Fechar

@InProceedings{KubotaSouzRiveBona:2013:ImDiFo,
               author = "Kubota, Paulo Yoshio and Souza, Dayana Castilho de and Rivero, 
                         Silvio Nilo Figueroa and Bonatti, Jos{\'e} Paulo",
          affiliation = "{Instituto Nacional de Pesquisas Espaciais (INPE)} and {Instituto 
                         Nacional de Pesquisas Espaciais (INPE)} and {Instituto Nacional de 
                         Pesquisas Espaciais (INPE)} and {Instituto Nacional de Pesquisas 
                         Espaciais (INPE)}",
                title = "Impacto de Diferentes Formula{\c{c}}{\~o}es de 
                         Parametriza{\c{c}}{\~o}es de Microf{\'{\i}}sica sobre Campo de 
                         Nuvens e Simula{\c{c}}{\~o}es Clim{\'a}ticas/ Impact of 
                         Different Formulations of Microphysics Parameterization on Clouds 
                         Field and Climate Simulation",
            booktitle = "Anais...",
                 year = "2013",
         organization = "Simp{\'o}sio Internacional de Climatologia, 5. (SIC).",
             keywords = "AGCMs, microphysics, climate simulation.",
             abstract = "Os processos f{\'{\i}}sicos que regem a atmosfera terrestre 
                         s{\~a}o bem complexos e possuem intera{\c{c}}{\~o}es n{\~a}o 
                         lineares em diversas escalas. Embora existam varias 
                         parametriza{\c{c}}{\~o}es que representem razoavelmente bem 
                         estes processos, ainda existem falhas devido {\`a}s 
                         simplifica{\c{c}}{\~o}es. Portanto, existem escalas que as 
                         parametriza{\c{c}}{\~o}es f{\'{\i}}sicas n{\~a}o conseguem 
                         representar. A microf{\'{\i}}sica de nuvens que envolvem os 
                         processos f{\'{\i}}sicos necess{\'a}rios na 
                         forma{\c{c}}{\~a}o de nuvens e tem muita import{\^a}ncia no 
                         sistema clim{\'a}tico. A representa{\c{c}}{\~a}o de nuvem em 
                         modelos atmosf{\'e}ricos circula{\c{c}}{\~a}o geral (MCGAs) 
                         continua a ser um desafio devido {\`a} vasta gama de escalas 
                         temporal e espacial que devem ser considerados nas 
                         parametriza{\c{c}}{\~o}es. Deste modo, as nuvens s{\~a}o 
                         consideradas uma das principais fontes de incerteza em 
                         simula{\c{c}}{\~o}es clim{\'a}ticas (IPCC, 2007). Este trabalho 
                         focaliza o impacto de diferentes formula{\c{c}}{\~o}es de 
                         parametriza{\c{c}}{\~o}es de microf{\'{\i}}sica sobre o campo 
                         de nuvens e consequentemente nas simula{\c{c}}{\~o}es 
                         clim{\'a}ticas. A metodologia adotada consiste em analisar um 
                         conjunto de experimentos utilizando o MCGA-CPTEC/INPE configurado 
                         com diferentes parametriza{\c{c}}{\~o}es de 
                         microf{\'{\i}}sica, onde vari{\'a}veis prognosticas ({\'a}gua 
                         l{\'{\i}}quida, gelo, etc) s{\~a}o usadas para determinar as 
                         propriedades {\'o}ticas das nuvens e os resultados comparados com 
                         a configura{\c{c}}{\~a}o utilizando a parametriza{\c{c}}{\~a}o 
                         de precipita{\c{c}}{\~a}o de larga escala, onde n{\~a}o h{\'a} 
                         vari{\'a}veis prognosticas referentes {\`a} mudan{\c{c}}a de 
                         fase da {\'a}gua. Os experimentos foram integrados por 15 anos e 
                         inicializados com as analises do NCEP e temperatura mensal de 
                         superf{\'{\i}}cie do mar da NOAA. Os resultados indicam 
                         diferen{\c{c}}as expressivas no saldo de energia na 
                         superf{\'{\i}}cie e na precipita{\c{c}}{\~a}o devido o 
                         padr{\~a}o de cobertura total de nuvem entre os experimentos. 
                         Atrav{\'e}s das an{\'a}lises dos experimentos conclui-se que uma 
                         boa parametriza{\c{c}}{\~a}o de microf{\'{\i}}sica de nuvens 
                         {\'e} fundamental para prognosticar de forma realista os campos 
                         de {\'a}gua l{\'{\i}}quida e gelo necess{\'a}rios para estimar 
                         as propriedades {\'o}ticas das nuvens. ABSTRACT: The physical 
                         processes governing the terrestrial atmosphere are very complex 
                         and have nonlinear interactions at various scales. Although, there 
                         are several parameterizations that represent reasonably well these 
                         processes, still there are faults due to simplifications. 
                         Therefore, there are scales that are not represented by physical 
                         parameterizations. The cloud microphysics involving physical 
                         processes needed in the formation of clouds and has much 
                         importance in the climate system. The representation of clouds in 
                         atmospheric general circulation models (AGCMs) remains a challenge 
                         due to the wide range of temporal and spatial scales that must be 
                         considered in the parameterization. Thus, clouds are considered a 
                         major source of uncertainty in climate simulations (IPCC, 2007). 
                         This paper focuses on the impact of different formulations of 
                         microphysics parameterization over the clouds field and 
                         consequently in climate simulations. The methodology consists of 
                         analyzing a set of experiments using MCGA-CPTEC/INPE configured 
                         with different parameterizations of microphysics, where prognostic 
                         variables (liquid water, ice, etc.) are used to determine the 
                         clouds optical properties and the results compared with the 
                         configuration using the parameterization of large-scale 
                         precipitation based at supersaturation, where there is no 
                         prognostic variables related to phase change of the water. The 
                         experiments were integrated for 15 years and initialized with the 
                         NCEP analyzes and sea surface temperature monthly from NOAA. The 
                         results indicate significant differences in the balance of energy 
                         on the surface and the pattern of precipitation due to cloud 
                         coverage between experiments. Through the analysis of the 
                         experiments it was concluded that a good parameterization of cloud 
                         microphysics is essential to predict a realistic fields of liquid 
                         water and ice required to estimate the clouds optical 
                         properties.",
  conference-location = "Florian{\'o}polis, SC",
      conference-year = "15-19, set.",
           targetfile = "Kubota_Impacto.pdf",
        urlaccessdate = "03 maio 2024"
}


Fechar