250 Forest 241.37 2.02 3.89 2.72 250

Grass 0.01 245.72 4.27 0 250 Grass 0.04 248.11 1.85 0 250

Bare Soil 1.98 8.85 224.82 14.35 250 Bare Soil 0.96 3.74 239.84 5.46 250

Water 0.07 0 3.54 246.39 250 Water 0.56 0 1.72 247.72 250

Total 243.06 256.86 236.28 263.8 1000 Total 242.93 253.87 247.3 255.9 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.82 2.22 4.23 2.73 250 Forest 241.04 2.12 4.35 2.49 250

Grass 0 248.62 1.38 0 250 Grass 0.01 249.24 0.75 0 250

Bare Soil 0.58 2.42 244.37 2.63 250 Bare Soil 0.47 1.14 247.16 1.23 250

Water 0.01 0 1.13 248.86 250 Water 0.02 0 0.91 249.07 250

Total 241.41 253.26 251.11 254.22 1000 Total 241.54 252.5 253.17 252.79 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.32 1.96 4.14 2.58 250 Forest 241.7 1.86 3.91 2.53 250

Grass 0.14 249.07 0.79 0 250 Grass 0 249.37 0.63 0 250

Bare Soil 0.58 0.58 248.39 0.45 250 Bare Soil 0.51 0.37 248.48 0.64 250

Water 0.15 0 0.78 249.07 250 Water 0.01 0 0.47 249.52 250

Total 242.19 251.61 254.1 252.1 1000 Total 242.22 251.6 253.49 252.69 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 242.54 1.43 3.73 2.3 250 Forest 244.63 1.28 2.56 1.53 250

Grass 0 249.51 0.49 0 250 Grass 0.03 249.9 0.07 0 250

Bare Soil 0.34 0.04 249.32 0.3 250 Bare Soil 0.21 0 249.72 0.07 250

Water 0.01 0 0.48 249.51 250 Water 0 0 0.33 249.67 250

Total 242.89 250.98 254.02 252.11 1000 Total 244.87 251.18 252.68 251.27 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 249.56 0.44 0 250

Bare Soil 0.14 0 249.86 0 250

Water 0 0 0.26 249.74 250

Total 250.14 249.56 250.56 249.74 1000
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Table B.17 - Pixel-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
6.

Pixel-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.32 3.73 1 3.95 250 Forest 241.35 3.43 1.74 3.48 250

Grass 0.77 249 0.22 0.01 250 Grass 0.32 248.83 0.84 0.01 250

Bare Soil 2.91 111.24 34.88 100.97 250 Bare Soil 2.69 89.42 73.6 84.29 250

Water 0.21 0 0.12 249.67 250 Water 0.53 0 0 249.47 250

Total 245.21 363.97 36.22 354.6 1000 Total 244.89 341.68 76.18 337.25 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.73 2.91 2.99 3.37 250 Forest 240.78 2.86 3.63 2.73 250

Grass 0.15 246.37 3.48 0 250 Grass 0.1 244.55 5.35 0 250

Bare Soil 2.28 55.54 133.13 59.05 250 Bare Soil 1.9 45.35 176.44 26.31 250

Water 0.06 0 0.51 249.43 250 Water 0.17 0 6.72 243.11 250

Total 243.22 304.82 140.11 311.85 1000 Total 242.95 292.76 192.14 272.15 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.24 2.81 4.32 2.63 250 Forest 239.65 2.64 5.22 2.49 250

Grass 0.02 243.88 6.1 0 250 Grass 0.01 241.12 8.87 0 250

Bare Soil 1.56 42.17 185.04 21.23 250 Bare Soil 1.47 34.16 194.94 19.43 250

Water 0.15 0 10.88 238.97 250 Water 0.11 0 13.09 236.8 250

Total 241.97 288.86 206.34 262.83 1000 Total 241.24 277.92 222.12 258.72 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 238.52 2.55 6.48 2.45 250 Forest 237.08 2.54 8 2.38 250

Grass 0.03 240.09 9.88 0 250 Grass 0.39 240.13 9.48 0 250

Bare Soil 1.12 32.17 198.62 18.09 250 Bare Soil 0.87 28.71 202.34 18.08 250

Water 0.17 0 15.55 234.28 250 Water 0.13 0 15.27 234.6 250

Total 239.84 274.81 230.53 254.82 1000 Total 238.47 271.38 235.09 255.06 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 234.83 2.53 10.11 2.53 250 Forest 236.88 2.44 8.04 2.64 250

Grass 0.01 238.42 11.57 0 250 Grass 0.03 236.58 13.39 0 250

Bare Soil 0.84 26.78 205.75 16.63 250 Bare Soil 0.84 22.78 210.15 16.23 250

Water 0.14 0 17.65 232.21 250 Water 0.05 0 18.82 231.13 250

Total 235.82 267.73 245.08 251.37 1000 Total 237.8 261.8 250.4 250 1000

CLASS Water Forest Crops Bare Soil Total

Forest 230.58 2.83 14.06 2.53 250

Grass 0 240.3 9.7 0 250

Bare Soil 0.68 28.92 205.29 15.11 250

Water 0 0 21.97 228.03 250

Total 231.26 272.05 251.02 245.67 1000
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Table B.18 - Pixel-based Baseline Classification - Confusion Matrix for KNN-5 Setup 6.

Pixel-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.96 2.47 3.92 2.65 250 Forest 241.1 2.11 3.96 2.83 250

Grass 0.58 232.32 17.1 0 250 Grass 0.25 239.7 10.05 0 250

Bare Soil 2.23 20.61 207.23 19.93 250 Bare Soil 1.44 13.76 220.45 14.35 250

Water 0.11 0 12.3 237.59 250 Water 0.07 0 7.33 242.6 250

Total 243.88 255.4 240.55 260.17 1000 Total 242.86 255.57 241.79 259.78 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.01 2.11 4.05 2.83 250 Forest 241.38 1.91 4.01 2.7 250

Grass 0.25 243.97 5.78 0 250 Grass 0.07 246.88 3.05 0 250

Bare Soil 1.14 7.5 232.75 8.61 250 Bare Soil 0.97 4.43 239.57 5.03 250

Water 0.06 0 4.49 245.45 250 Water 0 0 3.08 246.92 250

Total 242.46 253.58 247.07 256.89 1000 Total 242.42 253.22 249.71 254.65 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 240.92 2.28 4.1 2.7 250 Forest 241.07 2.04 4.34 2.55 250

Grass 0.07 247.74 2.19 0 250 Grass 0.05 248.92 1.03 0 250

Bare Soil 0.67 3.46 243.14 2.73 250 Bare Soil 0.78 1.66 245.95 1.61 250

Water 0.02 0 2.07 247.91 250 Water 0.01 0 1.38 248.61 250

Total 241.68 253.48 251.5 253.34 1000 Total 241.91 252.62 252.7 252.77 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 241.36 2.01 4.17 2.46 250 Forest 241.36 2.11 3.98 2.55 250

Grass 0.01 249.28 0.71 0 250 Grass 0 249.44 0.56 0 250

Bare Soil 0.61 1.03 247.53 0.83 250 Bare Soil 0.34 0.32 248.75 0.59 250

Water 0 0 0.76 249.24 250 Water 0 0 0.66 249.34 250

Total 241.98 252.32 253.17 252.53 1000 Total 241.7 251.87 253.95 252.48 1000

CLASS Water Forest Crops Bare Soil Total CLASS Water Forest Crops Bare Soil Total

Forest 242.55 1.57 3.49 2.39 250 Forest 244.61 1.29 2.6 1.5 250

Grass 0.05 249.6 0.35 0 250 Grass 0 249.74 0.26 0 250

Bare Soil 0.14 0.09 249.49 0.28 250 Bare Soil 0.25 0.07 249.62 0.06 250

Water 0 0 0.69 249.31 250 Water 0 0 0.52 249.48 250

Total 242.74 251.26 254.02 251.98 1000 Total 244.86 251.1 253 251.04 1000

CLASS Water Forest Crops Bare Soil Total

Forest 250 0 0 0 250

Grass 0 249.56 0.44 0 250

Bare Soil 0.14 0 249.86 0 250

Water 0 0 0.26 249.74 250

Total 250.14 249.56 250.56 249.74 1000
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B.2 RSS part II- classification results for Region-based baseline classi-
fication

In this part, the results Region-based Baseline classification spatial data quality are
presented. Firstly the Graphic results are presented (Appendix B.2.1) leading to a
visual interpretation of the data. Afterwards the tables with exact data are presented
(Appendix B.2.2).

B.2.1 Graphic results

The graphic results present graphs with the mean kappa index and the error bars
representing their respective standard deviation (std) in the upper area. The middle
area presents the mean User Accuracy (UA) whilst the lower area presents the
Producer Accuracy (PA).

We note that the vertical scale of all graphs may change according to minimum and
maximum value of the presented information.

