Fechar

%0 Journal Article
%4 sid.inpe.br/mtc-m21b/2017/10.10.13.08
%2 sid.inpe.br/mtc-m21b/2017/10.10.13.08.22
%@doi 10.5194/acp-2017-185
%@issn 1680-7367
%T Illustration of microphysical processes in Amazonian deep convective clouds in the Gamma phase space: introduction and potential applications
%D 2017
%8 marc.
%9 journal article
%A Cecchini, Micael Amore,
%A Machado, Luiz Augusto Toledo,
%A Wendisch, Manfred,
%A Costa, Anja,
%A Krämer, Martina,
%A Andreae, Meinrat O.,
%A Afchine, Armin,
%A Albrecht, Rachel I.,
%A Artaxo, Paulo,
%A Borrmann, Stephan,
%A Fütterer, Daniel,
%A Klimach, Thomas,
%A Mahnke, Christoph,
%A Martin, Scot T.,
%A Minikin, Andreas,
%A Molleker, Sergej,
%A Pardo, Lianet Hernández,
%A Pöhlker, Christopher,
%A Pöhlker, Mira L.,
%A Pöschl, Ulrich,
%A Rosenfeld, Daniel,
%A Weinzierl, Bernadett,
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@affiliation Universität Leipzig
%@affiliation Institut für Energie und Klimaforschung (IEK-7)
%@affiliation Institut für Energie und Klimaforschung (IEK-7)
%@affiliation Max Planck Institute for Chemistry
%@affiliation Institut für Energie und Klimaforschung (IEK-7)
%@affiliation Universidade de São Paulo (USP)
%@affiliation Universidade de São Paulo (USP)
%@affiliation Max Planck Institute for Chemistry
%@affiliation Deutsches Zentrum für Luft- und Raumfahrt (DLR)
%@affiliation Max Planck Institute for Chemistry
%@affiliation Max Planck Institute for Chemistry
%@affiliation Harvard University
%@affiliation Deutsches Zentrum für Luft- und Raumfahrt (DLR)
%@affiliation Johannes Gutenberg-Universität
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@affiliation Max Planck Institute for Chemistry
%@affiliation Max Planck Institute for Chemistry
%@affiliation Max Planck Institute for Chemistry
%@affiliation The Hebrew University of Jerusalem
%@affiliation Deutsches Zentrum für Luft- und Raumfahrt (DLR)
%@electronicmailaddress micael.cecchini@gmail.com
%@electronicmailaddress luiz.machado@inpe.br
%B Atmospheric Chemistry and Physics Discussion
%V 185
%P 1-49
%X The behavior of tropical clouds remains a major open scientific question, given that the associated physics is not well represented by models. One challenge is to realistically reproduce cloud droplet size distributions (DSD) and their evolution over time and space. Many applications, not limited to models, use the Gamma function to represent DSDs. However, there is almost no study dedicated to understanding the phase space of this function, which is given by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and inter-comparisons. Here, we introduce the phase-space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, where the relative dispersion parameter of the DSD can play a significant role. Overall, the Gamma phase-space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on Gamma DSDs.
%@language en
%3 cecchini_illustration.pdf


Fechar