PROGRAMA PARA ANÁLISE DE RELÂMPAGOS: THOR-SLA.

Odim Mendes Jr. 1 e Margarete Oliveira Domingues 2 (odim@dge.inpe.br)

Instituto Nacional de Pesquisas Espaciais-INPE, DGE¹, DCM², São Paulo, Brasil

ABSTRACT

Thor-SLA is a software for lightning analysis developed as a multiplataform package for classification and analysis of cloud-to-ground lightning flashes. Using simple architetures this software deals with a great amount of strokes. This work describes this software at the current version.

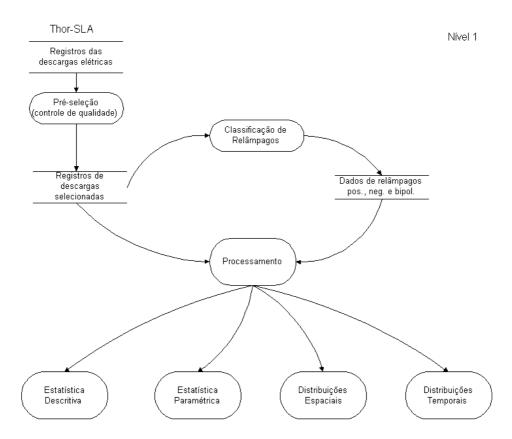
INTRODUÇÃO

Relâmpagos podem ser considerados belos fenômenos da Natureza. Porém, por outro lado, eles podem desencadear incêndios em florestas, danificar instalações, prejudicar a prestação de serviços e ferir ou matar pessoas e animais. Embora seja fenômeno conhecido desde a origem do homem, a sua previsão de ocorrência ou de comportamento na atmosfera ainda não são possíveis. Para esse entendimento do fenômeno, a ponto de se antecipar ou interferir na eletrodinâmica do relâmpago ou mesmo tirar proveito desse fenômeno, torna-se necessária a obtenção de informações da forma mais completa possível. Como auxílio para esses propósitos de segurança, de conhecimento e de aplicação, conta-se atualmente com várias recursos tecnológicos, técnicas e metodologias de observação e medição dos relâmpagos (Bent e Lyons, 1984; Krehbiel et al., 2000). Várias dessas técnicas de detecção lidam, em geral, com o registro de descargas elétricas atmosféricas nuvem-solo, montando um banco de dados com registros de cada descarga detectada organizados temporalmente.

O propósito deste trabalho é apresentar uma ferramenta para análise das descargas elétricas atmosféricas, considerando as várias investigações que podem ser efetuadas e a sua utilidade desde as áreaa de pesquisa científica até as áreas de aplicações em engenharia, sem mesmo desconsiderar o potencial subsídio em informações para as áreas de segurança. Nas pesquisas em geofísica e meteorologia, os relâmpagos podem ser considerados traçadores auxiliares no estudo da fenomenologia das nuvens eletrificadas, assim é importante saber qual foi o critério utilizado para o processamento das informações. Isso só é possível através de critérios explicitos e códigos abertos.

RELÂMPAGO: CONCEITOS GERAIS

Como uma síntese do que se conhece sobre os relâmpagos, pode-se informar que os relâmpagos consistem de descargas elétricas atmosféricas, de caráter transiente, portando uma alta corrente elétrica (em geral, superior a várias dezenas de quilo-amperes). Elas são consequências das cargas elétricas que se acumulam em nuvens cumulonimbus (~10-100C) e ocorrem quando o campo elétrico excede localmente a capacidade isolante do ar (>400kV/m). Os relâmpagos são classificados nas categorias: relâmpagos nuvem-solo, solo-nuvem, intranuvens, entre-nuvens, horizontais e para a ionosfera. Existem os ainda discutidos relâmpagos bolas, que se apresentam em deslocamentos aparentemente livres no ar, e os efeitos sugeridos na atmosfera superior devido aos relâmpagos (os "red sprites" e outros meteoros – JASTP, 1998). No entanto, devido a questão da segurança no ambiente cotidiano na superfície, as descargas que conectam nuvem e solo são de grande interesse e mais facilmente pesquisadas. Esses relâmpagos podem ser formados de apenas uma descarga ou de múltiplas descargas (propriedade denominada multiplicidade), apresentando intervalos entre descargas subsequentes de 3 a 500 milissegundos, com o valor típico em torno de 40 milissegundos. Por fim, se esses relâmpagos conduzem cargas negativas para o solo, eles são denominadas relâmpagos negativos; se retiram cargas negativas, relâmpagos positivos. Relâmpagos bipolares são relâmpagos de múltiplas descargas e que apresentam ambas as polaridades (MacGorman e Rust, 1998; Uman, 1987; Volland, 1984).