These figures refer to Section 5.2.4, in page 97.
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Figure B.13 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 1.
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Figure B.14 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 1.
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Figure B.15 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 2.
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Figure B.16 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 2.
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Figure B.17 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 3.
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Figure B.18 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 3.
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Figure B.19 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 4.
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Figure B.20 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 4.
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Figure B.21 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 5.
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Figure B.22 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 5.
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Figure B.23 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for SVM-OAO for Setup 6.
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Figure B.24 - Region-based Baseline Classification - Thematic Accuracy and Complete-
ness for KNN-5 for Setup 6.
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B.2.2 Tabular results

The tabular results for Region-based Baseline Classification are presented in this
appendix in two setups per page. Firstly the results regarding SVM-OAO classifier
are presented followed by KNN-5 results.

The tables present the mean overall accuracy for the 100 Monte Carlo repetitions
with the standard deviation. They also present the User Accuracy (UA) and Pro-
ducer Accuracy (PA) in percentage for the four used classes.

These tables are in accordance with Section 5.2.4, in page 97.
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Table B.19 - Region-based Baseline Classification - Thematic Accuracy and Completeness for SVM-OAO Setups 1 and 2.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 1 Train: [prop, prop + 5%[

Test: [50%, 100%]

Inf Sup Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
50% 55% 0.7154 0.0099 0.6205 0.0132 91.37% 10.86% 85.10% 98.82% 61.93% 77.69% 66.68% 89.14%
55% 60% 0.7374 0.0109 0.6499 0.0146 90.71% 20.32% 85.46% 98.47% 66.53% 76.12% 66.61% 90.63%
60% 65% 0.7556 0.0118 0.6741 0.0157 88.80% 29.61% 85.89% 97.92% 70.11% 73.62% 67.75% 92.10%
65% 70% 0.7629 0.0128 0.6839 0.0171 88.40% 36.31% 83.66% 96.78% 71.13% 70.54% 69.62% 92.99%
70% 75% 0.7684 0.0124 0.6912 0.0165 86.04% 42.66% 82.17% 96.49% 72.86% 68.46% 70.69% 93.36%
75% 80% 0.7717 0.0125 0.6955 0.0167 83.76% 49.39% 79.42% 96.09% 74.45% 65.80% 72.52% 93.37%
80% 85% 0.7700 0.0115 0.6933 0.0154 83.10% 53.99% 76.54% 94.35% 74.70% 63.49% 73.61% 94.59%
85% 90% 0.7678 0.0119 0.6904 0.0159 80.13% 58.56% 75.32% 93.11% 76.42% 61.90% 73.47% 94.98%
90% 95% 0.7647 0.0124 0.6863 0.0165 77.20% 62.05% 74.26% 92.37% 77.75% 60.48% 73.51% 95.12%
95% < 0.7618 0.0128 0.6823 0.0170 72.94% 65.91% 74.00% 91.85% 80.99% 59.06% 72.56% 95.33%

100% 100% 0.7333 0.0151 0.6444 0.0201 60.13% 76.38% 66.10% 90.73% 86.19% 53.20% 72.19% 95.40%

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 2 Train: [prop, prop + 5%[

Test: [100%]

Inf Sup
Mean 

value
std

Mean 

value
std Forest Crops Bare Soil Water Forest Crops Bare Soil Water

50% 55% 0.7782 0.0085 0.7043 0.0114 99.00% 18.07% 94.33% 99.89% 69.80% 94.82% 69.38% 96.85%
55% 60% 0.8065 0.0100 0.7420 0.0133 99.89% 27.82% 95.01% 99.88% 76.26% 97.48% 68.55% 98.03%
60% 65% 0.8406 0.0078 0.7874 0.0104 99.78% 40.10% 96.48% 99.86% 81.54% 98.26% 71.14% 98.68%
65% 70% 0.8566 0.0071 0.8087 0.0095 99.75% 46.54% 96.47% 99.86% 83.08% 97.69% 73.59% 98.68%
70% 75% 0.8744 0.0072 0.8326 0.0096 99.75% 54.16% 96.00% 99.86% 86.28% 96.98% 75.30% 98.83%
75% 80% 0.8862 0.0071 0.8482 0.0095 99.67% 59.48% 95.44% 99.86% 88.00% 96.32% 77.08% 98.72%
80% 85% 0.8971 0.0070 0.8628 0.0093 99.66% 65.42% 94.04% 99.71% 88.59% 93.68% 80.20% 99.31%
85% 90% 0.9063 0.0080 0.8751 0.0107 99.58% 68.83% 94.47% 99.63% 90.75% 93.51% 81.07% 99.50%
90% 95% 0.9105 0.0075 0.8807 0.0100 99.53% 71.49% 93.60% 99.60% 91.58% 92.71% 82.08% 99.42%
95% < 0.9180 0.0075 0.8906 0.0099 99.53% 74.19% 93.90% 99.56% 94.03% 92.91% 82.11% 99.62%

100% 100% 0.9269 0.0074 0.9026 0.0099 99.01% 81.77% 90.51% 99.48% 97.12% 89.64% 84.80% 99.39%

Interval OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa User Accuracy Producer Accuracy

SOURCE: Author.
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Table B.20 - Region-based Baseline Classification - Thematic Accuracy and Completeness for KNN-5 Setups 1 and 2.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 1 Train: [prop, prop + 5%[

Test: [50%, 100%]

Inf Sup Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
50% 55% 0.6350 0.0171 0.5133 0.0227 70.67% 34.09% 54.31% 94.94% 58.39% 39.16% 64.64% 87.99%
55% 60% 0.6973 0.0146 0.5964 0.0194 75.15% 35.82% 70.85% 97.10% 64.94% 49.86% 66.84% 91.24%
60% 65% 0.7280 0.0147 0.6374 0.0196 76.04% 43.45% 75.21% 96.51% 69.57% 55.95% 69.15% 92.56%
65% 70% 0.7436 0.0123 0.6582 0.0164 81.46% 45.83% 75.84% 94.32% 71.85% 59.20% 69.47% 94.28%
70% 75% 0.7548 0.0150 0.6731 0.0200 82.36% 50.05% 74.70% 94.83% 72.97% 61.52% 71.17% 94.06%
75% 80% 0.7561 0.0142 0.6748 0.0189 80.43% 55.16% 74.10% 92.76% 73.83% 61.09% 72.17% 94.56%
80% 85% 0.7583 0.0145 0.6778 0.0194 77.10% 62.01% 72.08% 92.14% 77.46% 59.33% 72.52% 95.43%
85% 90% 0.7637 0.0132 0.6849 0.0176 77.38% 63.81% 71.21% 93.07% 77.76% 60.05% 73.92% 95.08%
90% 95% 0.7511 0.0139 0.6681 0.0186 72.71% 67.60% 70.77% 89.34% 77.12% 58.15% 73.63% 95.70%
95% < 100% 0.7527 0.0147 0.6703 0.0195 68.97% 69.95% 70.53% 91.64% 81.65% 57.06% 72.75% 95.48%

100% 100% 0.7275 0.0167 0.6366 0.0223 53.16% 79.52% 65.41% 92.89% 88.35% 51.77% 73.77% 95.20%

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 2 Train: [prop, prop + 5%[

Test: [100%]

Inf Sup Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
50% 55% 0.6851 0.0257 0.5802 0.0343 79.70% 37.18% 57.86% 99.30% 67.15% 43.27% 67.82% 90.21%
55% 60% 0.7691 0.0174 0.6922 0.0232 91.04% 36.22% 80.71% 99.68% 74.25% 61.16% 69.25% 98.10%
60% 65% 0.8312 0.0114 0.7750 0.0152 95.70% 49.68% 87.44% 99.68% 81.39% 79.58% 73.87% 98.08%
65% 70% 0.8527 0.0106 0.8036 0.0141 98.13% 54.24% 89.04% 99.66% 84.32% 82.88% 75.63% 99.23%
70% 75% 0.8648 0.0102 0.8197 0.0136 99.12% 60.67% 86.47% 99.66% 86.84% 83.29% 76.72% 99.35%
75% 80% 0.8888 0.0088 0.8518 0.0117 98.75% 64.85% 92.13% 99.80% 88.62% 90.40% 79.21% 99.28%
80% 85% 0.8976 0.0088 0.8634 0.0117 99.09% 70.72% 89.65% 99.57% 91.50% 87.43% 80.89% 99.58%
85% 90% 0.9131 0.0085 0.8841 0.0114 99.22% 75.19% 91.21% 99.61% 91.98% 90.21% 83.92% 99.51%
90% 95% 0.9164 0.0074 0.8885 0.0099 99.14% 77.77% 90.27% 99.36% 93.62% 89.12% 84.27% 99.63%
95% < 100% 0.9186 0.0076 0.8914 0.0101 99.20% 77.87% 90.68% 99.67% 94.94% 89.66% 83.58% 99.50%

100% 100% 0.9486 0.0070 0.9314 0.0093 98.48% 89.18% 92.22% 99.55% 98.53% 91.29% 90.15% 99.49%

Interval OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa User Accuracy Producer Accuracy

