Fechar

@MastersThesis{Oliveira:2021:CrMaFi,
               author = "de Oliveira, Isabela",
                title = "Crustal magnetic field advection on Mars by ionospheric plasma 
                         flow",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2021",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2020-08-25",
             keywords = "Mars atmosphere, planetary ionospheres, planetary magnetic fields, 
                         remanent magnetization, advection, atmosfera de Marte, ionosferas 
                         planet{\'a}rias, campos magn{\'e}ticos planet{\'a}rios, 
                         magnetiza{\c{c}}{\~a}o remanescente, advec{\c{c}}{\~a}o.",
             abstract = "The planet Mars has unique magnetic features among the solar 
                         system bodies. Although the planet does not currently have an 
                         active dynamo that generates a global magnetic field, like Earth 
                         has, there are regions in its crust which are strongly magnetized. 
                         Some of these magnetic fields have magnitudes comparable to 
                         magnetic fields on Earth. Evidences suggest that the crustal 
                         magnetic fields on Mars are remanent signatures from a Martian 
                         dynamo that was active in the past. These strongly magnetized 
                         regions, above which mini-magnetospheres are formed, are what 
                         distinguishes Mars from the other planets of the Solar System. 
                         Like at Venus, the interactions between the solar wind and Mars 
                         are mostly dominated by the properties of its ionosphere. However, 
                         Mars mini-magnetospheres influence the ionospheric interactions, 
                         changing ionospheric parameters and disturbing or generating local 
                         and global ionospheric currents. In this work, we propose that the 
                         crustal magnetic fields of Mars not only interfere in the planets 
                         ionosphere, but that also the contrary can happen, i.e., the 
                         ionosphere can disturb the crustal magnetic fields. We 
                         specifically study whether the ionospheric flow is able to 
                         displace the crustal magnetic fields by advection, dragging them 
                         in the anti-solar direction, along the day-to-night flow of the 
                         ionospheric plasma. In order to identify advection of the magnetic 
                         fields on Mars, we perform statistical analyses using data from 
                         MAVEN and MGS spacecraft over long periods of time. MAVEN radial 
                         magnetic field data of the whole planet are selected for the 
                         dawn-side and the dusk-side of Mars and compared to a crustal 
                         magnetic field model, for altitude ranges between 200-1000 km. The 
                         results show evidences that the magnetic fields are displaced and 
                         the cause for the displacement is likely to be advection due to 
                         the ionospheric flow. We also use MGS radial magnetic field data 
                         to investigate the advection on small regions of the planet and 
                         with a higher spatial resolution. We compare day-side data to 
                         night-side data at the orbit altitude of 400 km. The displacement 
                         of the magnetic fields seems to be correlated to the distance from 
                         the magnetic field to the main patch of magnetization in the 
                         Southern hemisphere of the planet. In order to have a general idea 
                         of the forces involved in the advection of the magnetic fields, we 
                         compare the dynamic pressure of the ionospheric plasma flow to the 
                         magnetic pressure of the crustal magnetic fields. For this study, 
                         we use MAVEN magnetic field and ionospheric data between 200-1000 
                         km and between 04:00-20:00 local times. The results indicate that 
                         the advection of the magnetic fields is likely to be more 
                         expressive at the terminator regions of the planet, above regions 
                         of weak magnetic field background, e.g., in the Northern 
                         hemisphere of Mars. RESUMO: O planeta Marte tem 
                         caracter{\'{\i}}sticas magn{\'e}ticas {\'u}nicas dentre os 
                         corpos do sistema solar. Embora o planeta atualmente n{\~a}o 
                         tenha um d{\'{\i}}namo ativo que gere um campo magn{\'e}tico 
                         global, como o da Terra, existem regi{\~o}es fortemente 
                         magnetizadas em sua crosta. Alguns desses campos magn{\'e}ticos 
                         t{\^e}m magnitudes compar{\'a}veis aos campos magn{\'e}ticos da 
                         Terra. Evid{\^e}ncias sugerem que os campos magn{\'e}ticos 
                         crustais de Marte s{\~a}o assinaturas remanescentes de um 
                         d{\'{\i}}namo marciano que esteve ativo no passado. Essas 
                         regi{\~o}es fortemente magnetizadas, acima das quais 
                         minimagnetosferas s{\~a}o formadas, s{\~a}o o que distingue 
                         Marte dos outros planetas do Sistema Solar. Como em V{\^e}nus, as 
                         intera{\c{c}}{\~o}es entre o vento solar e Marte s{\~a}o 
                         predominantemente dominadas pelas propriedades de sua ionosfera. 
