<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>mtc-m21d.sid.inpe.br 808</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34T/4878GS5</identifier>
		<repository>sid.inpe.br/mtc-m21d/2022/12.13.18.23</repository>
		<lastupdate>2022:12.13.18.23.26 urlib.net/www/2021/06.04.03.40 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21d/2022/12.13.18.23.26</metadatarepository>
		<metadatalastupdate>2023:07.08.07.14.43 sid.inpe.br/bibdigital@80/2006/04.07.15.50 administrator</metadatalastupdate>
		<secondarykey>INPE--PRE/</secondarykey>
		<citationkey>CsillikKLBBCCDFGJOVV:2022:AmFoSt</citationkey>
		<title>Amazon forest structural diversity estimated using field inventory plots, airborne lidar and GEDI spaceborne lidar</title>
		<year>2022</year>
		<secondarytype>PRE CI</secondarytype>
		<author>Csillik, Ovidiu,</author>
		<author>Keller, Michael,</author>
		<author>Longo, Marcos,</author>
		<author>Bonal, Damien,</author>
		<author>Burban, Benoit,</author>
		<author>Chave, Jérome,</author>
		<author>Coomes, David A.,</author>
		<author>Derroire, Geraldine,</author>
		<author>Feldpausch, Ted,</author>
		<author>Görgens, Eric Bastos,</author>
		<author>Jackson, Tobias,</author>
		<author>Ometto, Jean Pierre Henry Balbaud,</author>
		<author>Valdivia, María Isabel Vilalba,</author>
		<author>Vincente, Grégoire,</author>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group>DIPE3-COGPI-INPE-MCTI-GOV-BR</group>
		<affiliation>Jet Propulsion Laboratory</affiliation>
		<affiliation>NASA Jet Propulsion Laboratory</affiliation>
		<affiliation>Lawrence Berkeley National Laboratory</affiliation>
		<affiliation>Université de Lorraine</affiliation>
		<affiliation>INRAE</affiliation>
		<affiliation>CNRS</affiliation>
		<affiliation>University of Cambridge</affiliation>
		<affiliation>CIRAD</affiliation>
		<affiliation>University of Exeter</affiliation>
		<affiliation>Universidade Federal dos Vales do Jequitinhonha e Mucuri</affiliation>
		<affiliation>University of Cambridge</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Jardín Botánico de Missouri</affiliation>
		<affiliation>University of Montpellier</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>jean.ometto@inpe.br</electronicmailaddress>
		<conferencename>AGU Fall Meeting</conferencename>
		<conferencelocation>Chicago, IL</conferencelocation>
		<date>12-16 Dec. 2022</date>
		<publisher>AGU</publisher>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<abstract>Tropical forests store more than half of terrestrial aboveground biomass and are key to understanding the global carbon cycle. Knowing the structure of a forest today is critical to predicting its future structure and productivity. Unfortunately, field inventories of tropical forests are sparse and vast areas have no representative inventory information. Reliance on sparse field measurements can lead to large uncertainties when extrapolating to vast regions such as the Amazon forest. The advent of airborne and spaceborne lidar expands the coverage from local to regional and continental measurements of forest structural properties. We produced Amazon-wide estimates of forest structure (aboveground biomass, basal area, leaf area index, and stem number density) by integrating information from forest inventory plots, airborne lidar and GEDI (Global Ecosystem Dynamics Investigation) spaceborne lidar using a two-step approach. The first step relates forest properties from about one thousand forest inventory plots and relative heights from simulated GEDI metrics based on airborne lidar overlapping the plots. We compared several regression models and machine learning approaches, with best results obtained by Ordinary Least Squares and Random Forests that reached R2 values from 0.69 for stem density (relative RMSE 22%) to 0.79 for basal area (20%), 0.80 for aboveground biomass (24%) and 0.83 for leaf area index (19%). Second, we used 11,280 contemporary co-located GEDI-simulated shots from airborne lidar with spaceborne GEDI shots to build linear models between their corresponding relative heights. Ultimately, we combined the two models to upscale the measurements from field inventory to GEDI data over the Amazon, consisting of more than 250 million quality-filtered shots acquired over 2.5 years. We analyzed environmental and climatic factors that influence regional and local variations in forest structure. Preliminary results indicate that the dry season length was a strong predictor of major gradients of stem number density across the Amazon basin. These results fill a gap where systematic forest inventories are lacking and can be used to study a wide range of ecosystem processes and model predictions of forest carbon budget dynamics.</abstract>
		<area>CST</area>
		<usergroup>simone</usergroup>
		<visibility>shown</visibility>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/46L2FGP</nexthigherunit>
		<hostcollection>urlib.net/www/2021/06.04.03.40</hostcollection>
		<username>simone</username>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2021/06.04.03.40</lasthostcollection>
	</metadata>
</metadatalist>