SOURCE: Author.
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Table B.21 - Region-based Baseline Classification - Thematic Accuracy and Completeness for SVM-OAO Setups 3 and 4.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 3 Train: [prop, 100%]

Test: [50%, 100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.7719 0.0118 0.6959 0.0158 83.37% 49.12% 79.00% 97.28% 74.76% 65.62% 72.61% 92.78%
0.7726 0.0121 0.6968 0.0162 82.34% 51.17% 78.61% 96.92% 75.56% 64.84% 72.78% 93.12%
0.7729 0.0126 0.6973 0.0168 81.45% 53.66% 77.56% 96.51% 76.23% 63.76% 73.31% 93.52%
0.7721 0.0123 0.6961 0.0164 80.82% 55.83% 76.27% 95.90% 76.55% 62.83% 73.76% 93.87%
0.7715 0.0124 0.6953 0.0165 79.61% 57.96% 75.53% 95.50% 77.38% 62.07% 73.87% 94.10%
0.7704 0.0126 0.6938 0.0168 78.16% 60.39% 74.73% 94.86% 77.93% 61.29% 74.25% 94.37%
0.7673 0.0125 0.6898 0.0167 76.99% 62.70% 73.36% 93.88% 78.58% 60.32% 74.15% 94.69%
0.7627 0.0120 0.6836 0.0160 74.81% 65.15% 72.42% 92.70% 79.74% 59.15% 73.48% 95.10%
0.7605 0.0124 0.6806 0.0165 72.36% 67.80% 71.66% 92.36% 81.00% 58.34% 73.63% 95.09%
0.7537 0.0141 0.6716 0.0188 68.28% 70.96% 70.54% 91.70% 83.41% 56.71% 72.88% 95.29%
0.7333 0.0151 0.6444 0.0201 60.13% 76.38% 66.10% 90.73% 86.19% 53.20% 72.19% 95.40%

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 4 Train: [prop, 100%]

Test: [100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.8880 0.0086 0.8507 0.0115 99.68% 60.34% 95.33% 99.86% 88.16% 95.93% 77.52% 98.81%
0.8925 0.0079 0.8566 0.0105 99.65% 62.26% 95.22% 99.85% 88.68% 95.61% 78.36% 98.88%
0.8966 0.0083 0.8621 0.0110 99.65% 62.26% 95.22% 99.85% 88.68% 95.61% 78.36% 98.88%
0.8966 0.0083 0.8621 0.0110 99.64% 64.32% 94.87% 99.80% 89.40% 94.91% 79.08% 98.99%
0.9015 0.0078 0.8687 0.0104 99.60% 66.92% 94.30% 99.78% 90.05% 94.03% 80.24% 99.10%
0.9052 0.0078 0.8736 0.0104 99.56% 68.71% 94.10% 99.70% 90.67% 93.40% 80.96% 99.30%
0.9091 0.0072 0.8788 0.0096 99.52% 70.45% 94.02% 99.64% 91.40% 93.06% 81.59% 99.47%
0.9131 0.0078 0.8841 0.0104 99.53% 72.30% 93.80% 99.61% 92.38% 92.84% 82.10% 99.47%
0.9164 0.0072 0.8885 0.0096 99.53% 74.30% 93.14% 99.60% 93.19% 92.29% 82.73% 99.48%
0.9225 0.0075 0.8967 0.0100 99.51% 76.72% 93.24% 99.54% 95.07% 92.40% 83.00% 99.59%
0.9269 0.0074 0.9026 0.0099 99.01% 81.77% 90.51% 99.48% 97.12% 89.64% 84.80% 99.39%

95%
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SOURCE: Author.
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Table B.22 - Region-based Baseline Classification - Thematic Accuracy and Completeness for KNN-5 Setups 3 and 4.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 3 Train: [prop, 100%]

Test: [50%, 100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.7552 0.0137 0.6736 0.0183 78.30% 55.44% 72.50% 95.84% 74.73% 59.97% 72.54% 93.20%
0.7587 0.0130 0.6783 0.0173 77.88% 57.18% 73.04% 95.38% 76.12% 59.96% 72.55% 93.83%
0.7596 0.0148 0.6794 0.0198 77.34% 59.52% 72.20% 94.76% 76.85% 59.66% 72.98% 94.14%
0.7596 0.0132 0.6795 0.0176 76.90% 60.87% 72.06% 94.02% 76.94% 59.45% 73.36% 94.54%
0.7599 0.0148 0.6798 0.0197 75.60% 63.48% 71.29% 93.58% 77.79% 59.21% 73.58% 94.79%
0.7606 0.0147 0.6807 0.0196 74.28% 65.54% 70.98% 93.42% 78.59% 58.84% 74.24% 94.86%
0.7583 0.0138 0.6778 0.0184 73.25% 67.39% 70.34% 92.35% 79.52% 58.36% 73.78% 95.13%
0.7548 0.0145 0.6730 0.0193 71.20% 69.15% 69.86% 91.70% 80.21% 57.65% 73.50% 95.29%
0.7503 0.0141 0.6671 0.0188 68.18% 71.37% 69.42% 91.16% 81.19% 56.68% 73.42% 95.38%
0.7467 0.0145 0.6622 0.0194 64.31% 73.81% 68.46% 92.08% 84.03% 55.38% 73.10% 95.38%
0.7275 0.0167 0.6366 0.0223 53.16% 79.52% 65.41% 92.89% 88.35% 51.77% 73.77% 95.20%

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 4 Train: [prop, 100%]

Test: [100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.8821 0.0098 0.8429 0.0131 99.04% 64.62% 89.51% 99.68% 87.49% 87.70% 79.60% 99.02%
0.8900 0.0097 0.8533 0.0130 99.05% 66.38% 90.87% 99.69% 88.80% 89.24% 80.03% 99.16%
0.8977 0.0093 0.8636 0.0124 99.07% 69.05% 91.26% 99.68% 90.17% 89.72% 80.95% 99.26%
0.9018 0.0106 0.8691 0.0141 99.11% 71.09% 90.90% 99.62% 91.01% 89.37% 81.65% 99.40%
0.9077 0.0097 0.8770 0.0129 99.14% 73.24% 91.05% 99.66% 91.90% 89.67% 82.59% 99.46%
0.9132 0.0091 0.8842 0.0121 99.17% 75.32% 91.14% 99.64% 92.69% 89.93% 83.50% 99.53%
0.9185 0.0082 0.8913 0.0109 99.20% 77.14% 91.49% 99.56% 93.76% 90.41% 84.05% 99.52%
0.9230 0.0082 0.8973 0.0110 99.28% 78.96% 91.42% 99.52% 94.15% 90.53% 85.18% 99.52%
0.9264 0.0070 0.9019 0.0093 99.25% 80.55% 91.24% 99.52% 95.03% 90.45% 85.62% 99.58%
0.9343 0.9343 0.9123 0.0100 99.20% 82.38% 92.49% 99.63% 96.00% 91.84% 86.51% 99.57%
0.9486 0.0070 0.9314 0.0093 98.48% 89.18% 92.22% 99.55% 98.53% 91.29% 90.15% 99.49%

95%
100%
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SOURCE: Author.
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Table B.23 - Region-based Baseline Classification - Thematic Accuracy and Completeness for SVM-OAO Setups 5 and 6.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

Inf Sup Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
50% 55% 0.7149 0.0098 0.6199 0.0130 91.38% 10.69% 85.08% 98.82% 61.96% 77.81% 66.52% 89.12%
55% 60% 0.7489 0.0107 0.6652 0.0142 92.70% 20.86% 87.22% 98.80% 66.85% 81.48% 67.85% 92.16%
60% 65% 0.7795 0.0103 0.7060 0.0137 92.93% 31.82% 88.25% 98.81% 72.09% 81.65% 69.65% 93.74%
65% 70% 0.8061 0.0099 0.7415 0.0132 94.45% 40.63% 88.36% 99.00% 75.83% 82.90% 72.23% 95.10%
70% 75% 0.8257 0.0103 0.7675 0.0138 94.62% 47.86% 89.24% 98.53% 79.31% 83.56% 73.57% 96.49%
75% 80% 0.8492 0.0116 0.7989 0.0154 95.29% 56.62% 88.80% 98.98% 82.26% 84.63% 77.20% 96.81%
80% 85% 0.8660 0.0092 0.8213 0.0123 96.68% 62.37% 88.56% 98.76% 84.15% 85.08% 79.67% 98.15%
85% 90% 0.8820 0.0104 0.8426 0.0139 96.93% 67.46% 89.62% 98.78% 87.29% 86.41% 81.02% 98.51%
90% 95% 0.8926 0.0097 0.8569 0.0130 97.20% 71.12% 89.72% 99.02% 89.38% 87.04% 82.21% 98.61%
95% < 0.9065 0.0085 0.8753 0.0113 98.11% 74.49% 90.86% 99.12% 92.85% 88.44% 82.49% 99.16%

100% 100% 0.9288 0.0077 0.9050 0.0102 98.68% 83.87% 89.58% 99.38% 97.83% 88.63% 85.69% 99.41%