                         Contudo, minimagnetosferas de Marte influenciam as 
                         intera{\c{c}}{\~o}es ionosf{\'e}ricas, alterando os 
                         par{\^a}metros ionosf{\'e}ricos e perturbando ou gerando 
                         correntes ionosf{\'e}ricas locais e globais. Neste trabalho, 
                         propomos que os campos magn{\'e}ticos crustais de Marte n{\~a}o 
                         apenas interferem na ionosfera do planeta, mas que tamb{\'e}m o 
                         contr{\'a}rio pode acontecer, ou seja, a ionosfera pode perturbar 
                         os campos magn{\'e}ticos crustais. Estudamos especificamente se o 
                         fluxo ionosf{\'e}rico {\'e} capaz de deslocar os campos 
                         magn{\'e}ticos da crosta por advec{\c{c}}{\~a}o, arrastando-os 
                         na dire{\c{c}}{\~a}o anti-solar, ao longo do fluxo di{\'a}rio 
                         do plasma ionosf{\'e}rico. Para identificar a 
                         advec{\c{c}}{\~a}o dos campos magn{\'e}ticos de Marte, 
                         realizamos an{\'a}lises estat{\'{\i}}sticas usando os dados das 
                         espa{\c{c}}onaves MAVEN e MGS por longos per{\'{\i}}odos de 
                         tempo. Os dados da componente radial do campo magn{\'e}tico da 
                         MAVEN de todo o planeta s{\~a}o selecionados para o lado do 
                         amanhecer e do crep{\'u}sculo de Marte e comparados com um modelo 
                         de campo magn{\'e}tico crustal, para faixas de altitude entre 
                         200-1000 km. Os resultados mostram evid{\^e}ncias de que os 
                         campos magn{\'e}ticos est{\~a}o deslocados e a causa do 
                         deslocamento provavelmente {\'e} a advec{\c{c}}{\~a}o devido ao 
                         fluxo ionosf{\'e}rico. Tamb{\'e}m usamos dados da componente 
                         radial do campo magn{\'e}tico da MGS para investigar a 
                         advec{\c{c}}{\~a}o em pequenas regi{\~o}es do planeta e com uma 
                         resolu{\c{c}}{\~a}o espacial mais alta. Comparamos os dados 
                         diurnos com os noturnos na altitude da {\'o}rbita de 400 km. O 
                         deslocamento dos campos magn{\'e}ticos parece estar 
                         correlacionado {\`a} dist{\^a}ncia do campo magn{\'e}tico ao 
                         principal bloco de magnetiza{\c{c}}{\~a}o no hemisf{\'e}rio Sul 
                         do planeta. Para ter uma id{\'e}ia geral das for{\c{c}}as 
                         envolvidas na advec{\c{c}}{\~a}o dos campos magn{\'e}ticos, 
                         comparamos a press{\~a}o din{\^a}mica do fluxo de plasma 
                         ionosf{\'e}rico com a press{\~a}o magn{\'e}tica dos campos 
                         magn{\'e}ticos crustais. Para este estudo, usamos dados da MAVEN 
                         do campo magn{\'e}tico e da ionosfera entre 200-1000 km e entre 
                         04:00-20:00 do hor{\'a}rio local. Os resultados indicam que a 
                         advec{\c{c}}{\~a}o dos campos magn{\'e}ticos {\'e} 
                         provavelmente mais expressiva nas regi{\~o}es do terminadouro do 
                         planeta, acima das regi{\~o}es de fraco campo magn{\'e}tico de 
                         fundo, e.g., no hemisf{\'e}rio Norte de Marte.",
            committee = "Wrasse, Cristiano Max (presidente) and Echer, Ezequiel 
                         (orientador) and Franco, Adriane Marques de Souza (orientadora) 
                         and Fr{\"a}nz, Wolfram Johannes Markus (orientador) and Dal Lago, 
                         Alisson and Guedes, F{\'a}bio Becker and Marques, Manilo Soares",
         englishtitle = "Advec{\c{c}}{\~a}o do campo magn{\'e}tico crustal em Marte pelo 
                         fluxo ionosf{\'e}rico de plasma",
             language = "en",
                pages = "89",
                  ibi = "8JMKD3MGP3W34R/433F7E8",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34R/433F7E8",
           targetfile = "publicacao.pdf",
        urlaccessdate = "03 maio 2024"
}


Fechar