<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>mtc-m16d.sid.inpe.br 806</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP7W/3EGJARE</identifier>
		<repository>sid.inpe.br/mtc-m19/2013/07.23.18.29</repository>
		<lastupdate>2013:07.23.18.31.11 sid.inpe.br/mtc-m19@80/2009/08.21.17.02 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m19/2013/07.23.18.29.22</metadatarepository>
		<metadatalastupdate>2021:02.11.18.19.13 sid.inpe.br/bibdigital@80/2006/04.07.15.50 administrator</metadatalastupdate>
		<citationkey>HinckelSavoPati:2011:DeThLo</citationkey>
		<title>Determination of thermal load in film cooled bipropellant thrust chambers by an inverse method</title>
		<year>2011</year>
		<secondarytype>PRE CI</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>659 KiB</size>
		<author>Hinckel, Jose Nivaldo,</author>
		<author>Savonov, Roman,</author>
		<author>Patire Jr., Heitor,</author>
		<group>DMC-ETE-INPE-MCT-BR</group>
		<group>DMC-ETE-INPE-MCT-BR</group>
		<group>DMC-ETE-INPE-MCT-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>hinckel@dem.inpe.br</electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>heitor@dem.inpe.br</electronicmailaddress>
		<e-mailaddress>marcelo.pazos@inpe.br</e-mailaddress>
		<conferencename>European Conference For Aerospace Sciences, 4.</conferencename>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<keywords>rocket thrust chamber, inverse problem approach, heat transfer.</keywords>
		<abstract>This paper describes a method to obtain the heat load on the internal wall of a rocket thrust chamber using an inverse problem approach. According to the classical approach, the heat load on the internal wall of the chamber is assumed as the product of a heat transfer coecient and the temperature dierence of adiabatic wall temperature and local wall surface temperature. The time dependent temperature distribution of the external wall of the thruster chamber is used to obtain empirical curve fittings to the temperature profile of the near wall flow field (adiabatic wall temperature) and the heat transfer coecient profile. The applicability of the method is verified by applying it to three dierent problems; a model problem, an analytical solution, and a set of experimental data.</abstract>
		<area>ETES</area>
		<language>en</language>
		<targetfile>Hinckel_et_al_2011.pdf</targetfile>
		<usergroup>marcelo.pazos@inpe.br</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>marcelo.pazos@inpe.br</readergroup>
		<visibility>shown</visibility>
		<readpermission>allow from all</readpermission>
		<documentstage>not transferred</documentstage>
		<mirrorrepository>iconet.com.br/banon/2006/11.26.21.31</mirrorrepository>
		<nexthigherunit>8JMKD3MGPCW/446AF4B</nexthigherunit>
		<hostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</hostcollection>
		<username>marcelo.pazos@inpe.br</username>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</lasthostcollection>
		<url>http://mtc-m16d.sid.inpe.br/rep-/sid.inpe.br/mtc-m19/2013/07.23.18.29</url>
	</metadata>
</metadatalist>