<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21b.sid.inpe.br 804</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34P/3NG6F88</identifier>
		<repository>sid.inpe.br/mtc-m21b/2017/03.10.16.13</repository>
		<lastupdate>2017:03.10.16.13.44 sid.inpe.br/mtc-m21b/2013/09.26.14.25.20 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21b/2017/03.10.16.13.44</metadatarepository>
		<metadatalastupdate>2018:06.04.02.27.21 sid.inpe.br/mtc-m21b/2013/09.26.14.25.20 administrator {D 2017}</metadatalastupdate>
		<doi>10.5028/jatm.v9i1.697</doi>
		<issn>1984-9648</issn>
		<citationkey>VargasPoDuSoBaGo:2017:FoCoPo</citationkey>
		<title>Formation of composite polyaniline and graphene oxide by physical mixture method</title>
		<year>2017</year>
		<month>jan./mar.</month>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PN</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>2196 KiB</size>
		<author>Vargas, Ludimila Resende,</author>
		<author>Poli, Anne Karoline,</author>
		<author>Dutra, Rita de Cássia Lazzarini,</author>
		<author>Souza, Camila Brito de,</author>
		<author>Baldan, Maurício Ribeiro,</author>
		<author>Gonçalves, Emerson Sarmento,</author>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JHTA</resumeid>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group>LABAS-COCTE-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Tecnológico de Aeronáutica (ITA)</affiliation>
		<affiliation>Instituto Tecnológico de Aeronáutica (ITA)</affiliation>
		<affiliation>Instituto Tecnológico de Aeronáutica (ITA)</affiliation>
		<affiliation>Instituto de Aeronáutica e Espaço (IAE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Tecnológico de Aeronáutica (ITA)</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>mauricio.baldan@inpe.br</electronicmailaddress>
		<journal>Journal of Aerospace Technology and Management</journal>
		<volume>9</volume>
		<number>1</number>
		<pages>29-38</pages>
		<secondarymark>B2_PLANEJAMENTO_URBANO_E_REGIONAL_/_DEMOGRAFIA B3_INTERDISCIPLINAR B4_GEOCIÊNCIAS B4_ENGENHARIAS_II B4_CIÊNCIAS_AMBIENTAIS B5_ENGENHARIAS_IV B5_ENGENHARIAS_III B5_CIÊNCIA_DA_COMPUTAÇÃO C_ASTRONOMIA_/_FÍSICA</secondarymark>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<keywords>Graphene oxide, Polyaniline, Structure, Morphology, FT-IR, DSC.</keywords>
		<abstract>The development of polyaniline and graphene oxide composites aims to join the unique properties of each material for aerospace applications. The present paper demonstrates an easy and quick method, compared to the ones found in the literature, to obtain a composite made with polyaniline doped with dodecylbenzenesulfonic acid, a combination commonly called polyaniline, and graphene oxide. Nowadays, the most common studied methods are electrochemistry and in situ chemical polymerization. Differently from these methods, the films were obtained by a physical mixture of equimolar suspension of graphene oxide (4 mg/mL) with 3 concentrations of polyaniline powder: 25; 50 and 75%, being compared to pure graphene oxide and polyaniline. The morphology and structure behavior of all the films were studied, besides the bonding nature between both materials. The films were analyzed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The apparent interaction between graphene oxide corrugated sheets and polyaniline grains was verified by scanning electron microscopy images. It can be noticed, as the concentration of polyaniline increases, that more polymer was entrapped. To prove the formation of polyaniline/graphene oxide composite, X-ray diffraction and Fourier transform infrared spectroscopy techniques demonstrated the changes on graphene oxide crystallographic plans and on the chemical bonding between polyaniline and graphene oxide, suggesting an interaction between polyaniline and graphene oxide, especially in the composite with 50% polyaniline/50% graphene oxide. Differential scanning calorimetry was used to highlight this effect through the increase in thermal stability. The method of physical mixture was efficient to obtain the polyaniline/ graphene oxide composites.</abstract>
		<area>FISMAT</area>
		<language>en</language>
		<targetfile>vargas_formaiton.pdf</targetfile>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<archivingpolicy>allowpublisher allowfinaldraft</archivingpolicy>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/3ESR3H2</nexthigherunit>
		<citingitemlist>sid.inpe.br/bibdigital/2013/09.24.19.30 3</citingitemlist>
		<citingitemlist>sid.inpe.br/mtc-m21/2012/07.13.14.56.32 2</citingitemlist>
		<dissemination>WEBSCI; PORTALCAPES; COMPENDEX; SCOPUS.</dissemination>
		<hostcollection>sid.inpe.br/mtc-m21b/2013/09.26.14.25.20</hostcollection>
		<username>simone</username>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/mtc-m21b/2013/09.26.14.25.20</lasthostcollection>
		<url>http://mtc-m21b.sid.inpe.br/rep-/sid.inpe.br/mtc-m21b/2017/03.10.16.13</url>
	</metadata>
</metadatalist>