THOR-SOFTWARE FOR LIGHTNING ANALYSIS

a) Visão geral

O conjunto de programas, utilizando o paradigma da programação orientada a objetos em C++ (Montenegro e Pacheco, 1994), que compõe o pacote Thor-SLA na versão 2.2.0 tem como finalidade principal classificar e analisar descargas elétricas tipo nuvem-solo que sejam obtidas sequencialmente no tempo e possuam dados de localização (latitude e longitude) da descarga de retorno, intensidade estimada da corrente elétrica da descarga e sua respectiva polaridade.

O Thor-SLA está sendo desenvolvido seguindo a proposta multiplataforma, descrita por Guinan(2000), utilizando o compilador gcc da GNU Software Foundation (http://www.gnu.org). Com isso, a portabilidade de código é imediata e, como é descrito a seguir, a estrutura de dados utilizada permite o processamento de grandes bases de dados em diversos tipos de arquitetura computacional. Seguindo essa filosofia, optou-se por não haver saídas gráficas próprias, facilitando a portabilidade. Todos os resultados de saída são pré-formatados e possuem descritores e scripts que permitam automatizar sua visualização e impressão. Foram escolhidos programas de domínio público, e multiplataforma, para executar essa tarefa. Para isso, atualmente, utiliza-se o pacote Octave da GNU (http://www.octave.org) e também está em implementação esse tipo de saída automatizada para o OpenDX da IBM (http://www.opendx.org), de distribuição gratuita e multiplataforma. Assegura-se, dessa forma, saídas de alta qualidade, grande compatibilidade, facilidade de implementação e custo mínimo.

Para permitir uma compreensão da totalidade do Thor-SLA, apresenta-se o seu diagrama de fluxo de dados (DFD) na Figura 1. Neste tipo de diagrama, os dados de entrada e saída são representados entre barras horizontais e os processos pelas elipses. As barras tracejadas indicam saídas ainda em testes ou sendo implementadas.

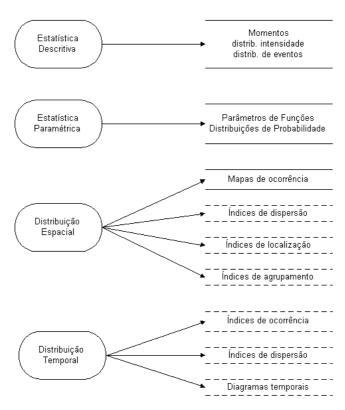


Fig. 1 – Diagrama de fluxo de dados do Thor-SLA.

b) Aspetos teóricos do algoritmo

Pré-seleção

No conjunto de procedimentos da pré-seleção, os dados de entrada passam por um controle de qualidade, eliminando toda descarga que não atenda requisitos de confiabilidade. Esses requisitos estão associados a descontinuidade de eventos, problemas com a formatação dos dados e outras irregularidades associadas a base de dados. Nesta etapa também os dados de entrada são formatados para os passos seguintes. Como há várias formatações de entrada dos registros de descargas fornecidos, os procedimentos associados a essa etapa estão continuamente sendo aprimorados.

