Fechar

%0 Thesis
%4 sid.inpe.br/mtc-m21c/2020/04.17.16.01
%2 sid.inpe.br/mtc-m21c/2020/04.17.16.01.40
%T Multifractal analysis and modeling of time series for characterizing nonhomogeneous turbulence in space physics
%J Análise do multifractal e cascade p model para caracterizar não homogênio turbulência na física espacial
%D 2021
%8 2020-04-22
%9 Tese (Doutorado em Computação Aplicada)
%P 119
%A Joshi, Neelakshi,
%E Velho, Haroldo Fraga de Campos (presidente),
%E Rosa, Reinaldo Roberto (orientador),
%E Stephany, Stephan (orientador),
%E Fernandes, Francisco Carlos Rocha,
%E Alejandro Valdivia, Juan,
%I Instituto Nacional de Pesquisas Espaciais (INPE)
%C São José dos Campos
%K MFDFA, DFA, p model, space plasma irregularities, solar type I noise storm, irregularidades plasma espacial, emissão solar de tempestade de ruído do tipo I.
%X Many dynamic processes in space physics can be investigated from the study of nonlinear fluctuations observed from instruments with high temporal and spectral resolution. In this thesis, it is presented, for the first time, the characterization of inhomogeneous turbulence as a possible cause of the spectral deviations found for the variables associated with the instability of the ionospheric and solar plasma. Algorithms based on formalisms for the analysis of monofractal and multifractal detrended fluctuation (DFA-MFDFA) were implemented. To validate the results obtained from the multifractal analysis, the theoretical framework for the energy cascade, based on twoscale Cantor set, a formalism known as the p model, was also implemented, tested and used. The multiplicity of intermittent behavior of plasma irregularities in the Type I solar emissions, the ionospheric F region and the E-F valley region were characterized by the MFDFA, including the respective validations through the p model spectra. The multifractal spectra are presented for the three case studies in space physics. In all three cases, the hypothesis of a non homogeneous multiplicative cascade process for the distribution of turbulent energy is confirmed by the spectra. Also, the same analytical computational procedure has been discussed for applications in complex systems in general, considering, for example, the modelling of armed conflict time series. RESUMO: Muitos processos dinâmicos em física espacial podem ser investigados a partir do estudo de flutuações não-lineares observadas a partir de instrumentos com alta resolução temporal e espectral. Nesta tese, é apresentada, pela primeira vez, a caracterização de turbulência não homogênea como possível causa dos desvios espectrais encontrados para as variáveis associadas à instabilidade do plasma ionosférico e solar. Algoritmos baseados nos formalismos para a análise de flutuação destendenciada monofractal e multifractal (DFA-MFDFA) foram implementados. Para validar os resultados obtidos da análise multifractal, o framework teórico baseado no conjunto de Cantor de duas escalas, formalismo conhecido como cascata p model, também foi implementado, testado e utilizado para validar dos resultados espectrais. A multiplicidade de comportamentos intermitentes das irregularidades no plasma das emissões solares do Tipo I, da região F ionosférica e da região do vale E-F foram caracterizadas por análise de flutuação destendenciada multifractal, incluindo as respectivas validações através do espectros do p model. Os espectros multifractais são apresentados para os três casos de estudo em física espacial. Nos três casos, a hipótese de existência de processo de cascata multiplicativa não homogênea para a distribuição de energia turbulenta é confirmada pelos espectros. Também discutimos o mesmo procedimento computacional analítico para aplicações em sistemas complexos em geral, considerando, por exemplo, a modelagem de séries temporais de conflitos armados.
%@language en
%3 publicacao.pdf


Fechar