Fechar

@TechReport{PereiraFach:2020:ShFlFo,
               author = "Pereira, Lucas Soares and Fachini Filho, Fernando",
                title = "Shvab-Zel’dovich and Flamelet formulations applied on quasi-steady 
                         droplet combustion with soot formation and radiative heat 
                         transfer",
          institution = "Instituto Nacional de Pesquisas Espaciais",
                 year = "2020",
                 type = "RPQ",
              address = "S{\~a}o Jos{\'e} dos Campos",
                 note = "{Bolsa PIBIC/INPE/CNPq.}",
             keywords = "droplet combustion, Shvab-Zel’dovich, soot formation, 
                         combust{\~a}o de got{\'{\i}}cula, Shvab-Zel’dovich, 
                         forma{\c{c}}{\~a}o de fuligem.",
             abstract = "The present work studies theoretically the quasi-steady combustion 
                         of an isolated droplet with the formation of soot. For this, an 
                         analysis was made on the conservation equations to determine the 
                         characteristic spatial and temporal scales of the problem, which 
                         were used for the nondimensionalization of those equation. The 
                         problem has spherical symmetry, which allows for a one-dimensional 
                         analysis of the problem. The quasi-steady combustion regime is 
                         justified by the fact that the thermal inertia of the gas phase 
                         close to the droplet is much less than that of the liquid phase, 
                         so the environment adapts thermically much faster than the 
                         droplet. The boiling temperature is considered for the whole 
                         droplet, i.e., all heat transferred to the droplet is used for the 
                         phase change (vaporization). It was admitted that the chemical 
                         process occurs at the Burke-Schumann limit, thus the reaction rate 
                         is infinitely fast which leads to infinitely thin flame. To solve 
                         the system of governing differential equations, the 
                         Shvab-Zeldovich formulation was used, which eliminates the 
                         dependence of the chemical reaction term, which is non-linear. 
                         Therefore, the mass fraction of species and the temperature field 
                         are described by the mixture fraction, Z, and excess enthalpy, H, 
                         equations. The boundary conditions were imposed at the surface of 
                         the droplet and in a region far from it. To describe the formation 
                         of soot in the problem, a simplified mathematical model was 
                         adopted. The resulting system of second order differential 
                         equations allow to be integrated analytically once, and the final 
                         system of first order differential equations is integrated 
                         numerically. The next step will be to implement a computational 
                         code to solve the numerical integration, in addition to 
                         implementing the heat transfer by radiation. RESUMO: O presente 
                         trabalho estuda teoricamente a combust{\~a}o quase est{\'a}vel 
                         de uma got{\'{\i}}cula isolada com a forma{\c{c}}{\~a}o de 
                         fuligem. Para isso, foi feita uma an{\'a}lise das 
                         equa{\c{c}}{\~o}es de conserva{\c{c}}{\~a}o para determinar as 
                         escalas espaciais e temporais caracter{\'{\i}}sticas do 
                         problema, as quais foram utilizadas para a 
                         adimensionaliza{\c{c}}{\~a}o dessas equa{\c{c}}{\~o}es. O 
                         problema tem simetria esf{\'e}rica, o que permite uma 
                         an{\'a}lise unidimensional. O regime de combust{\~a}o quase 
                         est{\'a}vel {\'e} justificado pelo fato de que a in{\'e}rcia 
                         t{\'e}rmica da fase gasosa pr{\'o}xima {\`a} got{\'{\i}}cula 
                         {\'e} muito menor que a da fase l{\'{\i}}quida, de modo que o 
                         ambiente se adapta muito mais rapidamente que a got{\'{\i}}cula. 
                         A temperatura de ebuli{\c{c}}{\~a}o foi considerada para toda a 
                         got{\'{\i}}cula, isto {\'e}, todo o calor transferido para ela 
                         {\'e} usado para a mudan{\c{c}}a de fase 
                         (vaporiza{\c{c}}{\~a}o). Foi admitido que o processo 
                         qu{\'{\i}}mico ocorre no limite de Burke-Schumann, portanto a 
                         taxa de rea{\c{c}}{\~a}o {\'e} infinitamente r{\'a}pida, o que 
                         leva a chamas infinitamente finas. Para resolver o sistema de 
                         equa{\c{c}}{\~o}es diferenciais governantes, foi utilizada a 
                         formula{\c{c}}{\~a}o de Shvab-Zeldovich, que elimina a 
                         depend{\^e}ncia do termo de rea{\c{c}}{\~a}o qu{\'{\i}}mica, 
                         que n{\~a}o {\'e} linear. Portanto, a fra{\c{c}}{\~a}o de 
                         massa das esp{\'e}cies e o campo de temperatura s{\~a}o 
                         descritos pelas equa{\c{c}}{\~o}es da fra{\c{c}}{\~a}o da 
                         mistura, Z, e de excesso de entalpia, H. As condi{\c{c}}{\~o}es 
                         de contorno foram impostas na superf{\'{\i}}cie da 
                         got{\'{\i}}cula e em uma regi{\~a}o distante da mesma. Para 
                         descrever a forma{\c{c}}{\~a}o de fuligem no problema, foi 
                         adotado um modelo matem{\'a}tico simplificado. O sistema 
                         resultante de equa{\c{c}}{\~o}es diferenciais de segunda ordem 
                         permite uma integra{\c{c}}{\~a}o anal{\'{\i}}tica, e o sistema 
                         final de equa{\c{c}}{\~o}es diferenciais de primeira ordem 
                         {\'e} integrado numericamente. O pr{\'o}ximo passo ser{\'a} 
                         implementar um c{\'o}digo computacional para resolver a 
                         integra{\c{c}}{\~a}o num{\'e}rica, al{\'e}m de implementar a 
                         transfer{\^e}ncia de calor por radia{\c{c}}{\~a}o.",
          affiliation = "{Universidade Federal de Itajub{\'a} (UNIFEI)} and {Instituto 
                         Nacional de Pesquisas Espaciais (INPE)}",
             language = "en",
                pages = "29",
                  ibi = "8JMKD3MGP3W34R/443HEF5",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34R/443HEF5",
           targetfile = "PIBIC - Lucas Soares Pereira - Relat{\'o}rio Final....pdf",
        urlaccessdate = "23 abr. 2024"
}


Fechar