Classificação de relâmpagos

O fenômeno relâmpago deve ser analisado como um fenômeno de ocorrência integral, pois as descargas elétricas que o compõem não são verdadeiramente um elemento isolado no processo físico. A ocorrência do relâmpago e seu comportamento eletrodinâmico estão intrinsecamente ligados às pré-condições e ao estado elétrico da atmosfera. Como efeitos práticos a serem considerados, há, por exemplo, a recorrência de descargas em linhas de transmissão produzindo fadiga elétrica em componentes. Assim para a realização das análises pretendidas, é necessário reintegrar as descargas recompondo o relâmpago de que elas fizeram parte. A esse procedimento deuse o nome de classificação do relâmpago (Mendes e Domingues, 1998) O seguinte critério empírico foi adotado para os tempos e as distâncias entre as descargas de retorno: as descargas subsequentes em um relâmpago são consideradas estar dentro de um intervalo temporal de 500 ms da descarga imediatamente anterior e dentro de de um intervalo temporal de 2 segundos e uma distância geodésica máxima de 10 km da primeira descarga do relâmpago (Cook e Casper, 1992). Em Gin et al. (1997) e Mendes et al. (1998), verificou-se que esse tipo de classificação é válido. Na análise de cada dia, no início dos registros algumas descargas são descartadas até que o primeiro stroke de um relâmpago seja identificado inequivocamente atendendo os critérios acima. Um descartamento similar ocorre no fim do dia devido a uma interrupção artificial que evita recuperar um relâmpago

completo dos últimos registros de descargas. Isto representa a perda de um ou dois relâmpagos por dia. Nessa classificação nenhuma restrição foi imposta sobre a polaridade das descargas subsequentes, permitindo reunir descargas com polaridades diferentes no mesmo relâmpago.

Cálculos efetuados

Nesta versão do Thor-SLA, algumas características estatísticas já estão disponíveis para serem calculadas, como: (a) a percentagem de relâmpagos por polaridade; (b) a distribuição horárias dos relâmpagos; (c) a distribuição de multiplicidade dos relâmpagos; (d) a distribuição dos relâmpagos por pico de intensidade de corrente; e (e) os mapas de densidade/evento de relâmpagos. Os itens (a), (b), (d) e (e) também podem ser obtidos para as descargas. Também podem ser calculados os parâmetros para as funções de distribuição de probabilidade Weibull 3-parâmetros e Lognormal das intensidades de corrente, associada a cada ordem de multiplicidade (Mendes et al, 1999). Outras saídas (resultados) estão em teste ou sendo implemetadas.

c) Aspecto computacional: estruturas de dados

Uma questão importante no tratamento desse tipo de dados é um enorme volume de registros gravados a serem manipulados. Com isso, é necessário utilizar uma estrutura de dados especial que permita: (a) fazer a classificação de forma correta; (b) viabilizar o processamento, reduzindo a memória de operação requisitada; e (c) otimizar as operações de processamento. Para solucionar essas questões, utilizou-se uma estrutura de dados do tipo vetor circular (Tenenbaum et al., 1995), ilustrada na Figura 2. Os dados entram para processamento de forma contínua e sem desnecessário armazenamento. Um segmento de dados são classificados, ordenados e processados. Enquanto alguns registros saem, outros entram no vetor circular, preenchendo as posições desocupadas. Lida-se assim com qualquer quantidade de registros, empregando apenas 256 "posições" de memória. Isso tem a vantagem adicional de tornar o processamento rápido e rodar em arquiteturas mais modestas.

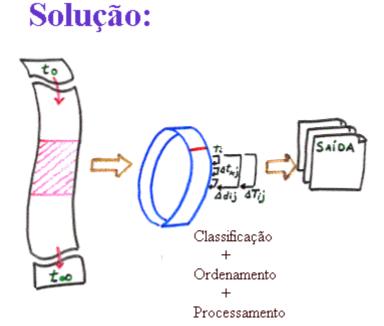


Fig. 2 – Esquema da estrutura de dados e do processamento do registro de descargas elétricas.

CONCLUSÕES E PERSPECTIVAS

O Thor-SLA, na versão atual, é um programa multiplataforma de tratamento de registros de descargas atmosféricas. Esse tratamento classifica relâmpagos e processa estatísticas básicas e paramétricas de relâmpagos e descargas. Além disso, permite a obtenção de mapas de descargas e relâmpagos. Sua arquitetura está preparada para lidar tanto com grandes bases de dados como com eventos específicos.

