Fechar

@TechReport{PereiraFach:2021:ShFlFo,
               author = "Pereira, Lucas Soares and Fachini Filho, Fernando",
                title = "Shvab-Zel’dovich and Flamelet formulations applied on quasi-steady 
                         droplet combustion with soot formation and radiative heat 
                         transfer",
          institution = "Instituto Nacional de Pesquisas Espaciais",
                 year = "2021",
                 type = "RPQ",
              address = "S{\~a}o Jos{\'e} dos Campos",
                 note = "{Bolsa PIBIC/INPE/CNPq.}",
             keywords = "droplet combustion, Shvab-Zel’dovich, soot formation, 
                         combust{\~a}o de got{\'{\i}}cula, forma{\c{c}}{\~a}o de 
                         fuligem.",
             abstract = "The present work, that started in August 2019, studies 
                         theoretically the quasi-steady combustion of an isolated droplet 
                         with the formation of soot. For this, an analysis was made on the 
                         conservation equations to determine the characteristic spatial and 
                         temporal scales of the problem, which were used for the 
                         nondimensionalization of those equation. The problem has spherical 
                         symmetry, which allows for a one-dimensional analysis of the 
                         problem. The quasi-steady combustion regime is justified by the 
                         fact that the thermal inertia of the gas phase close to the 
                         droplet is much less than that of the liquid phase, so the 
                         environment adapts thermically much faster than the droplet. The 
                         boiling temperature is considered for the whole droplet, i.e., all 
                         heat transferred to the droplet is used for the phase change 
                         (vaporization). It was admitted that the chemical process occurs 
                         at the Burke-Schumann limit, thus the reaction rate is infinitely 
                         fast which leads to infinitely thin flame. To solve the system of 
                         governing differential equations, the Shvab-Zeldovich formulation 
                         was used, which eliminates the dependence of the chemical reaction 
                         term, which is non-linear. Therefore, the mass fraction of species 
                         and the temperature field are described by the mixture fraction, 
                         Z, and excess enthalpy, H, equations. The boundary conditions were 
                         imposed at the surface of the droplet and in a region far from it. 
                         To describe the formation of soot in the problem, a simplified 
                         mathematical model was adopted. The resulting system of second 
                         order differential equations allow to be integrated analytically 
                         once, and the final system of first order differential equations 
                         is integrated numerically. The transport properties were 
                         considered as constant, the that allowed us to find analytical 
                         solutions for the system of differential equations resulting. The 
                         next step will be to implement a computational code to solve the 
                         system of nonlinear algebraic equations. RESUMO: O presente 
                         trabalho, que foi iniciado em Agosto de 2019, estuda teoricamente 
                         a combust{\~a}o no regime quase-estacion{\'a}rio de uma gota 
                         isolada com a forma{\c{c}}{\~a}o de fuligem. Para isso, foi 
                         feita uma an{\'a}lise das equa{\c{c}}{\~o}es de 
                         conserva{\c{c}}{\~a}o para determinar as escalas espaciais e 
                         temporais caracter{\'{\i}}sticas do problema, as quais foram 
                         utilizadas para a adimensionaliza{\c{c}}{\~a}o dessas 
                         equa{\c{c}}{\~o}es. O problema tem simetria esf{\'e}rica, o que 
                         permite uma an{\'a}lise unidimensional. O regime de 
                         combust{\~a}o quase-estacion{\'a}rio {\'e} justificado pelo 
                         fato de que a in{\'e}rcia t{\'e}rmica da fase gasosa 
                         pr{\'o}xima {\`a} gota {\'e} muito menor que a da fase 
                         l{\'{\i}}quida, de modo que o ambiente se adapta muito mais 
                         rapidamente que a gota. A temperatura de ebuli{\c{c}}{\~a}o foi 
                         considerada para toda a gota, isto {\'e}, todo o calor 
                         transferido para ela {\'e} usado para a mudan{\c{c}}a de fase 
                         (vaporiza{\c{c}}{\~a}o). Foi admitido que o processo 
                         qu{\'{\i}}mico ocorre no limite de Burke-Schumann, portanto a 
                         taxa de rea{\c{c}}{\~a}o {\'e} infinitamente r{\'a}pida, o que 
                         leva a chamas infinitamente finas. Para resolver o sistema de 
                         equa{\c{c}}{\~o}es diferenciais governantes, foi utilizada a 
                         formula{\c{c}}{\~a}o de Shvab-Zeldovich, que elimina a 
                         depend{\^e}ncia do termo de rea{\c{c}}{\~a}o qu{\'{\i}}mica, 
                         que n{\~a}o {\'e} linear. Portanto, a fra{\c{c}}{\~a}o de 
                         massa das esp{\'e}cies e o campo de temperatura s{\~a}o 
                         descritos pelas equa{\c{c}}{\~o}es da fra{\c{c}}{\~a}o da 
                         mistura, Z, e de excesso de entalpia, H. As condi{\c{c}}{\~o}es 
                         de contorno foram impostas na superf{\'{\i}}cie da gota e em uma 
                         regi{\~a}o distante da mesma. Para descrever a 
                         forma{\c{c}}{\~a}o de fuligem no problema, foi adotado um modelo 
                         matem{\'a}tico simplificado. O sistema resultante de 
                         equa{\c{c}}{\~o}es diferenciais de segunda ordem permite uma 
                         integra{\c{c}}{\~a}o anal{\'{\i}}tica, e o sistema final de 
                         equa{\c{c}}{\~o}es diferenciais de primeira ordem {\'e} 
                         integrado numericamente. As propriedades de transporte foram 
                         consideradas como constantes, o que permitiu encontrar 
                         solu{\c{c}}{\~o}es anal{\'{\i}}ticas para o sistema de 
                         equa{\c{c}}{\~o}es diferenciais resultante. O pr{\'o}ximo passo 
                         ser{\'a} implementar um c{\'o}digo computacional para resolver o 
                         sistema de equa{\c{c}}{\~o}es alg{\'e}bricas n{\~a}o 
                         lineares.",
          affiliation = "{Universidade Federal de Itajub{\'a} (UNIFEI)} and {Instituto 
                         Nacional de Pesquisas Espaciais (INPE)}",
             language = "en",
                pages = "36",
                  ibi = "8JMKD3MGP3W34T/458SMQL",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34T/458SMQL",
           targetfile = "Relatorio_Final_PIBIC_2020_2021_Lucas_Soares_Pereira.pdf",
        urlaccessdate = "04 jun. 2024"
}


Fechar