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO
Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.7719 0.0126 0.6959 0.0168 83.48% 48.97% 79.04% 97.26% 74.61% 65.68% 72.68% 92.81%
0.7944 0.0127 0.7259 0.0169 85.64% 53.79% 80.62% 97.73% 76.86% 68.72% 75.38% 94.55%
0.8102 0.0123 0.7469 0.0163 87.56% 56.43% 81.87% 98.20% 79.54% 71.25% 75.99% 95.38%
0.8281 0.0117 0.7707 0.0156 89.46% 60.12% 83.03% 98.62% 82.08% 74.12% 77.41% 96.08%
0.8430 0.0108 0.7907 0.0144 91.14% 63.20% 84.65% 98.22% 84.32% 76.40% 78.21% 97.29%
0.8602 0.0120 0.8136 0.0161 92.44% 67.56% 85.46% 98.62% 86.20% 78.89% 80.54% 97.63%
0.8754 0.0088 0.8339 0.0118 94.08% 70.78% 86.68% 98.64% 88.59% 81.40% 81.44% 98.23%
0.8865 0.0100 0.8487 0.0134 95.00% 72.86% 87.97% 98.76% 89.94% 83.48% 82.39% 98.45%
0.9000 0.0095 0.8667 0.0127 96.02% 76.67% 88.36% 98.96% 92.37% 84.97% 83.68% 98.73%
0.9109 0.0082 0.8812 0.0109 97.09% 79.50% 88.65% 99.11% 95.05% 85.96% 84.14% 99.09%
0.9288 0.0077 0.9050 0.0102 98.68% 83.87% 89.58% 99.38% 97.83% 88.63% 85.69% 99.41%100%

75%
80%
85%
90%
95%

50%
55%
60%
65%
70%

User Accuracy Producer Accuracy

Threshold OA Kappa User Accuracy Producer Accuracy

Interval OA Kappa

SOURCE: Author.
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Table B.24 - Region-based Baseline Classification - Thematic Accuracy and Completeness for KNN-5 Setups 5 and 6.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

Inf Sup Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
50% 55% 0.6249 0.0174 0.4998 0.0232 69.68% 32.57% 52.87% 94.83% 57.86% 37.25% 62.83% 87.83%
55% 60% 0.7047 0.0131 0.6063 0.0174 76.55% 35.66% 71.88% 97.79% 65.06% 49.88% 68.08% 92.90%
60% 65% 0.7465 0.0133 0.6620 0.0177 79.73% 43.45% 77.29% 98.13% 71.78% 57.98% 70.42% 94.14%
65% 70% 0.7852 0.0143 0.7136 0.0191 87.59% 48.42% 80.27% 97.82% 76.60% 66.13% 72.31% 96.44%
70% 75% 0.8093 0.0125 0.7457 0.0166 90.94% 53.96% 80.81% 98.00% 79.13% 71.40% 74.37% 97.20%
75% 80% 0.8390 0.0119 0.7853 0.0159 91.46% 62.05% 83.77% 98.32% 82.83% 75.63% 78.32% 97.76%
80% 85% 0.8571 0.0101 0.8095 0.0135 92.97% 68.60% 82.90% 98.37% 87.53% 76.46% 79.49% 98.58%
85% 90% 0.8789 0.0096 0.8385 0.0128 94.31% 73.02% 85.50% 98.72% 88.38% 80.89% 83.11% 98.59%
90% 95% 0.8943 0.0099 0.8590 0.0131 95.41% 76.36% 87.31% 98.63% 91.07% 83.66% 83.72% 98.96%
95% < 100% 0.9025 0.0073 0.8700 0.0098 96.67% 77.40% 87.74% 99.20% 93.79% 84.48% 83.45% 99.03%

100% 100% 0.9325 0.0071 0.9100 0.0095 97.84% 86.25% 89.45% 99.48% 98.28% 88.03% 87.31% 99.46%

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5
Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

Mean std Mean std Forest Crops Bare Soil Water Forest Crops Bare Soil Water
0.7502 0.0151 0.6670 0.0201 77.97% 54.28% 72.07% 95.78% 74.15% 58.91% 71.99% 93.36%
0.7761 0.0139 0.7014 0.0185 81.07% 58.08% 74.63% 96.65% 77.11% 62.38% 74.52% 95.12%
0.7973 0.0128 0.7297 0.0171 83.63% 61.85% 76.22% 97.22% 80.28% 65.53% 76.12% 95.96%
0.8157 0.0127 0.7543 0.0169 85.58% 64.76% 78.24% 97.70% 83.03% 68.31% 77.38% 96.71%
0.8330 0.0101 0.7773 0.0135 87.70% 67.99% 79.91% 97.60% 85.17% 71.00% 78.77% 97.75%
0.8521 0.0120 0.8028 0.0159 88.95% 71.86% 81.76% 98.27% 87.18% 73.81% 81.48% 98.01%
0.8696 0.0120 0.8261 0.0159 91.12% 74.92% 83.39% 98.39% 89.92% 76.77% 82.42% 98.51%
0.8832 0.0101 0.8443 0.0135 92.66% 77.14% 84.88% 98.62% 91.09% 79.33% 84.00% 98.62%
0.8965 0.0095 0.8619 0.0127 93.93% 79.52% 86.30% 98.83% 93.25% 81.79% 84.57% 98.84%
0.9080 0.0078 0.8773 0.0104 95.82% 81.35% 86.89% 99.14% 95.15% 83.56% 85.32% 99.05%
0.9325 0.0071 0.9100 0.0095 97.84% 86.25% 89.45% 99.48% 98.28% 88.03% 87.31% 99.46%

Interval OA Kappa User Accuracy Producer Accuracy

Threshold
OA Kappa User Accuracy Producer Accuracy

50%
55%
60%
65%
70%

100%

75%
80%
85%
90%
95%

SOURCE: Author.
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B.2.3 Confusion matrices

The confusion matrices for Region-based Baseline Classification are presented in
this appendix. Firstly the results of the SVM-OAO classifier is presented followed
by KNN-5.
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Table B.25 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
1.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 1 Train: [prop, prop + 5%[

Test: [50% 100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 228.43 2.6 4.64 14.33 250 Forest 226.78 8.27 4.69 10.26 250

Crops 121.44 27.16 100.79 0.61 250 Crops 97.39 50.8 101.38 0.43 250

Bare Soil 17.01 5.08 212.74 15.17 250 Bare Soil 14.12 7.48 213.65 14.75 250

Water 1.98 0.12 0.86 247.04 250 Water 2.58 0.19 1.05 246.18 250

Total 368.86 34.96 319.03 277.15 1000 Total 340.87 66.74 320.77 271.62 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 222.01 14.04 5.16 8.79 250 Forest 221.01 17.74 4.71 6.54 250

Crops 80.32 74.03 95.38 0.27 250 Crops 74.41 90.77 84.65 0.17 250

Bare Soil 11.21 12.12 214.72 11.95 250 Bare Soil 9.57 19.75 209.16 11.52 250

Water 3.14 0.37 1.68 244.81 250 Water 5.72 0.41 1.91 241.96 250

Total 316.68 100.56 316.94 265.82 1000 Total 310.71 128.67 300.43 260.19 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 215.09 23.98 4.42 6.51 250 Forest 209.4 30.96 3.67 5.97 250

Crops 64.93 106.66 78.26 0.15 250 Crops 56.86 123.47 69.5 0.17 250

Bare Soil 9.32 24.75 205.43 10.5 250 Bare Soil 7.73 32.78 198.56 10.93 250

Water 5.88 0.4 2.49 241.23 250 Water 7.26 0.43 2.08 240.23 250

Total 295.22 155.79 290.6 258.39 1000 Total 281.25 187.64 273.81 257.3 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 207.76 33.94 3.28 5.02 250 Forest 200.33 41.27 4.05 4.35 250

Crops 54.19 134.97 60.73 0.11 250 Crops 46.4 146.4 57.11 0.09 250

Bare Soil 7.11 43.18 191.36 8.35 250 Bare Soil 5.53 48.31 188.3 7.86 250

Water 9.05 0.48 4.6 235.87 250 Water 9.89 0.52 6.82 232.77 250

Total 278.11 212.57 259.97 249.35 1000 Total 262.15 236.5 256.28 245.07 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 193 48.98 3.91 4.11 250 Forest 182.35 58.67 4.92 4.06 250

Crops 40.21 155.12 54.61 0.06 250 Crops 31.78 164.77 53.41 0.04 250

Bare Soil 4.93 51.76 185.64 7.67 250 Bare Soil 2.93 54.92 185.01 7.14 250

Water 10.08 0.61 8.38 230.93 250 Water 8.09 0.64 11.65 229.62 250

Total 248.22 256.47 252.54 242.77 1000 Total 225.15 279 254.99 240.86 1000

CLASS Forest Crops Bare Soil Water Total

Forest 150.32 90.75 5.46 3.47 250

Crops 17.25 190.95 41.78 0.02 250

Bare Soil 0.95 76.37 165.24 7.44 250

Water 5.88 0.87 16.43 226.82 250

Total 174.4 358.94 228.91 237.75 1000
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Table B.26 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 1.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 1 Train: [prop, prop + 5%[