Acrescendo às implementações descritas na DFD, pretende-se nas novas versões incluir análises de outros aspectos dos relâmpagos (como por exemplo, análises de imagens de relâmpagos e estruturas convectivas).

Pretende-se, em futuro breve, disponibilizar esse programa. Maiores informações poderão ser obtidas em http://dge.inpe.br/electr.

REFERÊNCIAS BIBLIOGRÁFICAS

Bent, R. B.; Lyons, W. A. Theoretical Evaluations and Initial Operational Experiences of LPATS (Lightning Position and trackingSystem) to Monitor Lightning Ground Strikes Using a Time-of-Arrival (TOA) Technique. **VII International Conference on Atmospheric Electricity**. Proceedings. p. 317-324. American Meteorological Society, Albany, 1984.

Cook, B.; Casper, P. U.S.A. National Lightning Data Service. In: **Proc. Int. Conf. Lightning Prot.**, <u>21</u>:351-356, 1992.

Gin, R.B.B.; Pinto Jr., O.; Pinto, I.R.C.A.; Diniz, J.H.; Carvalho, A.M. Study on the identification parametera of atmospheric discarges in the southeastern Brazil. **IV International Seminar on Lightning Protection**, São Paulo, Brasil, September 8-12, 1997.

Guinan, J. Cross-Plataform Development Using GCC. C/C++ Users Journal. CA, California, CMP Media, 18(3);18-26, Mar. 2000.

JASTP Effects of thunderstorm activity on the upper atmosphere and ionosphere. **Journal of Atmospheric and Solar-Terrestrial Physics**, 60(7-9):667-974, May-June, 1998. (Edição especial).

Krehbiel, P. R.; Thomas, R. J.; Rison, W.; Hamlin, T.; Harlin, J.; David, M. **GPS-based mapping system reveals lightning inside storms**. EOS-Transactions, AGU, 81(3):21-25, Jan. 2000.

MacGorman, D. R.; Rust, W. D. The electrical nature of storms. New York, Oxford University, 1998. pp. 422.

Mendes, O. Jr; Domingues, M. O. An efficient algorithm for lightning classification. XII Congresso Nacional de Matemática Aplicada e Computacional. **Proceedings**. Caxambu, Minas Gerais, Brazil, 14-18 September, 1998.

Mendes Jr., O.; Domingues, M. O.; Gin, R. B. B.; Pinto Jr., O.; Pinto, I. R. C. A. Climatological Evaluation of Parameters for a More Realistic Lightning Modeling. **Proceedings**. X Congresso Brasileiro de Meteorologia. FLISMET, Brasília, DF, 26-30 de outubro, 1998. (CD-Room).

Mendes, O. Jr.; Domingues, M. O.; Pinto, I. R. C. A.; Pinto, O. Jr.; Diniz, J. H.; Carvalho, A. M.; Cazetta, A. M. On lightning current probability distribution from southeastern brazilian measurements. XI International Conference on Atmospheric Electricity. Proceedings. In Press. Guntersville, Alabama, June 1999.

Montenegro, F.; Pacheco, R. Orientação a Objetos em C⁺⁺. Ciência Moderna, Rio de Janeiro, pp. 394, 1994.

Tenenbaum, A.M.; Langsam, Y.; Augenstien, M.J. Estruturas de dados em C. Makron, São Paulo, pp. 884, 1995.

Uman, M. A. The Lightning Discharge. Academic Press, Florida. pp. 377, 1987.

Volland, H. Atmospheric electrodynamics. New York, Spring-Verlag. pp. 205, 1984.

AGRADECIMENTOS

Os autores agradecem à FAPESP pelo apoio e financiamento recebido (Processo Nº 1998/3860-9) e ao Dr. Leonardo Deane de Abreu Sá e a Dra. Rosangela Barreto Biasi Gin o apoio científico a esta pesquisa.