<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21d.sid.inpe.br 808</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34T/45NCKNL</identifier>
		<repository>sid.inpe.br/mtc-m21d/2021/11.03.17.45</repository>
		<lastupdate>2021:11.03.17.45.56 urlib.net/www/2021/06.04.03.40 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21d/2021/11.03.17.45.56</metadatarepository>
		<metadatalastupdate>2022:04.03.23.14.05 sid.inpe.br/bibdigital@80/2006/04.07.15.50 administrator</metadatalastupdate>
		<doi>10.1080/09276440.2020.1817681</doi>
		<issn>1568-5543</issn>
		<citationkey>CardosoGoAnSiTrCo:2021:FaCaNa</citationkey>
		<title>Fast carbon nanotube growth on carbon fiber keeping tensile strength</title>
		<year>2021</year>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PI</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>2633 KiB</size>
		<author>Cardoso, Lays Dias Ribeiro,</author>
		<author>Gomes, Marinés Chiquinquirá Carvajal,</author>
		<author>Antunes, Erica Freire,</author>
		<author>Silva, Fábio Santos,</author>
		<author>Trava-Airoldi, Vladimir Jesus,</author>
		<author>Corat, Evaldo José,</author>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JH33</resumeid>
		<group>CMS-ETES-DIPGR-INPE-MCTI-GOV-BR</group>
		<group>CMS-ETES-DIPGR-INPE-MCTI-GOV-BR</group>
		<group>COPDT-CGIP-INPE-MCTI-GOV-BR</group>
		<group></group>
		<group>COPDT-CGIP-INPE-MCTI-GOV-BR</group>
		<group>COPDT-CGIP-INPE-MCTI-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Empresa Brasileira de Aeronáutica (EMBRAER)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>erica.freireantunes@gmail.com</electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>vladimirjta@gmail.com</electronicmailaddress>
		<electronicmailaddress>evaldo.corat@inpe.br</electronicmailaddress>
		<journal>Composite Interfaces</journal>
		<volume>28</volume>
		<number>9</number>
		<pages>859-878</pages>
		<secondarymark>B2_ENGENHARIAS_II</secondarymark>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<keywords>carbon fiber, Carbon nanotube, floating catalyst, silicon oxide, tensile strength.</keywords>
		<abstract>This work developed a novel approach for carbon nanotube (CNT) direct deposition on carbon fiber (CF) tow surface by chemical vapor deposition (CVD), without degrading CF mechanical properties. This approach combines conditions for growth at low-temperature (650°C), small growth induction period for a fast growth and fast surface modification to enable the growth. The lower growth temperature comes from using the well-known equimolar C2H2/CO2 gas mixture. The floating catalyst from a liquid precursor (with high ferrocene concentration dissolved in hexane) reduced the growth induction period. Gentle surface modification, either by a mild oxidation of CF fiber with silicon containing sizing, or by desized CF exposition to a hexamethyldissiloxane (HMDSO) environment, create silicon oxide clusters. The X-ray Photoelectron Spectroscopy (XPS) analysis show that such clusters need to be in a higher oxidation stateSi(-O)2, Si(-O)3 and Si(-O)4to anchor catalyst and enable CNT growth. The first oxidation stateSi(-O)1is not enough. A resin droplet wetting test developed shows that even though the success in CNT growth, the entire processes decrease CF wetting, exposing the need for a resizing procedure. CF mechanical properties were characterized by single-filament and CF tow tensile strength tests.</abstract>
		<area>FISMAT</area>
		<language>en</language>
		<targetfile>cardoso_fast.pdf</targetfile>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<readpermission>deny from all and allow from 150.163</readpermission>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/3F358GL</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/46KTFK8</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/46KUES5</nexthigherunit>
		<dissemination>WEBSCI; SCOPUS.</dissemination>
		<hostcollection>urlib.net/www/2021/06.04.03.40</hostcollection>
		<username>simone</username>
		<agreement>agreement.html .htaccess2 .htaccess</agreement>
		<lasthostcollection>urlib.net/www/2021/06.04.03.40</lasthostcollection>
		<url>http://mtc-m21d.sid.inpe.br/rep-/sid.inpe.br/mtc-m21d/2021/11.03.17.45</url>
	</metadata>
</metadatalist>