Test: [50%, 100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 176.67 48.84 5.12 19.37 250 Forest 187.87 46.65 4.58 10.9 250

Grass 103.88 85.22 60.43 0.47 250 Grass 80.12 89.56 80.03 0.29 250

Bare Soil 18.54 83.12 135.78 12.56 250 Bare Soil 17.91 42.84 177.13 12.12 250

Water 3.48 0.46 8.72 237.34 250 Water 3.41 0.59 3.26 242.74 250

Total 302.57 217.64 210.05 269.74 1000 Total 289.31 179.64 265 266.05 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 190.1 46.5 4.54 8.86 250 Forest 203.65 34.38 6.21 5.76 250

Grass 65.04 108.63 76.15 0.18 250 Grass 64.08 114.58 71.2 0.14 250

Bare Soil 13.14 38.47 188.03 10.36 250 Bare Soil 7.89 44.1 189.6 8.41 250

Water 4.97 0.54 3.21 241.28 250 Water 7.81 0.5 5.9 235.79 250

Total 273.25 194.14 271.93 260.68 1000 Total 283.43 193.56 272.91 250.1 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 205.89 34.03 4.02 6.06 250 Forest 201.08 39.35 4.95 4.62 250

Grass 57.58 125.13 67.07 0.22 250 Grass 50.49 137.91 61.36 0.24 250

Bare Soil 11.01 43.56 186.74 8.69 250 Bare Soil 8.32 47.96 185.25 8.47 250

Water 7.68 0.67 4.57 237.08 250 Water 12.46 0.52 5.13 231.89 250

Total 282.16 203.39 262.4 252.05 1000 Total 272.35 225.74 256.69 245.22 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 192.75 47.71 4.83 4.71 250 Forest 193.46 45.93 5.6 5.01 250

Grass 39.88 155.02 54.94 0.16 250 Grass 40.84 159.52 49.51 0.13 250

Bare Soil 5.6 58.05 180.19 6.16 250 Bare Soil 5.41 59.66 178.03 6.9 250

Water 10.62 0.52 8.5 230.36 250 Water 9.09 0.53 7.71 232.67 250

Total 248.85 261.3 248.46 241.39 1000 Total 248.8 265.64 240.85 244.71 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 181.77 58.92 5.79 3.52 250 Forest 172.42 66.93 6.65 4 250

Grass 32.9 169.01 48.05 0.04 250 Grass 27.5 174.88 47.55 0.07 250

Bare Soil 4.56 62.04 176.93 6.47 250 Bare Soil 2.95 63.95 176.33 6.77 250

Water 16.47 0.66 9.52 223.35 250 Water 8.3 0.74 11.85 229.11 250

Total 235.7 290.63 240.29 233.38 1000 Total 211.17 306.5 242.38 239.95 1000

CLASS Forest Grass Bare Soil Water Total

Forest 132.91 104.98 7.21 4.9 250

Grass 12.29 198.79 38.82 0.1 250

Bare Soil 0.86 78.9 163.53 6.71 250

Water 4.37 1.28 12.13 232.22 250

Total 150.43 383.95 221.69 243.93 1000
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Table B.27 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
2.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 2 Train: [prop, prop + 5%[

Test: [100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 247.5 0 0.16 2.34 250 Forest 249.72 0 0.28 0 250

Crops 100.86 45.17 103.66 0.31 250 Crops 71.94 69.55 108.38 0.13 250

Bare Soil 6.23 2.47 235.83 5.47 250 Bare Soil 5.8 1.8 237.52 4.88 250

Water 0 0 0.27 249.73 250 Water 0 0 0.31 249.69 250

Total 354.59 47.64 339.92 257.85 1000 Total 327.46 71.35 346.49 254.7 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.45 0 0.55 0 250 Forest 249.37 0 0.63 0 250

Crops 52.81 100.24 96.95 0 250 Crops 48.06 116.36 85.58 0 250

Bare Soil 3.68 1.77 241.21 3.34 250 Bare Soil 2.74 2.75 241.18 3.33 250

Water 0 0 0.35 249.65 250 Water 0 0 0.35 249.65 250

Total 305.94 102.01 339.06 252.99 1000 Total 300.17 119.11 327.74 252.98 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.37 0 0.63 0 250 Forest 249.18 0.19 0.63 0 250

Crops 36.84 135.4 77.76 0 250 Crops 31.32 148.71 69.97 0 250

Bare Soil 2.83 4.21 240.01 2.95 250 Bare Soil 2.66 5.49 238.61 3.24 250

Water 0 0 0.35 249.65 250 Water 0 0 0.35 249.65 250

Total 289.04 139.61 318.75 252.6 1000 Total 283.16 154.39 309.56 252.89 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.15 0.22 0.63 0 250 Forest 248.96 0.41 0.63 0 250

Crops 29.76 163.54 56.7 0 250 Crops 24.34 172.08 53.58 0 250

Bare Soil 2.34 10.81 235.11 1.74 250 Bare Soil 1.04 11.54 236.18 1.24 250

Water 0 0 0.73 249.27 250 Water 0 0 0.93 249.07 250

Total 281.25 174.57 293.17 251.01 1000 Total 274.34 184.03 291.32 250.31 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 248.82 0.55 0.63 0 250 Forest 248.82 0.55 0.63 0 250

Crops 21.79 178.72 49.49 0 250 Crops 15.11 185.47 49.42 0 250

Bare Soil 1.05 13.51 234 1.44 250 Bare Soil 0.69 13.6 234.76 0.95 250

Water 0.03 0 0.98 248.99 250 Water 0 0 1.09 248.91 250

Total 271.69 192.78 285.1 250.43 1000 Total 264.62 199.62 285.9 249.86 1000

CLASS Forest Crops Bare Soil Water Total

Forest 247.52 1.9 0.58 0 250

Crops 6.88 204.43 38.69 0 250

Bare Soil 0.46 21.73 226.28 1.53 250

Water 0 0 1.3 248.7 250

Total 254.86 228.06 266.85 250.23 1000
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Table B.28 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 2.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 2 Train: [prop, prop + 5%[

Test: [100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 199.26 28.3 0.5 21.94 250 Forest 227.6 20.78 0.05 1.57 250

Grass 90.5 92.94 66.43 0.13 250 Grass 70.68 90.54 88.76 0.02 250

Bare Soil 6.95 93.53 144.66 4.86 250 Bare Soil 8.26 36.72 201.78 3.24 250

Water 0.03 0 1.71 248.26 250 Water 0 0 0.8 249.2 250

Total 296.74 214.77 213.3 275.19 1000 Total 306.54 148.04 291.39 254.03 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 239.24 8.53 0.09 2.14 250 Forest 245.32 4.14 0.54 0 250

Grass 49.37 124.2 76.43 0 250 Grass 43.98 135.61 70.41 0 250

Bare Soil 5.34 23.33 218.59 2.74 250 Bare Soil 1.59 23.87 222.61 1.93 250

Water 0 0 0.79 249.21 250 Water 0.04 0 0.8 249.16 250

Total 293.95 156.06 295.9 254.09 1000 Total 290.93 163.62 294.36 251.09 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.79 2.05 0.16 0 250 Forest 246.88 2.57 0.55 0 250

Grass 33.64 151.68 64.66 0.02 250 Grass 28.43 162.13 59.44 0 250

Bare Soil 3.81 28.39 216.18 1.62 250 Bare Soil 3.21 14.65 230.33 1.81 250

Water 0.09 0 0.76 249.15 250 Water 0.05 0 0.45 249.5 250

Total 285.33 182.12 281.76 250.79 1000 Total 278.57 179.35 290.77 251.31 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.72 2 0.28 0 250 Forest 248.04 1.6 0.36 0 250

Grass 21.58 176.8 51.62 0 250 Grass 19.64 187.97 42.39 0 250

Bare Soil 1.41 23.41 224.12 1.06 250 Bare Soil 1.96 18.79 228.03 1.22 250

Water 0.02 0 1.06 248.92 250 Water 0.02 0 0.95 249.03 250

Total 270.73 202.21 277.08 249.98 1000 Total 269.66 208.36 271.73 250.25 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.85 1.53 0.62 0 250 Forest 247.99 1.38 0.63 0 250

Grass 15.26 194.43 40.31 0 250 Grass 12.25 194.68 43.07 0 250

Bare Soil 1.2 22.2 225.67 0.93 250 Bare Soil 0.97 21.06 226.71 1.26 250

Water 0.42 0 1.18 248.4 250 Water 0 0 0.83 249.17 250

Total 264.73 218.16 267.78 249.33 1000 Total 261.21 217.12 271.24 250.43 1000

CLASS Forest Grass Bare Soil Water Total

Forest 246.21 3.41 0.38 0 250

Grass 3.36 222.95 23.69 0 250

Bare Soil 0.32 17.85 230.55 1.28 250

Water 0 0.01 1.12 248.87 250

Total 249.89 244.22 255.74 250.15 1000
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Table B.29 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
3.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 3 Train: [prop, 100%]

