<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>plutao.sid.inpe.br 800</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W/3TEP8B9</identifier>
		<repository>sid.inpe.br/plutao/2019/06.10.13.33.43</repository>
		<lastupdate>2019:06.20.23.52.59 dpi.inpe.br/plutao@80/2008/08.19.15.01 simone</lastupdate>
		<metadatarepository>sid.inpe.br/plutao/2019/06.10.13.33.44</metadatarepository>
		<metadatalastupdate>2020:01.13.13.11.04 dpi.inpe.br/plutao@80/2008/08.19.15.01 simone {D 2019}</metadatalastupdate>
		<doi>10.3390/drones3020036</doi>
		<issn>2504-446X</issn>
		<label>lattes: 2456184661855977 2 Girolamo-NetoSaNePrKöPiAr:2019:AsTeFe</label>
		<citationkey>Girolamo-NetoSaNePrKöPiAr:2019:AsTeFe</citationkey>
		<title>Assessment of Texture Features for Bermudagrass (Cynodon dactylon) Detection in Sugarcane Plantations</title>
		<year>2019</year>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PI</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>24027 KiB</size>
		<author>Girolamo-Neto, Cesare Di,</author>
		<author>Sanches, Ieda Del'Arco,</author>
		<author>Neves, Alana Kasahara,</author>
		<author>Prudente, Victor Hugo Rohden,</author>
		<author>Körting, Thales Sehn,</author>
		<author>Picoli, Michelle Cristina Araújo,</author>
		<author>Aragão, Luiz Eduardo Oliveira e Cruz de,</author>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>cesare.neto@inpe.br</electronicmailaddress>
		<electronicmailaddress>ieda.sanches@inpe.br</electronicmailaddress>
		<electronicmailaddress>alana.neves@inpe.br</electronicmailaddress>
		<electronicmailaddress>victor.prudente@inpe.br</electronicmailaddress>
		<electronicmailaddress>thales.korting@inpe.br</electronicmailaddress>
		<electronicmailaddress>mipicoli@gmail.com</electronicmailaddress>
		<electronicmailaddress>luiz.aragao@inpe.br</electronicmailaddress>
		<journal>Drones</journal>
		<volume>3</volume>
		<number>2</number>
		<pages>36</pages>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<abstract>Sugarcane products contribute significantly to the Brazilian economy, generating U.S. $12.2 billion in revenue in 2018. Identifying and monitoring factors that induce yield reduction, such as weed occurrence, is thus imperative. The detection of Bermudagrass in sugarcane crops using remote sensing data, however, is a challenge consideringtheir spectral similarity. To overcome this limitation,this paper aims to explore the potential of texture features derived from images acquired by an optical sensor onboard anunmanned aerial vehicle (UAV) to detect Bermudagrass in sugarcane. Aerial images with a spatial resolution of 2cm were acquired from a sugarcane field in Brazil.The Green-Red Vegetation Index and several texture metrics derived from the gray-level co-occurrence matrix were calculated to perform an automatic classification using arandom forest algorithm. Adding texture metrics to the classification process improved the overall accuracy from 83.00% to 92.54%, and this improvement was greater considering larger window sizes, since they representeda texture transition between two targets. Production losses induced by Bermudagrass presence reached 12.1 tons × ha&#8722;1 in the study site. This study not only demonstrated the capacity of UAV images to overcome the well-known limitation of detecting Bermudagrass in sugarcane crops, but also highlighted the importance of texture for high-accuracy quantification of weed invasion in sugarcane crops.</abstract>
		<area>SRE</area>
		<language>en</language>
		<targetfile>drones-03-00036.pdf</targetfile>
		<readergroup>administrator</readergroup>
		<readergroup>lattes</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<readpermission>deny from all and allow from 150.163</readpermission>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/3EQCCU5</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3ER446E</nexthigherunit>
		<citingitemlist>sid.inpe.br/bibdigital/2013/09.09.15.05 1</citingitemlist>
		<dissemination>PORTALCAPES</dissemination>
		<hostcollection>dpi.inpe.br/plutao@80/2008/08.19.15.01</hostcollection>
		<username>simone</username>
		<lasthostcollection>dpi.inpe.br/plutao@80/2008/08.19.15.01</lasthostcollection>
		<url>http://plutao.sid.inpe.br/rep-/sid.inpe.br/plutao/2019/06.10.13.33.43</url>
	</metadata>
</metadatalist>