Test: [50% 100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 208.42 30.26 3.53 7.79 250 Forest 205.86 33.24 3.67 7.23 250

Crops 58.23 122.81 68.79 0.17 250 Crops 54.49 127.93 67.41 0.17 250

Bare Soil 7.91 33.64 197.49 10.96 250 Bare Soil 7.29 35.68 196.52 10.51 250

Water 4.21 0.44 2.16 243.19 250 Water 4.81 0.46 2.43 242.3 250

Total 278.77 187.15 271.97 262.11 1000 Total 272.45 197.31 270.03 260.21 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 203.62 36.01 3.67 6.7 250 Forest 202.05 38.38 3.56 6.01 250

Crops 51.7 134.15 64 0.15 250 Crops 49.42 139.57 60.88 0.13 250

Bare Soil 6.48 39.76 193.9 9.86 250 Bare Soil 6.11 43.7 190.67 9.52 250

Water 5.33 0.47 2.93 241.27 250 Water 6.35 0.49 3.4 239.76 250

Total 267.13 210.39 264.5 257.98 1000 Total 263.93 222.14 258.51 255.42 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 199.03 41.66 3.45 5.86 250 Forest 195.41 45.54 3.73 5.32 250

Crops 45.94 144.91 59.03 0.12 250 Crops 42.53 150.98 56.38 0.11 250

Bare Soil 5.78 46.42 188.82 8.98 250 Bare Soil 5.23 49.24 186.82 8.71 250

Water 6.45 0.49 4.31 238.75 250 Water 7.58 0.57 4.69 237.16 250

Total 257.2 233.48 255.61 253.71 1000 Total 250.75 246.33 251.62 251.3 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 192.47 48.89 3.81 4.83 250 Forest 187.03 54.35 4.38 4.24 250

Crops 39.69 156.75 53.47 0.09 250 Crops 35.4 162.88 51.67 0.05 250

Bare Soil 4.69 53.68 183.4 8.23 250 Bare Soil 3.76 57.54 181.04 7.66 250

Water 8.07 0.56 6.67 234.7 250 Water 8.36 0.62 9.28 231.74 250

Total 244.92 259.88 247.35 247.85 1000 Total 234.55 275.39 246.37 243.69 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 180.91 60.55 4.44 4.1 250 Forest 170.7 70.29 5.05 3.96 250

Crops 30.98 169.51 49.46 0.05 250 Crops 25.42 177.39 47.17 0.02 250

Bare Soil 3.26 59.83 179.14 7.77 250 Bare Soil 1.9 64.4 176.35 7.35 250

Water 8.2 0.65 10.25 230.9 250 Water 6.63 0.73 13.4 229.24 250

Total 223.35 290.54 243.29 242.82 1000 Total 204.65 312.81 241.97 240.57 1000

CLASS Forest Crops Bare Soil Water Total

Forest 150.32 90.75 5.46 3.47 250

Crops 17.25 190.95 41.78 0.02 250

Bare Soil 0.95 76.37 165.24 7.44 250

Water 5.88 0.87 16.43 226.82 250

Total 174.4 358.94 228.91 237.75 1000
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Table B.30 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 3.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 3 Train: [prop, 100%]

Test: [50%, 100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 195.76 41.69 4.83 7.72 250 Forest 194.69 43.68 4.88 6.75 250

Grass 52.18 138.6 59.04 0.18 250 Grass 47.7 142.94 59.19 0.17 250

Bare Soil 8.87 50.3 181.24 9.59 250 Bare Soil 7.48 51.15 182.61 8.76 250

Water 5.14 0.52 4.73 239.61 250 Water 5.91 0.63 5.01 238.45 250

Total 261.95 231.11 249.84 257.1 1000 Total 255.78 238.4 251.69 254.13 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 193.34 45.5 5.2 5.96 250 Forest 192.25 47.12 5.01 5.62 250

Grass 44.79 148.81 56.26 0.14 250 Grass 43.25 152.17 54.45 0.13 250

Bare Soil 6.34 54.51 180.51 8.64 250 Bare Soil 5.98 56.06 180.14 7.82 250

Water 7.12 0.61 5.38 236.89 250 Water 8.4 0.61 5.95 235.04 250

Total 251.59 249.43 247.35 251.63 1000 Total 249.88 255.96 245.55 248.61 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 188.99 50.33 5.37 5.31 250 Forest 185.7 53.98 5.18 5.14 250

Grass 39.59 158.71 51.56 0.14 250 Grass 36.1 163.86 49.94 0.1 250

Bare Soil 5.99 58.36 178.23 7.42 250 Bare Soil 5.07 60.06 177.45 7.42 250

Water 8.37 0.63 7.05 233.95 250 Water 9.41 0.58 6.46 233.55 250

Total 242.94 268.03 242.21 246.82 1000 Total 236.28 278.48 239.03 246.21 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 183.13 56.54 5.48 4.85 250 Forest 178 61.33 6.32 4.35 250

Grass 33.4 168.47 48.03 0.1 250 Grass 30.63 172.87 46.43 0.07 250

Bare Soil 4.31 62.96 175.86 6.87 250 Bare Soil 3.46 64.99 174.65 6.9 250

Water 9.44 0.7 8.98 230.88 250 Water 9.84 0.69 10.23 229.24 250

Total 230.28 288.67 238.35 242.7 1000 Total 221.93 299.88 237.63 240.56 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 170.44 68.98 6.46 4.12 250 Forest 160.77 77.78 7.16 4.29 250

Grass 26.73 178.43 44.78 0.06 250 Grass 22.12 184.53 43.25 0.1 250

Bare Soil 2.94 66.66 173.54 6.86 250 Bare Soil 2.06 70.03 171.14 6.77 250

Water 9.81 0.71 11.59 227.89 250 Water 6.37 0.86 12.56 230.21 250

Total 209.92 314.78 236.37 238.93 1000 Total 191.32 333.2 234.11 241.37 1000

CLASS Forest Grass Bare Soil Water Total

Forest 132.91 104.98 7.21 4.9 250

Grass 12.29 198.79 38.82 0.1 250

Bare Soil 0.86 78.9 163.53 6.71 250

Water 4.37 1.28 12.13 232.22 250

Total 150.43 383.95 221.69 243.93 1000
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Table B.31 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
4.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 4 Train: [prop, 100%]

Test: [100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.2 0.17 0.63 0 250 Forest 249.12 0.25 0.63 0 250

Crops 31.02 150.85 68.13 0 250 Crops 29.59 155.65 64.76 0 250

Bare Soil 2.45 6.23 238.32 3 250 Bare Soil 2.2 6.9 238.06 2.84 250

Water 0 0 0.35 249.65 250 Water 0 0 0.37 249.63 250

Total 282.67 157.25 307.43 252.65 1000 Total 280.91 162.8 303.82 252.47 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.12 0.25 0.63 0 250 Forest 249.09 0.28 0.63 0 250

Crops 29.59 155.65 64.76 0 250 Crops 27.6 160.81 61.59 0 250

Bare Soil 2.2 6.9 238.06 2.84 250 Bare Soil 1.93 8.35 237.18 2.54 250

Water 0 0 0.37 249.63 250 Water 0 0 0.51 249.49 250

Total 280.91 162.8 303.82 252.47 1000 Total 278.62 169.44 299.91 252.03 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.01 0.36 0.63 0 250 Forest 248.9 0.47 0.63 0 250

Crops 25.82 167.29 56.89 0 250 Crops 24.28 171.77 53.95 0 250

Bare Soil 1.7 10.27 235.76 2.27 250 Bare Soil 1.33 11.67 235.25 1.75 250

Water 0 0 0.55 249.45 250 Water 0 0 0.75 249.25 250

Total 276.53 177.92 293.83 251.72 1000 Total 274.51 183.91 290.58 251 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 248.81 0.56 0.63 0 250 Forest 248.82 0.55 0.63 0 250

Crops 22.35 176.13 51.52 0 250 Crops 19.73 180.74 49.53 0 250

Bare Soil 1.05 12.58 235.04 1.33 250 Bare Soil 0.78 13.39 234.51 1.32 250

Water 0 0 0.89 249.11 250 Water 0.02 0 0.96 249.02 250

Total 272.21 189.27 288.08 250.44 1000 Total 269.35 194.68 285.63 250.34 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 248.82 0.55 0.63 0 250 Forest 248.78 0.59 0.63 0 250

Crops 17.25 185.74 47.01 0 250 Crops 12.22 191.81 45.97 0 250

Bare Soil 0.89 14.96 232.86 1.29 250 Bare Soil 0.69 15.18 233.1 1.03 250

Water 0.05 0 0.96 248.99 250 Water 0 0 1.16 248.84 250

Total 267.01 201.25 281.46 250.28 1000 Total 261.69 207.58 280.86 249.87 1000

CLASS Forest Crops Bare Soil Water Total

Forest 247.52 1.9 0.58 0 250

Crops 6.88 204.43 38.69 0 250

Bare Soil 0.46 21.73 226.28 1.53 250

Water 0 0 1.3 248.7 250

Total 254.86 228.06 266.85 250.23 1000
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Table B.32 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 4.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 4 Train: [prop, 100%]

Test: [100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.61 1.9 0.42 0.07 250 Forest 247.62 1.96 0.41 0.01 250

Grass 32.29 161.56 56.15 0 250 Grass 28.55 165.95 55.5 0 250

Bare Soil 3.07 20.76 223.77 2.4 250 Bare Soil 2.68 18.04 227.18 2.1 250

Water 0.03 0 0.77 249.2 250 Water 0.01 0 0.77 249.22 250

Total 283 184.22 281.11 251.67 1000 Total 278.86 185.95 283.86 251.33 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.68 1.83 0.45 0.04 250 Forest 247.78 1.76 0.46 0 250

Grass 24.9 172.63 52.47 0 250 Grass 22.56 177.73 49.71 0 250

Bare Soil 2.07 17.96 228.15 1.82 250 Bare Soil 1.87 19.37 227.25 1.51 250

Water 0.03 0 0.76 249.21 250 Water 0.05 0 0.91 249.04 250

Total 274.68 192.42 281.83 251.07 1000 Total 272.26 198.86 278.33 250.55 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 247.86 1.65 0.49 0 250 Forest 247.93 1.49 0.58 0 250

Grass 20.22 183.11 46.66 0.01 250 Grass 18.15 188.29 43.56 0 250

Bare Soil 1.59 19.45 227.62 1.34 250 Bare Soil 1.37 19.6 227.85 1.18 250

Water 0.03 0 0.83 249.14 250 Water 0.02 0 0.88 249.1 250

Total 269.7 204.21 275.6 250.49 1000 Total 267.47 209.38 272.87 250.28 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 248 1.46 0.54 0 250 Forest 248.19 1.2 0.61 0 250

Grass 15.33 192.85 41.82 0 250 Grass 14.49 197.41 38.1 0 250

Bare Soil 1.1 18.99 228.72 1.19 250 Bare Soil 0.78 19.46 228.56 1.2 250

Water 0.08 0 1.03 248.89 250 Water 0.14 0 1.05 248.81 250

Total 264.51 213.3 272.11 250.08 1000 Total 263.6 218.07 268.32 250.01 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 248.12 1.24 0.64 0 250 Forest 247.99 1.38 0.63 0 250

Grass 12.04 201.38 36.58 0 250 Grass 9.54 205.96 34.5 0 250

Bare Soil 0.84 20.03 228.09 1.04 250 Bare Soil 0.79 16.91 231.23 1.07 250

Water 0.09 0 1.1 248.81 250 Water 0 0 0.92 249.08 250

Total 261.09 222.65 266.41 249.85 1000 Total 258.32 224.25 267.28 250.15 1000

CLASS Forest Grass Bare Soil Water Total

Forest 246.21 3.41 0.38 0 250

Grass 3.36 222.95 23.69 0 250

Bare Soil 0.32 17.85 230.55 1.28 250

Water 0 0.01 1.12 248.87 250

Total 249.89 244.22 255.74 250.15 1000
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Table B.33 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
5.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.2 0.17 0.63 0 250 Forest 249.12 0.25 0.63 0 250

Crops 31.02 150.85 68.13 0 250 Crops 29.59 155.65 64.76 0 250

Bare Soil 2.45 6.23 238.32 3 250 Bare Soil 2.2 6.9 238.06 2.84 250

Water 0 0 0.35 249.65 250 Water 0 0 0.37 249.63 250

Total 282.67 157.25 307.43 252.65 1000 Total 280.91 162.8 303.82 252.47 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.12 0.25 0.63 0 250 Forest 249.09 0.28 0.63 0 250

Crops 29.59 155.65 64.76 0 250 Crops 27.6 160.81 61.59 0 250

Bare Soil 2.2 6.9 238.06 2.84 250 Bare Soil 1.93 8.35 237.18 2.54 250

Water 0 0 0.37 249.63 250 Water 0 0 0.51 249.49 250

Total 280.91 162.8 303.82 252.47 1000 Total 278.62 169.44 299.91 252.03 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 249.01 0.36 0.63 0 250 Forest 248.9 0.47 0.63 0 250

Crops 25.82 167.29 56.89 0 250 Crops 24.28 171.77 53.95 0 250

Bare Soil 1.7 10.27 235.76 2.27 250 Bare Soil 1.33 11.67 235.25 1.75 250

Water 0 0 0.55 249.45 250 Water 0 0 0.75 249.25 250

Total 276.53 177.92 293.83 251.72 1000 Total 274.51 183.91 290.58 251 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 248.81 0.56 0.63 0 250 Forest 248.82 0.55 0.63 0 250

Crops 22.35 176.13 51.52 0 250 Crops 19.73 180.74 49.53 0 250

Bare Soil 1.05 12.58 235.04 1.33 250 Bare Soil 0.78 13.39 234.51 1.32 250

Water 0 0 0.89 249.11 250 Water 0.02 0 0.96 249.02 250

Total 272.21 189.27 288.08 250.44 1000 Total 269.35 194.68 285.63 250.34 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 248.82 0.55 0.63 0 250 Forest 248.78 0.59 0.63 0 250

Crops 17.25 185.74 47.01 0 250 Crops 12.22 191.81 45.97 0 250

Bare Soil 0.89 14.96 232.86 1.29 250 Bare Soil 0.69 15.18 233.1 1.03 250

Water 0.05 0 0.96 248.99 250 Water 0 0 1.16 248.84 250

Total 267.01 201.25 281.46 250.28 1000 Total 261.69 207.58 280.86 249.87 1000

CLASS Forest Crops Bare Soil Water Total

Forest 247.52 1.9 0.58 0 250

Crops 6.88 204.43 38.69 0 250

Bare Soil 0.46 21.73 226.28 1.53 250

Water 0 0 1.3 248.7 250

Total 254.86 228.06 266.85 250.23 1000
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Table B.34 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 5.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 5 Train: [prop, prop + 5%[

Test: [prop, 100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 174.21 50.78 5.62 19.39 250 Forest 191.37 45.82 3.67 9.14 250

Grass 104.53 81.42 63.6 0.45 250 Grass 82.48 89.14 78.17 0.21 250

Bare Soil 18.93 85.88 132.17 13.02 250 Bare Soil 17.64 43.32 179.71 9.33 250

Water 3.43 0.51 8.98 237.08 250 Water 2.65 0.44 2.43 244.48 250

Total 301.1 218.59 210.37 269.94 1000 Total 294.14 178.72 263.98 263.16 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 199.33 40.75 2.93 6.99 250 Forest 218.97 24.47 3.49 3.07 250

Grass 65.12 108.62 76.15 0.11 250 Grass 58.62 121.04 70.27 0.07 250

Bare Soil 11.07 37.55 193.22 8.16 250 Bare Soil 6.36 37.09 200.67 5.88 250

Water 2.18 0.42 2.07 245.33 250 Water 1.92 0.43 3.1 244.55 250

Total 277.7 187.34 274.37 260.59 1000 Total 285.87 183.03 277.53 253.57 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 227.36 18.59 1.85 2.2 250 Forest 228.66 18.72 1.37 1.25 250

Grass 49.26 134.9 65.77 0.07 250 Grass 39.83 155.12 54.94 0.11 250

Bare Soil 8.36 34.82 202.02 4.8 250 Bare Soil 5.25 31.04 209.43 4.28 250

Water 2.35 0.63 2.01 245.01 250 Water 2.31 0.22 1.67 245.8 250

Total 287.33 188.94 271.65 252.08 1000 Total 276.05 205.1 267.41 251.44 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 232.43 15.31 1.34 0.92 250 Forest 235.78 12.11 1.38 0.73 250

Grass 28.51 171.51 49.95 0.03 250 Grass 26.91 182.55 40.52 0.02 250

Bare Soil 2.94 37.23 207.25 2.58 250 Bare Soil 2.77 30.69 213.76 2.78 250

Water 1.65 0.26 2.17 245.92 250 Water 1.32 0.34 1.54 246.8 250

Total 265.53 224.31 260.71 249.45 1000 Total 266.78 225.69 257.2 250.33 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 238.53 9.51 1.38 0.58 250 Forest 241.68 7.28 0.84 0.2 250

Grass 19.92 190.9 39.17 0.01 250 Grass 15.26 193.5 41.2 0.04 250

Bare Soil 2.2 27.51 218.28 2.01 250 Bare Soil 0.73 27.73 219.34 2.2 250

Water 1.26 0.26 1.91 246.57 250 Water 0.02 0.53 1.46 247.99 250

Total 261.91 228.18 260.74 249.17 1000 Total 257.69 229.04 262.84 250.43 1000

CLASS Forest Grass Bare Soil Water Total

Forest 244.59 4.76 0.65 0 250

Grass 3.84 215.62 30.54 0 250

Bare Soil 0.45 24.57 223.62 1.36 250

Water 0 0 1.31 248.69 250

Total 248.88 244.95 256.12 250.05 1000
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Table B.35 - Region-based Baseline Classification - Confusion Matrix for SVM-OAO Setup
6.

Region-based Baseline Classification. Monte Carlo Simulation using SVM-OAO

Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 208.7 29.96 3.61 7.73 250 Forest 214.1 27.79 2.6 5.51 250

Crops 58.76 122.43 68.61 0.2 250 Crops 54.05 134.47 61.35 0.13 250

Bare Soil 7.92 33.57 197.61 10.9 250 Bare Soil 6.96 33.05 201.54 8.45 250

Water 4.33 0.45 2.06 243.16 250 Water 3.44 0.37 1.87 244.32 250

Total 279.71 186.41 271.89 261.99 1000 Total 278.55 195.68 267.36 258.41 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 218.91 24.7 2.04 4.35 250 Forest 223.64 21.18 1.95 3.23 250

Crops 48.03 141.08 60.8 0.09 250 Crops 42.71 150.31 56.91 0.07 250

Bare Soil 5.92 31.94 204.68 7.46 250 Bare Soil 4.72 30.95 207.57 6.76 250

Water 2.37 0.28 1.84 245.51 250 Water 1.39 0.36 1.71 246.54 250

Total 275.23 198 269.36 257.41 1000 Total 272.46 202.8 268.14 256.6 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 227.85 18.29 1.86 2 250 Forest 231.11 16.06 1.45 1.38 250

Crops 36.95 158.01 55.01 0.03 250 Crops 32.54 168.89 48.54 0.03 250

Bare Soil 3.46 30.1 211.62 4.82 250 Bare Soil 2.86 28.93 213.64 4.57 250

Water 1.96 0.41 2.08 245.55 250 Water 1.6 0.21 1.63 246.56 250

Total 270.22 206.81 270.57 252.4 1000 Total 268.11 214.09 265.26 252.54 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 235.21 12.68 1.26 0.85 250 Forest 237.51 10.42 1.42 0.65 250

Crops 26.77 176.94 46.29 0 250 Crops 23.74 182.15 44.1 0.01 250

Bare Soil 2.26 27.45 216.7 3.59 250 Bare Soil 1.67 25.17 219.93 3.23 250

Water 1.26 0.3 1.85 246.59 250 Water 1.15 0.46 1.49 246.9 250

Total 265.5 217.37 266.1 251.03 1000 Total 264.07 218.2 266.94 250.79 1000

CLASS Forest Crops Bare Soil Water Total CLASS Forest Crops Bare Soil Water Total

Forest 240.04 8.09 1.23 0.64 250 Forest 242.73 6.4 0.71 0.16 250

Crops 18.25 191.67 40.08 0 250 Crops 11.96 198.74 39.3 0 250

Bare Soil 0.97 25.59 220.89 2.55 250 Bare Soil 0.65 25.62 221.62 2.11 250

Water 0.6 0.23 1.76 247.41 250 Water 0.02 0.43 1.77 247.78 250

Total 259.86 225.58 263.96 250.6 1000 Total 255.36 231.19 263.4 250.05 1000

CLASS Forest Crops Bare Soil Water Total

Forest 246.7 2.67 0.63 0 250

Crops 5.12 209.67 35.21 0 250

Bare Soil 0.35 24.22 223.95 1.48 250

Water 0 0 1.56 248.44 250

Total 252.17 236.56 261.35 249.92 1000
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Table B.36 - Region-based Baseline Classification - Confusion Matrix for KNN-5 Setup 6.

Region-based Baseline Classification. Monte Carlo Simulation using KNN-5

Setup 6 Train: [prop, 100%]

Test: [prop, 100%]

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 194.92 42.32 5.22 7.54 250 Forest 202.67 38.27 4.02 5.04 250

Grass 54.09 135.7 60.01 0.2 250 Grass 48.57 145.21 56.06 0.16 250

Bare Soil 8.75 51.78 180.17 9.3 250 Bare Soil 7.43 48.8 186.57 7.2 250

Water 5.12 0.56 4.87 239.45 250 Water 4.15 0.51 3.71 241.63 250

Total 262.88 230.36 250.27 256.49 1000 Total 262.82 232.79 250.36 254.03 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 209.07 33.67 3.41 3.85 250 Forest 213.95 30.13 2.97 2.95 250

Grass 42.34 154.62 52.94 0.1 250 Grass 37.22 161.91 50.83 0.04 250

Bare Soil 5.88 47.28 190.55 6.29 250 Bare Soil 4.55 44.54 195.6 5.31 250

Water 3.12 0.4 3.42 243.06 250 Water 1.95 0.43 3.38 244.24 250

Total 260.41 235.97 250.32 253.3 1000 Total 257.67 237.01 252.78 252.54 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 219.24 26.3 2.62 1.84 250 Forest 222.37 24.16 2.05 1.42 250

Grass 31.85 169.97 48.15 0.03 250 Grass 28.03 179.64 42.29 0.04 250

Bare Soil 3.86 42.63 199.77 3.74 250 Bare Soil 2.77 39.3 204.39 3.54 250

Water 2.45 0.48 3.08 243.99 250 Water 1.9 0.29 2.13 245.68 250

Total 257.4 239.38 253.62 249.6 1000 Total 255.07 243.39 250.86 250.68 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 227.81 19.54 1.72 0.93 250 Forest 231.64 16.13 1.57 0.66 250

Grass 22.09 187.3 40.58 0.03 250 Grass 19.98 192.84 37.16 0.02 250

Bare Soil 1.99 36.77 208.47 2.77 250 Bare Soil 1.43 33.6 212.21 2.76 250

Water 1.47 0.37 2.18 245.98 250 Water 1.26 0.51 1.68 246.55 250

Total 253.36 243.98 252.95 249.71 1000 Total 254.31 243.08 252.62 249.99 1000

CLASS Forest Grass Bare Soil Water Total CLASS Forest Grass Bare Soil Water Total

Forest 234.83 12.94 1.56 0.67 250 Forest 239.55 9.46 0.8 0.19 250

Grass 15.34 198.8 35.82 0.04 250 Grass 11.58 203.38 34.98 0.06 250

Bare Soil 1.06 30.99 215.75 2.2 250 Bare Soil 0.59 30.05 217.23 2.13 250

Water 0.6 0.34 1.98 247.08 250 Water 0.05 0.51 1.59 247.85 250

Total 251.83 243.07 255.11 249.99 1000 Total 251.77 243.4 254.6 250.23 1000

CLASS Forest Grass Bare Soil Water Total

Forest 244.59 4.76 0.65 0 250

Grass 3.84 215.62 30.54 0 250

Bare Soil 0.45 24.57 223.62 1.36 250

Water 0 0 1.31 248.69 250

Total 248.88 244.95 256.12 250.05 1000
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APPENDIX C - IMAGES IN BLACK AND WHITE (B&W)

In order to increase accessibility, some images are presented here in Black and White.
They are all mentioned on the text, to be accessed as needed.

Figure C.1 - RSS Part I running the grid mask through the LR image in Black and White.

(0,0) (0,1) (0,2)

(1,0)

*In the case of more than one modal class, the algorithm choses the smallest
number. In order, Water refers to 1 and Forest refers to 2. So Water is selected.

Classes

Water

Forest

Crops

Bare Soil

Features

Grid 60m

Grid 10m

Legend

Pixel centorid

(1,1)

Cartographic Information

Datum: SIRGAS2000
Ellipsoid: GRS80
Coordinate Reference System: UTM 22S
Scale: Indicated

(1,2)

(2,0) (2,1)

(b) Geodataframe

(2,2)

(a) Thematic Map

The grid mask runs through all LR pixels in order to acquire the modal class and the
modal class proportion and add them to a geodataframe. (a) is the Thematic map or
baseline image containing pixel row/column number and (b) is the attribute table of the
geodataframe indicating which pixels are selected as candidate samples. This image in
colours is Figure 4.3, referred to in Section 4.2.2, page 58.

SOURCE: Author.
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Figure C.2 - Pixel-based Baseline Classification using Random Forest - Region of Interest
(ROI).

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80

Water
Forest

Crops
Bare	Soil

Classes

The polygons have been augmented for visualisation purposes. This image in colours is
Figure 5.1, referred to in Section 5.1.1, page 66.

SOURCE: Author.
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Figure C.3 - Pixel-based Baseline Classification using Random Forest - Classified Image
in Black and White.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80
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This image in colours is referred to in Section 5.1.1, page 66.
SOURCE: Author.
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Figure C.4 - Region-growing Baseline Classification using Random Forest - Region of In-
terest (ROI).

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80
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Classes

The polygons have been augmented for visualisation purposes. This image in colours is
Figure 5.8, page 88.

SOURCE: Author.
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Figure C.5 - Region-growing First Classification using Decision - Classified Image in Black
and White.

Datum:	SIRGAS	2000
Projection:	UTM	21S
Ellipsoid:	GRS80
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This image in colours is referred to page 90.
SOURCE: Author.
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